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The tuning of microwave filter is important and complex. Extracting coupling matrix from
given S-parameters is a core task for filter tuning. In this article, one-dimensional
convolutional autoencoders (1D-CAEs) are proposed to extract coupling matrix from S-
parameters of narrow-band cavity filter and apply this method to the computer-aided tuning
process. The training of 1D-CAE model consists of two steps. First, in the encoding part,
one-dimensional convolutional neural network (1D-CNN) with several convolution layers and
pooling layers is used to extract the coupling matrix from the S-parameters during the
microwave filters’ tuning procedure. Second, in the decoding part, several full connection
layers are employed to reconstruct the S-parameters to ensure the accuracy of extraction.
The S-parameters obtained by measurement or simulation exist with phase shift, so the
influence of phase shift must be removed. The efficiency of the presented method in this
article is validated by a sixth-order cross-coupled filter simulation model tuning example.

Keywords: microwave filter, coupling matrix, one-dimensional convolutional autoencoders, phase shift, computer-
aided tuning

1 INTRODUCTION

Microwave filter is an important frequency selection device in wireless communication system.
However, in filter design and production, the performance of microwave filter meeting the
requirements is difficult to because of the manufacturing error and the material difference.
Therefore, computer-aided tuning is important for filter [1, 2].

The tuning system for microwave filters was developed by COM DEV company, and the
computer-aided tuning technology was applied to the filter tuning in 2003 [3]. An algorithm
based on fuzzy logic is applied to tune microwave filter [4], but this method is only an analysis of the
tuning rules of the filter, so the tuning accuracy is not very high. The method of coupling matrix
extraction based on vector fitting is also presented [5, 6]. Then, Cauchymethod is proposed to extract
the poles and residues of the Y parameters, which speed up the extraction of the coupling matrix [7,
8]. These methods require repeated iterations many times in different conditions and the port phase
of the filter is ignored, which is labor-intensive and time-consuming. With the development of
microwave technology, many new extraction techniques were presented. The phase shift is
eliminated by three parameter optimization methods, and then the coupling matrix is
synthesized by Cauchy method [9]. A new single parameter optimization method is proposed
[10], which extracts the coupling matrix from measurement or simulated S-parameters of filter.
However, the calculation process of these optimization methods is complex.
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Some machine learning algorithms such as support vector
machine, adaptive network, and artificial neural network (ANN)
[11–13] are explored to extract the coupling matrix. However,
there methods have some disadvantages. For example, ANN
initially is a traditional weight-sensitive method based on back-
propagation, which could easily be over-trained. The deep neural
network is applied to the parameter extraction of microwave filter
[14, 15]. However, there are too many layers for the deep neural
network, which lead to problem and make training complicated.

In this article, a coupling matrix extraction method based on
1D-CAE model [16, 17] is presented. 1D-CAE is a hybrid model
of one-dimensional neural network (1D-CNN) and autoencoders
(AEs). In the process of 1D-CAEmodel training, the encoder first
extracts the features of S-parameters using convolution layers and
pooling layers, which are then mapped to the coupling matrix by
the flattened and full connection layers. In addition, the decoder
reconstructs the S-parameters through full connection layers and
reshapes operations. The loss function was used to evaluate the
performance of the 1D-CAE model. The proposed 1D-CAE
model is able to extract the coupling matrix of the target
S-parameters with high accuracy and speed compared with the
conventional Cauchy method or vector fitting method with
complicated derivations. The method proposed in this article
is successfully applied to a sixth-order cross-coupled filter, which
validates the effectiveness of the proposed method.

The rest of the article is organized as follows. Section 2
introduces the theories of 1D-CAE model. In section 3, the
elimination of phase shift is described. The sixth-order cross-
coupled filter is used to verify the effectiveness of the proposed
method in section 4. The conclusions are drawn in section 5.

2 ONE-DIMENSIONAL CONVOLUTIONAL
AUTOENCODERS

2.1 Autoencoders Framework
The autoencoders (AEs) are typical representation of learning
network that is widely used in the field of image process and
information encoding [18, 19]. The AEmainly includes two parts:
encoder and decoder. The encoder compresses the input data and

maps it into a feature vector of a small dimension. On the other
hand, the decoder learns to reconstruct the complete information
of input data according to the feature vector. The process of
encoding and decoding makes the obtained feature vector to
contain the main information of the input data. The framework of
a typical AE is shown in Figure 1.

In the process of encoding, the real and imaginary parts of S11
and S21 are its input and coupling matrix is its output. The
encoding process can be expressed as

A � f(w1X + b1) (1)

where X is the input data, A is the output of encoder, w1 is the
weight matrix connecting the input layer and hidden layer, b1 is
the bias matrix, and f is the activation function. In decoding part,
the coupling matrix is its input and the real and imaginary parts
of S11 and S21 are its output. In order to obtain output layer, the
decoding function is

X � g(w2A + b2) (2)

where X is output of decoder, w2 is weight matrix connecting the
hidden layer and output layer, b2 is the bias matrix, and g is the
activation function.

2.2 One-Dimensional Convolutional Neural
Network
Convolutional neural network (CNN) is one of the most
representative algorithms in the field of artificial intelligence,
which is inspired by the visual nervous system of animals. Due to
its shared weight parameters and sparse connection
characteristics, CNN is used in image recognition and
classification [20, 21], natural language processing, and other
fields [22, 23]. A typical CNN is composed of multiple
convolution layers, pooling layers, and full connection layers.
The convolution layer is used to extract features in the calculation
process by weight sharing. The pooling layer usually follows the
convolution layer and is adopted to reduce the dimension of
network parameters. After extracting the features through
multiple convolution layers and pooling layers, they are
flattened into a feature vector by the full connection layer.
Several different architectures for CNN have been proposed in
[24–28].

The process of extracting coupling matrix from S-parameters
can be regarded as a recognition problem. Considering that the
S-parameters are one-dimensional, one-dimensional
convolutional neural network (1D-CNN) was applied to
extract coupling matrix. The basic architecture of 1D-CNN is
similar to that of conventional CNN, so the feature of input data
can still be effectively learned by performing convolution and
pooling layers similar to conventional CNN. The difference is that
the 1D-CNN requires the application of one-dimensional
convolution kernel on the convolution layers. The following is
specific description of convolution layer, pooling layer, and full
connection layer.

The convolution layer consists of convolution kernel and
nonlinear activation function, which extracts the features by

FIGURE 1 | Autoencoders framework.
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convolution operation between different convolution kernel and
feature mapping. The output of convolution layer i is

Yi � fact(∑x◎wi + bi) (3)

where ◎ stands for convolution operation; wi is convolution
kernel weight; x is feature mapping of convolution layer i-1; bi
is bias of convolution layer i; and fact (·) is the activation function.

Adding the pooling layer behind the convolution layer is to
reduce data dimension for high computing efficiency. The
computing process for pooling layer can be expressed as

P � max(y1, y2, · · ·, yn) (4)

where n is the dimension of the pooling region and yn is the n-th
vector in pooling region.

The data features extracted from convolution layer and pooling
layer are integrated by the full connection layer and combined with
tanh activation function to achieve prediction of targets. The
output vector Vi of the fully connected layer i is given by

Vi � fact(wivi−1 + bi) (5)

where vi-1 is feature mapping of layer i-1, wi is weight of network,
bi is bias of network, and fact (·) is the activation function.

2.3 One-Dimensional Convolutional
Autoencoders Learning Model
1D-CAE is a network structure that can reconstruct the original
input data, which is based on the combination of AE and 1D-CNN.
Similar to the traditional AE structure, 1D-CAEmodel contains two
parts: encoder and decoder. Figure 2 shows the 1D-CAE model
structure. The encoder structure of 1D-CAE model includes
convolution layer, pooling layer, and full connection layer. The
role of the encoder is to learn the main features from the
S-parameters and map them to the coupling matrix. The decoder
aims to reconstruct the S-parameters using the coupling matrix
extracted from the encoder. The decoder for the 1D-CAE model
contains only the full connection layer and reshapes operation.

2.4 Loss Function
The entire network is trained using a combination of two loss
functions: reconstruction loss (Lr) and prediction loss (Lp). The
reconstruction loss is the difference between the original input
data (S-parameters) and decoder output (S-parameters).
Therefore, the reconstruction loss is smaller, indicating that
learned feature coding is more discriminative and of better
quality. The reconstruction loss is defined as follows

Lr � 1
N

∑N
i�1

(X −X)2 (6)

where X andX, respectively, represent the original input data and
decoder output and N is the batch size. Prediction loss is the
difference between the predicted coupling matrix and coupling
matrix sample. The prediction loss is defined as follows

Lp � 1
N

∑N
i�1

(Y − Y)2 (7)

where Y and Yare the predicted and coupling matrix sample,
respectively, and N is the batch size. The prediction loss forces
the network to predict an accurate coupling matrix from the
S-parameters. If the predicted coupling matrix differs from the
truth coupling matrix, then the prediction loss is large, otherwise
the prediction loss is small. The complete loss function is the sum
of Le and Ld defined as follows

L � Lr + λLp (8)

where λ is a regularization parameter. The loss function of the
1D-CAE is optimized using the Adam optimizer [29] with the
learning rate 10–4 and batch size (i.e., N) of 64.

3 ELIMINATION OF PHASE SHIFT

Generally, the S-parameters of the filter obtained through the
electromagnetic simulation model or measurement contain
non-ideal factors, which lead to the phase difference between

FIGURE 2 | Structure of the 1D-CAE model.
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the simulated or measured response value and the ideal value. If the
phase shift cannot be effectively eliminated, the accuracy of the
coupling matrix decreases. The phase shift φ is expressed as follows

φ � φ0 + βΔl (9)

where φ0 is the phase shift, β is the propagation constant, and l is
the length of the transmission line. The phase shift φ connected to
2 I/O ports is defined by

{φ1 � φ01 + βΔl1
φ2 � φ02 + βΔl2 (10)

whereφ01 andφ02 are the phase shift andΔl01 andΔl02 are equivalent
length of de-embedded transmission line at 2 I/O ports, respectively.

According to the theory in [30], the phase of the reflection
coefficient S11 is obtained as the following formulas

φs11(ω) � tan−1e(n−1),rω
n−1 + e(n−2),rωn−2 + · · · + e0,i

ωn+(n−1),iωn−1 + · · · + e0,r
(11)

where ek�ek,r + jek,i (k � 0,1,2....,N) is the complex coefficient of the
polynomial E(s); ω is the normalized frequency, when ω → ±∞

φs11(ω) ≈
a

ω
(12)

where a is proportional coefficient. Therefore, the phase of the
simulated or measured S-parameters can be expressed as

φmea
s11 (ω) ≈

a

ω
− 2φ1 (13)

By polynomial fitting according to Eq. 13, the φ01 and Δl01 can
be obtained. Similarly, φ02 and Δl02 can also be obtained. Finally,
the relationship of the scattering S-parameter before and after the
phase shift is removed as follows

{ S11 � Sm11 exp(j2φ1)
S21 � Sm12 exp[j(φ1 + φ2)] (14)

whereSm11 and Sm12 are the S-parameters obtained by measurement
or simulation and S11 and S21 are the S-parameters after removing
the phase shift.

4 EXPERIMENT AND RESULTS

The example is a sixth-order cavity filter with two transmission
zeros. The center frequency of the filter is 2.0693 GHz and the

bandwidth is 110 MHz. The model structure is shown in
Figure 3.

In this example, the 1D-CAE is training through 1800 training
datasets and 200 testing datasets, and the data are collected for
about 40 min. The detailed architecture of 1D-CAE model for
extracting coupling matrix in this article is depicted in Table 1. In
the encoder, there are three convolution layers and a full
connection layer. The input data are 301 × 4 consisting of real
and imaginary parts of the S-parameters with 301 frequency
points. The first convolution layer adopts convolution kernel of
size 3, the number is 32, and the stride is 1. Following the
maximum pooling layer with width and stride of 3, the feature
maps of 101 × 32 are obtained. In the second convolution layer,
the size of the convolution kernel is 3, the number of is 32, the
stride is 1, and the maximum pooling layer is followed by the
width and stride which are both 2. And then, the feature maps
became 51 × 32. In the third convolution layer, the size of
convolution kernel is 5, the number of is 32, the stride is 1,
and width and stride of the pooling layer below are both 2.
Therefore, the feature maps of upper layer are changed to 26 × 32.

FIGURE 3 | Sixth-order cross-coupled filter. (A) Top view and (B) side view.

TABLE 1 | The detailed architecture of the 1D-CAE model.

Layer Size/nodes Stride Output shape Activation

Input shape 301 × 4

Encoder

Conv1D 3 × 32 1 301 × 32 Selu

MaxPool 3 3 101 × 32 -

Conv1D 3 × 32 1 101 × 32 Selu

MaxPool 2 2 51 × 32 -

Conv1D 5 × 32 1 51 × 32 Selu

MaxPool 2 2 26 × 32 -

Flatten - - 832 -

Full connection N nodes - N Tanh

Decoder

Full connection 256 nodes - 256 Sin

Full connection 1,024 nodes - 1,024 Sin

Full connection 1,204 nodes - 1,204 Sin

Reshape - - 301 × 4 -

Output shape 301 × 4

Frontiers in Physics | www.frontiersin.org November 2021 | Volume 9 | Article 7168814

Zhang et al. Coupling Matrix Extraction Using 1D-CAE

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


The extracted feature maps are flattened into 832 nodes, followed
by a full connection layer with a number of N nodes for
prediction. N is the number of non-zero elements of the
coupling matrix. The activation function of the convolution
layer is Scaled Exponential Linear Units (Selu), and the
activation function of the full connection layer is Hyperbolic
Tangent (Tanh). The decoder network architecture is a simple
three-layer full connection with 256, 1,024, and 1,204 nodes. The
activation function of the three-layer full connection is Sin.
Finally, the reshape operation changes the shape of feature
maps to 301 × 4.

1D-CAE model training and testing results are shown in
Figure 4A. The S-parameters obtained from the
electromagnetic simulation software are removed from the
phase shift and input into the 1D-CAE model. The
corresponding coupling matrix will be quickly extracted.

Moreover, in the process of extracting the coupling matrix, the
goal response is compared with the S-parameters calculated by
the coupling matrix. The comparison result is shown in
Figure 4B, which shows perfect agreement with the goal
response.

In order to compare the method proposed in this article with
other deep learning network models, the same number of training
and data size are used to train the 1D-CNN model and ANN
model. The result is shown in Table 2. It can be seen that with the
same number of training and data size, the 1D-CAE network
model extraction of coupling matrix is with higher accuracy and
shorter training time. Because the single ANN model has too
many parameters with the increase of the number of layers, the
network burden is increased. The single 1D-CNN model cannot
strengthen the network training process by reconstructing the
input S-parameters.

FIGURE 4 | (A) Loss function of 1D-CAE training and testing results. (B) The target S-parameters and S-parameters calculated by coupling matrix.

TABLE 2 | Comparison of different deep learning network models.

Method Data size Number of training Accuracy (%) Training time (minutes)

ANN 2000 10,000 89.30 25

1D-CNN 2000 10,000 90.61 13

1D-CAE 2000 10,000 96.27 7

TABLE 3 | Coupling values for some intermediate tuning states.

State01 State08 State16 State24 State30 State35 Target

M11 0.1443 0.1210 0.1108 0.0459 0.0400 -0.0006 0

M22 -0.0697 -0.0541 -0.0416 0.0401 0.0334 0.0011 0

M33 0.1556 0.1034 0.0628 0.0008 0.0110 0.0010 0

M12 0.6621 0.6637 0.7184 0.7595 0.8380 0.8374 0.8374

M23 0.5671 0.5672 0.5768 0.5810 0.6086 0.6009 0.6018

M34 -0.5785 -0.5884 -0.5864 -0.6039 -0.6250 -0.6334 -0.6337

Ms1 0.9012 0.9429 0.9853 1.0135 0.9965 0.9980 0.9991

M25 0.0545 0.0467 0.0424 0.0459 0.0640 0.0633 0.0638
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The whole tuning process takes 35 steps. In each step, tunable
elements are incrementally adjusted by comparing the extracted
coupling matrix with the target coupling matrix, and further
adjustments are made based on the next extraction result. The
coupling values extracted for some intermediate states and target
coupling matrix are listed in Table 3. The filter responses for the
different tuning states in Table 3 are plotted in Figure 5. It can be
seen that the reflection characteristics in the passband gradually
meet the requirement, and the passband also meets the target
frequency range.

5 CONCLUSION

In this article, a method based on 1D-CAE model is proposed,
which can accurately and reliably extract coupling matrix from
S-parameters. The 1D-CAE model establishes the mapping
relationship between the S-parameters and the coupling
matrix through the encoder. In order to extract the
coupling matrix more accurately, the decoder reconstructs
the coupling matrix into S-parameters. By continuously
minimizing the value of the loss function, the optimal 1D-
CAE learning model can be obtained. Before extracting the
coupling matrix, the phase shift of the S-parameters must be

removed. A cross-coupled filter extraction example given in
this article has demonstrated the effectiveness of the proposed
method.
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