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Modern telecommunication systems produce large amounts of alarm messages, and
alarm management is vital for telecommunication systems’ high-quality performance.
Building functional networks by observing the pair similarity between time series is a useful
way to filter and reduce alarm messages. Because of the coexistence of positive and
negative correlations among telecommunication devices, most of the similarity measures
have troubles in computing the complex correlations. In this paper, we propose an index of
measuring how much two-alarm series deviate from the uncorrelated situation to detect
the correlation of both sides. Synthetic sequences verify our method. Furthermore, we
apply our method to analyze telecommunication devices’ alarm correlation in a province of
China. Our index of pair similarities is capable of measuring other discrete event data.

Keywords: telecommunication alarm, similarity measure, alarm correlation network, event relationship network,
time series

INTRODUCTION

According to the Ministry of Industry and Information Technology of China, the total number of
mobile phone users reached 1.594 billion and more than 98 percent of administrative villages had
access to optical fiber and 4G in China at the end of 2020. Numerous base stations and other kinds of
equipment constitute huge telecommunication networks with complicated structures. These
telecommunication systems produce a large number of alarm messages every day, which pose a
challenge to faults management. In the course of the managing process, various telecommunication
devices may affect each other [1, 2]. To effectively manage the system, it is critical to develop
strategies for correlating alarm messages by the physical connections of network elements or
knowledge derived from alarm experiences.

To perform fault management under a large number of alarm messages, it is important to reduce
the number of alarm messages by correlating different devices’ messages. In telecommunication
networks, some expert systems are implemented to filter and correlate alarms. Italy [3], first uses
expert system rules to recognize alarm correlation patterns and instantiate network fault hypotheses,
and then applies a heuristic search to determine the best solution among the hypotheses. ALLINK™
Operations Coordinator fromNYNEX [4] uses an expert system to filter network alarms. Most of the
existing expert systems are for relating fault messages, and transferring the knowledge of human
experts into an automated system. Other related methodologies were proposed. The work in [5, 6] is
based on a formal language representation of the communication system. A. Bouloutas in [5] focuses
on identifying errors in a known protocol: it is not an alarm correlation as such. The problem
considered by A. Bouloutas and S. Calo in [6] is fault localization from alarms. It is a related although
different problem. Such researches do not consider the occurring time of alarms, and assume
knowledge of the network topology.
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With the continuous development of telecommunication
systems, telecommunication networks are becoming more
complex, and features such as heterogeneous devices, network
structures, and technologies are coexisting and cooperating
within the system. This is a problem when domain-experts
build management systems for root cause analysis or event
relationship networks (ERNs). Data-driven fault management
may be helpful [7]. Perng [8] utilized the event history logs in
shorting the ERNs design process and perfecting the quality of
ERNs. Besides constructing the ERNs, one can build device-
device correlation networks from alarm logs. Particularly,
telecommunication devices are deployed over large
geographical area, and the device-to-device networks could be
useful in understanding the performance of the whole systems.
Based on the discrete alarm time of devices, device-to-device
networks can be constructed by correlating alarm series to form a
functional network. Functional structures are of great importance
in aiding understanding of the properties of various man-made
and natural networks [9, 10]. Differing from physical structures,
functional structures are generally built by observing the
similarity between time series. Depending on the application
scenario and the type of data, there are various way of
computing pair similarity. Euclidean Distance is the most
basic measure, when two sequences are of equal length. To
measure the similarity of unequal-length time series, Dynamic
Time Warping (DTW) [11] is useful, and is used in many
proposed optimizations [12–14]. If two time series have
similar morphology in most time periods but only have
certain differences in a very short time, Euclidean Distance
and DTW cannot accurately measure the similarity between
them, which can be solved by Longest Common Subsequence
(LCSS) [15]. However, the measures mentioned above only focus
on calculating how different the two series are, and ignore the
probability of them being such different. Furthermore, due to the
complexity of the system, recovering alarm messages sometimes
needs to check both positively and negatively correlated devices.
Most of the similarity measures may encounter troubles here.

To tackle the problem above we propose an index built on
measuring to what extent the two series deviate from the
corresponding shuffled series, to score the pair similarity. We then
construct synthetic series to verify the method. Furthermore, we
apply our method to analyze the alarm correlation of
telecommunication devices in a province of China. Although our
method focuses on the application of the telecommunication devices’
alarm series, it can also be applied to general discrete event data.

METHODS

The Definition of the Similarity Score
Between Alarm Sequences
This section defines an index to score the similarity.

Firstly, let Si be the time sequence representing the alarm
timing of ith device.

Si � {si1, si2, /, sik, /, si|Si |}, (1)

where |Si| denotes the size of Si. Given two sequences SA, SB and
n � |SA∩SB| being the number of the same timestamps between
them, we calculate the possibility of two sequences still having n
same timestamps when they are randomly shuffled. In detail, let
|SA| � m1, |SB| � m2, and the total time duration is assumed to be
D seconds. This may be illustrated by comparing our method to a
textbook example in probability. In this model, D balls are
numbered and put in an opaque box. Person A first picked
out m1 balls randomly and put them back after recording their
numbers. Then, person B picked m2 balls out at random and
recorded the number too. The probability of n balls being picked
out twice can be expressed as

Pn � Cn
m1
Cm2−n
D−m1

Cm2
D

, 0≤ n≤min {m1, m2}, (2)

where Cm2
D is the number of possible combinations ofm2 balls that

person B can pick out from the box, and Cn
m1

and Cm2−n
D−m1

compute
the number of possible combinations in which B picks n balls in
common with m1 recorded balls and m2 − n from the D −m1

unrecorded balls respectively. It is obvious that∑min{m1 , m2}
n�0 Pn � 1. Eq. 2 computes the probability of having n

timestamps in common between SA and SB when they are
randomly shuffled.

We define the similarity index in terms of Pn. According toPn’s
definition, its value would be no less than 0 and no more than 1. If
a small Pn, such as less than 0.05, appears, it means that a rare
event has occurred, which results from the appearance of a much
larger or smaller n compared to its expectation of two
uncorrelated sequences. When n is much larger than the
expectation, it shows that two devices send alarm messages
together more often than the random case, and vice versa. A
large n means that one devices alarm may be caused by an alarm
in the other, while a small nmay mean that one devices alarm is
caused by the normal function of the other. Both cases leads to the
conclusion that devices A and B are correlated. Because a large Pn
represents that the correlation between A and B has no difference
from the random case, we define the index which scores the
correlation of alarm sequences A and B as

cAB � 1 − Pn, (3)

which is symmetric, so that cAB � cBA.

Computational Processing
Large values of D, such as in several days of data, would make the
similarity computation very expensive. Therefore we separated
the total time duration into several windows with equal size and
computed the cij of two devices within each window respectively.
Then, the average value cij over each window is taken as the final
similarity score that describes the degree of correlation between
two devices.

Equation 2 is the probability mass function (pmf) of
hypergeometric distribution. When the total seconds D is a
large number, for instance, more than 10,000, it is hard to
calculate the value of Cm2

D because the factorial of D is too
large for computer to store as m2 increases. Here, when both
the value of m1 and m2 are more than 90, we use an
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approximation method proposed by Irving W. Burr [16], who
found the approximation relation between the hypergeometric
and Poisson distributions as

h(x;N , n, k) � p(x; kn
N
){1 + ( 1

2k
+ 1
2n

)[x − (x − nk
N
)

2

] + O( 1
k2

+ 1

n2)}
(4)

where h(x;N , n, k) denotes hypergeometric probability for x in n
given k in N and p(x; kn/N) denotes Poisson probability with
parameter kn/N . Thus, we use the adjustive factor below to
approximate the hypergeometric probability by the Poisson
probability when m1 and m2 are quite large.

The Verification of the Method
For verifying the validity of our method, we generated
synthetic alarm series whose correlation can be set manually. Let
SA � {sA1 , sA2 , /, sAk , /, sA|SA |} be the series of device A which
records 10,000 alarms within 58 days. Assuming that the
probability of device B reporting an alarm message when deviceA
reports is r, indicating the actual alarm correlation between two
devices. We also add nr random timestamps, which represent the
random alarming of device B itself or correlating with other devices,
into SB to see if the score calculated by the method changes as the
number of timestamps in SB changes. Figure 1A shows the tendency
of average similarity score with nr under different correlation levels in
10 experiments. In the figure, similarity score barely changes as nr
increases, which means the proposed method is robust when the
number of alarms changes. In addition, Figure 1A shows that the
method is capable of distinguishing different r levels as the linemoves
upwards when actual correlation r increases.

We also study the influence of window size on the similarity
scores. With random timestamps nr fixed at 1,000, we calculated
similarity scores at different r levels using the window size of 1 h,
6 h, 12 h and 24 h. In Figure 1B, when using window size of 24 h,
the similarity score will be close to 1 if r is more than 0.04. It
indicates that the method considers r being more than 0.04 as two
sequences being strongly related. However, when we reducing the
window size, the maximum value of the curve using the window
size of 1 h is only near 0.8, meaning that the method could even

distinguish r whose value is more than 0.2 which is not a small
value when considering correlation between two devices. When
analyzing real data, we can change the window size to make the
distribution of scores as scattered as possible so that we can rank
all the pairs of devices and find the most related ones.

EXPERIMENT

In this section, we use the method described above to analyze real
data of device alarms in telecommunication networks and
constructed a functional network that could help to locate
faults by scoring the probability of every two devices being
correlated when reporting alarm messages. Moreover, based
on the location of devices, we construct a city-to-city alarm
network (CCAN) and analyze its structure.

Data Description
The database is from a Chinese telecommunication company,
including the alarm messages of about 500,000 telecommunication
devices in a province of China from 26th August to 25th September
in 2015. In the following, we anonymize the name of the province
(named as G hereafter) and the related cities. Each message in the
database includes device ID, alarm title, type, location, and other
information.We pick out messages that recorded both device ID and
location. Figure 2 shows that the alarm number distribution of
508,636 devices follow a power law distribution. To obtain the main
correlation structure, we preprocess the database and take devices
that documented alarm messages between 600 and 50,000 times into
account. After that, 6,527 devices are considered into the following
analysis.

Result
Firstly, letting every device be the vertex, a fully connected
network is formed. Here, an edge is equivalent to a pair of
devices, and its weight equals the calculated similarity score.
Then, we remove edges whose similarity scores are smaller than a
threshold value, and the rest of the edges form the backbone of the
alarm correlation network. Secondly, we use every device’s

FIGURE 1 | (A) Average similarity scores at different correlation level. The sequences of device A and B are generated 10 times. The results showed in this figure are
the average of 10 experiments when the window size is 24. Similarity score barely changes as nr increases. The line moves upwards when actual correlation r increases.
(B) Average similarity scores at different window size. The results are also the average of 10 experiments but when adding 1,000 random alarm timestamps into SB. The
range that probability score varies with r widens as the window size decreases.
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located city to analyze the relationship between the alarm
numbers inside and outside the city and the network of cities.

After applying our method to the data, Figure 3A shows the
complementary cumulative distribution function (CCDF) of the
similarity scores. Each point shows the percentage of similarity
scores that are more than a value. In Figure 3A, when we take 0.8
as a threshold of removing edges, there was less than 10% of the
edges left in the network. In consideration of this, we use an
approximation of hypergeometric distribution and the remaining
term is of the same order as 0.0001, so choosing 0.999 as an upper
bound for the analysis will not impact computation accuracy.

We randomly chose eight pairs of devices whose similarity
scores are greater than 0.8 and shuffled their alarm times from the
last 31 days to see if our index separates correlated devices from
independent, uncorrelated ones. Figure 3B compares the scores
of original alarm sequences with those of the shuffled sequences
in 100 repetitions. The results show that the original scores are
completely separated from the boxplots of the shuffled sequences
scores, meaning that the device pairs left in the network are
statistically correlated.

In the following, we show the devices’ alarm correlation
network in G province, China. To compare the connection

strength inside and outside the cities, we normalize the
connection by relative connection density. For every city in G
province, the relative density inside the city is defined as

Rin
A � EA

|A| × |A| − 1
2

,
(5)

where EA represents the number of edges (ignoring the similarity
scores) and |A| is the number of devices inside the city. The
relative density outside the city is defined as

FIGURE 2 | (A) Probability density function (pdf) of alarm times with log-log coordinate. (B) Complementary cumulative distribution function (ccdf) of alarm times
with log-log coordinate. The data follows a straight line in log-log coordinates, which indicates that the alarm number obeys the power law distribution.

FIGURE 3 | (A) Complementary cumulative distribution function (ccdf) of
the similarity scores. Each point shows the percentage of scores that are more
than a certain value. When using a threshold that is no less than 0.8, more than
90% of the edges will be removed. (B) Boxplot of randomly shuffled
alarm sequences. For every chosen pair of devices, shuffle their sequence for
100 times and calculate the similarity scores of them. Red crosses symbolize
the original similarity score. The original scores are completely separated from
the shuffled sequences scores’ boxplots.

FIGURE 4 | Relative connection density and intercity alarm relevance
network (CCAN): (A) Percentage of relative density inside and outside cities
when using threshold 0.8. The inner relative density is painted blue and the
outer is painted orange. Each R is normalized by the maximum value
(0.1902) of inner relative density. (B) City-to-city network under threshold 0.8.
Different cities are symbolized by dots with different colors. The size of dots
represents the number of devices in every city. The width of edges is
proportional to the value of relative density between cities. (C) Percentage of
relative density inside and outside cities when using threshold 0.999. Each R is
normalized by the maximum value (0.0664) of inner relative density. (D) City-
to-city network under threshold 0.999. (A,C) show that when increasing the
threshold of removing edges, the structure between cities starts emerging (still
weaker than the connection inside cities). (B,D) show that cities lying in the
southeast of the province are connected more strongly than otherwhere.
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Rout
A � ∑

B∈F , B≠A
EAB

|A| ×∑
B∈F , B≠A

|B| (6)

where F is a set of all the cities in province G, the numerator
represents the number of edges between A and other cities, and the
denominator represents the number of edges if all the devices inside
city A are connected to all the devices inside other cities. We calculate
the relative densitiesR after removing thosewhose similarity scores are
less than 0.8, and present the percentage of the relative densities
outside and inside the city in Figure 4A. Most of the cities’ inner
relative densities are more than the outer ones, which is consistent
with our intuition. When increasing the threshold from 0.8 to 0.999,
some structure between cities emerges, as shown by Figure 4C.
Therefore, we draw the city-to-city network where the edges are
weighted by the relative density between two cities which is defined as

RAB � EAB

|A| × |B| (7)

where EAB is the number of edges between city A and B. The city-
to-city networks under threshold 0.8 and 0.999 are exhibited in
Figures 4B,D, where different cities are symbolized by colored
dots, the size of dots represents the number of devices inside the
city, and the width of the edges represents the relative densities
between two cities. Figure 4B shows that the CCAN is a fully
connected network. Devices from different cities connected more
strongly than expected. Although the cities that lie in the north of
G province, such as QH, RN and PC, have more devices than the
cities in the southeast side, their connections with other cities are
weaker than southeast cities. City NG and TF which are strongly
connected to almost all cities in the province seem to be the center
of the city-to-city network. However, when the threshold
increases to 0.999, the center of the city-to-city network moves
to the city PR whose device number is quite small when compared
with other cities and PR is only connected strongly to the cities
from the southeast. It seems that there are an alarm group
consists of cities from the southeast area of the province.

CONCLUSION

Modern telecommunication systems produce large amounts of
alarm messages. Correlating different alarm series in vital to
effectively manage these alarm messages and maintain the

performance of telecommunications networks. To measure
the complex spatiotemporal correlation between
telecommunication devices, we propose an index that uses
the deviation of two alarm series from the random case to
score the pair similarity in the device-to-device network. In
Figure 1, synthetic series verify the validity of our index, and
show that the similarity score can distinguish series pairs with
different correlation levels and is robust when alarm numbers
change. Moreover, the range that probability score vary with
correlation level can be widened by reducing window size when
calculating, as shown in Figure 1B. After verifying our method,
we used it to analyze the telecommunication alarm database of
devices in a Chinese province, and construct an alarm
correlation network. In Figure 4, the results show that for
most of the cities, the connection strength inside the cities is
higher than outside. However, the connections outside cities
are comparable with those inside cities. When increasing the
edge removal threshold, cities’ structures start to emerge
(though still weaker than the connections within cities). By
analyzing the CCAN, we find that cites lying in the southeast of
the province connect more strongly than elsewhere. Our
similarity score measures the pair similarity by deviating
from the random case and has a potential for more general
applications.
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