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We report on the fabrication of waveguides and beam splitters in pure YAG crystals by
femtosecond laser direct writing (FLDW). During the femtosecond laser writing process, a
positive refractive index is induced through the nonlinear focusing above the focus
position, resulting in an unusual guiding cross-sectional configuration. The supported
guiding modes at 632.8 nm are measured and analyzed using the end–face coupling
system. The propagation loss can be as low as 1.9 dB/cm for the single-line waveguide.
Different from the geometry of the traditional fs-laser modified area, this novel structure
might offer a new approach in the quest toward integrated photonics.
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INTRODUCTION

Optical waveguides, as the basic component of integrated photonics, can confine the propagation of
light within small volumes and play a non-negligible role in optical communication and optical
information processing. FLDW has emerged to become an effective and mature piece of technology
for optical waveguide fabrication over decades of fast development [1]. Compared with the other
traditional waveguide fabrication techniques, such as ion implantation and reactive ion etching,
FLDW has the unique features of flexible 3D fabrication configurations, good compatibility with a
wide range of materials, and simplicity in use [2–4]. A femtosecond laser (fs-laser) will induce
multiphoton absorption whenmodifyingmaterial properties and tailoringmicrostructures inside the
transparent bulk materials with a much shorter timescale. Therefore, the thermal energy exchange
between photo-excited electrons and lattice ions will be curbed. A smooth photo-modified region
with extremely high spatial resolution can be achieved.

Due to the complex interaction between the fs-laser pulses and the materials, the modified guiding
structures in glass, crystalline materials, and ceramics have greater diversity [5]. Normally, the
structural types can be categorized as single-line waveguide with positive refractive index changes
induced at the focused area, stress-field–induced double-line waveguides based on damage and
negative refractive index changes generated at the focused area, and depressed-cladding waveguide
formed by the combination of small tracks with negative refractive index change [5, 6]. Until now,
those aforementioned guiding structures fabricated by FLDW have been demonstrated in a handful
of host materials, including silica glass, ZBLAN, LiNbO3, KTN, YAG, YCOB, etc. [7–13]. It is beyond
doubt that the designable prototypes of FLDW enable us make significant breakthroughs, from
scientific research to technological devices, for example, beam splitters, optical couplers, MZI EO
modulators, waveguide lasers, waveguide-based frequency converters, and topological fractal
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insulators [14–23]. Among these devices, optical waveguide
power splitters, which can switch the optical signal from single
input to multiple outputs, act as essential elements for integrated
photonic circuits.

In this work, we report on the formation of new single-line
waveguides and a beam splitter (1 × 3) in pure YAG crystals by
FLDW. Pure YAG crystals are one of the most significant optical
window materials, with high mechanical strength and stable
physical and chemical properties. Meanwhile, the most
distinctive feature of the obtained structures in the material is
that the guiding area does not exist at the focused area but is
posited at the area formed by the self-focus of the pulse lasers. The
guiding properties of the guiding structures have been
investigated. It is noted that both of the single-line waveguides
and the beam splitter support fundamental-mode laser
propagating in the structures at 632.8 nm with polarization-
insensitive properties.

EXPERIMENTS

An amplified Ti:sapphire laser system (Astrella, Coherent,
United States), which delivered linearly polarized pulses of 40
fs and a central wavelength of 800 nm at a repetition rate of 1 kHz,
was utilized to fabricate single-line waveguides and a beam
splitter in the pure YAG crystal with dimensions of 20 × 10 ×
2 mm3. During the fabricating process, the pure YAG sample was
placed at a computer-controlledXYZ translation stage, and the fs-
laser beam was focused using a 25 ×microscope objective (N.A. �
0.4) at a depth of 100 μm beneath one of the 20 × 10-mm2

surfaces. As shown in Figure 1, three single-line waveguides
(WG1, WG2, andWG3, 20 mm in length) and a waveguide beam
splitter (WG4 with configurations of 1 × 3 splitters) were
fabricated. The structure of the beam splitter was designed as
follows: the length of every straight waveguide is 2 mm, the
lengths of every two splitting waveguides are 7 mm and the
splitting angle is 0.8°, the straight input arm was split into two
branches and four branches, and finally, three straight
waveguides are output because two of them were combined
into one. These guiding configurations were fabricated with
different pulse energies and scanning speeds. The
micromachining parameters are listed in Table 1.

To further explore the guiding properties of the fabricated
structures, we used an end–face coupling system to measure
guiding-mode profiles at 632.8 nm, excited from the He–Ne
laser. A Glan–Taylor prism and a half-wave plate were
employed together to control the polarization of the incident
laser beams. The laser is then focused to the input face of the
waveguide after passing through a microscope objective (40 ×, N.A.

FIGURE 1 | Schematic diagram of the laser writing single-line waveguides (WG1–WG3) and the beam splitter (WG4) in the pure YAG crystal. The insets are the
microscope images of the input face (B) and the output face (A) of the waveguide beam splitter WG4 in the pure YAG crystal.

TABLE 1 | Processing parameters and the losses of the waveguides.

WG1 WG2 WG3 WG4

Pulse energy (μj) 4.94 4.94 6.42 4.94
Scanning speed (mm/s) 0.2 0.1 0.2 0.2
Total loss (dB) TM 7.50 8.37 9.11 13.08

TE 10.67 12.04 14.20 13.08
Coupling loss (dB) TM/TE 3.64 3.64 2.60 3.64
Propagation loss (dB/cm) TM 1.93 2.37 3.26 4.72

TE 3.52 4.1 5.8 4.72
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� 0.65). Another microscope objective with a long working distance
(50×, N.A. � 0.42) is used to collect the light field from the exit end
face of the waveguide. The modal profiles are imaged using a CCD
camera (WCD-UCD 12-1310, DataRay, United States), and the
output intensities are measured using a power meter.

RESULTS AND DISCUSSION

Figure 1 depicts a brief diagram of beam propagation. The insets are
microscopic images of the input face and the output face of the
waveguide beam splitter (WG4). In Figure 1B, we found that the
induced track shows relatively complicated structures compared
with the traditional modified region. The upper region (Area I) was
formed by the self-focus of the pulse. The lower region (Area II) with
local minimum area was formed by the laser focus. Both regions
expand elliptically. Area I expands elliptically and is identified as the
guiding area, which is confirmed through the microscope
observation and the end–face coupling research. In a manner of
speaking, the guiding volume is surrounded by irregular regions with
a low refractive index, where the fs-laser intensity is higher than the
ionization threshold of the material. As shown in the schematic
diagram of the FLDW processing, the size of WG1–WG3 increases
in order due to the gradual changes in the processing parameters.

Figure 2 displays the 2D and 3D modal profiles of the output
light field collected fromWG1, WG2, and WG3. We can see that
the modal profiles exhibit fundamental modes at TM polarization
and TE polarization, which is beneficial for excitation and
coupling, reducing losses, and avoiding signal distortion.
Meanwhile, the beam splitter WG4 supports the laser
propagating at both TM and TE polarizations. It can be

identified that these guiding structures perform insensitive
propagating properties to the polarization of the laser.
Figure 3A depicts the experimental, measured 2D and 3D
guiding-mode profiles of the WG4 at TM polarization.
Although the branch configurations are introduced to the
design, the guiding mode still exhibited the fundamental-mode
feature, which demonstrates the opportunity for this structure to
contribute to the photonics circuits. The measured output
intensity–splitting ratio for the three arms is about 1:1.84:1,
which is very close to the simulated result (i.e., 1:1.95:1).
Moreover, we can optimize the structure design and
processing parameters to improve the splitting ratio.
Figure 3B shows the simulated results of the 2D and 3D
guiding-mode profiles. By comparing the experimental and
simulated laser profiles, one can come to the conclusion that
the experiment data match quite well with the simulated results.
We believe that it is possible to achieve an adjustable beam-
splitting ratio through improved structural design.

Here, BeamPROP (Rsoft, Inc.) software based on the finite-
difference beam propagation method (FD-BPM) [24] is used to
simulate the light propagation at 632.8 nm in WG4. The top view
of the simulated light intensity profile after light propagating on
the XY-plane at TM polarization can be seen in Figure 4A.
Figure 4B depicts the simulated evolution process of light
propagating; clearly, the input light beam was split into three
branches and still transmitted as fundamental modes.
Insignificant light leakage can be observed at the junction
points, which is mainly caused by structural imperfection and
will increase the total losses to a certain extent.

Table 1 reveals the losses of the waveguides at 632.8 nm when
the incident laser is with different polarizations. The total losses α

FIGURE 2 | The 2D and 3D modal profiles of the output light field of the single-line waveguides WG1 at (A) TM polarization, (D) TE polarization, WG2 at (B) TM
polarization, (E) TE polarization, and WG3 at (C) TM polarization, (F) TE polarization.
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are measured using the power meter and the end–face coupling
system using the following formula:

α � 10 · lg Pin

Pout
,

where Pin and Pout correspond to the input and output laser
powers, and the coupling losses are roughly calculated using the
BeamPROPmodule of Rsoft Photonics CADSuite. By subtracting

the coupling loss from the total loss for each polarization
component, we can calculate the propagating loss. According
to the calculated results, the difference in coupling losses is mainly
related to the dimensions of these waveguides. Also, the
propagating losses at TE polarization are slightly larger than
those at TM polarization. The reason for this is that the
geometries of the fabricated guiding structures are not
centrosymmetric. The width along TM polarization is a little
larger than that along TE polarization. The propagation loss can
be as low as 1.9 dB/cm for the single-line waveguide WG1.
Comparing the propagation losses of the single-line waveguide
WG1 and the beam splitter WG4 with the same fabrication
parameters, the additional losses may be partly attributed to
the radiation loss caused by beam deflection and the mode
coupling between the straight waveguides and the branch
waveguide. For the splitter waveguide, the propagation losses
in these two polarizations are roughly the same, which may be
related to the structural design of the beam splitter.

CONCLUSION

In summary, we have demonstrated the fabrication of a
waveguide beam splitter in a pure YAG crystal by
femtosecond laser direct writing. For the waveguides and the
beam splitter with positive refractive index changes,
fundamental-mode guidance is achieved along both TE and
TM polarizations at the wavelength of 632.8 nm. The
experimentally measured modal profiles of the waveguide
beam splitter are in good agreement with the simulation
results. The research shows that the excellent beam-splitting
performance of the structure is helpful for us to split beams in
a certain proportion, which implies that our fabrication on the
waveguide beam splitter has a potential application in integrated
photonics.

FIGURE 3 | (A) Experimental results of 2D and 3D guiding-mode profiles of the beam splitter WG4 at TM polarization. (B) Simulated results of 2D and 3D guiding-
mode profiles of the beam splitter WG4 at TM polarization.

FIGURE 4 | (A) Top view of the simulated light intensity profile after light
propagating on the XY-plane at 632.8 nm at TM polarization. (B) Evolution
process of light propagating.
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