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Editorial on the Research Topic

Black Holes, Extended Phase Space Thermodynamics and Phase Transitions

1 INTRODUCTION

Over the last few decades, several remarkable connections have emerged relating gravity,
thermodynamics and quantum physics. A central topic of research in gravitation which has
been a rich but challenging system to make progress involves black holes as oustanding
prediction of Einstein’s general relativity. The recent experimental observations have raised the
interest in the physics of black holes by several folds [1, 2]. At the classical level, the black holes are
defined as containing strong gravitational fields, not allowing even light to escape and emit nothing.
Including quantum effects, they are not so idiosyncratic as they are governed by laws of black hole
mechanics similar to the laws of thermodynamics, where: entropy, temperature and energy are
related to area of the horizon, surface gravity andmass of the system, respectively [3–5]. Anti de Sitter
spacetime provides a novel setting to study black holes as the thermodynamics and phase transitions
can be investigated in a controlled setting due to the presence of cosmological constant. In addition,
the availability of holorgraphic methodsmakes it very interesting to explore the physics of black holes
to understand the true nature of quantum degrees of freedom of gravity [6–8]. For instance,
Hawking-Page transition [9] in the AdS spacetime is related to confinement-deconfinement
transitions in the boundary conformal field theory [8]. More recently, within the extended
thermodynamic framework, where the cosmological constant is considered to be dynamical,
providing a natural pressure in the bulk [12–18], the connection between van der Waals liquid-
gas transitions and phase transitions in charged black holes in AdS [10, 11] has been made precise,
with novel concepts such as holographic heat engines [19]. These explorations have allowed us to
draw novel insights into the microstructure of black holes in AdS from a macroscopic
thermodynamic point of view through the methods of thermodynamic geometry [20–24].

The current special issue was born out of the need to have a collection of original articles which
provide novel investigations in the aforementioned topics, which not only highlight the important
recent developments, but also open up new fields for future research in extended black hole
thermodynamics. It is thus interesting that new research articles have been received with
contributions to topics such as, phase transitions of AdS black holes, Joule-Thomson expansion of
the quasitopological black holes in the presence of some nonlinear electrodynamic models, the effects
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of dark matter on phase transition of black hole and
thermodynamics of slowly accelerating black holes AdS spacetime.

In the paper Chabab M and Iraoui S (2021), the continuous
thermodynamic phase transitions of AdS black holes according to
the generalized Ehrenfest classification have been studied. By using
the Caputo fractional derivatives of thermodynamic potentials for
both a charged black hole surrounded by quintessence, 5D Gauss-
Bonnet and D dimensional RN-AdS black holes, they find that the
fractional derivatives of the Gibbs free energy is always
discontinuous at the critical point for β � 4/3 order, and
diverges when β> 4/3. These results suggest that the 4/3 order
phase transition is robust and holds as far one deals with a static
black hole with spherical symmetry. However, this feature is not
universal and fails for axisymmetric solutions, as demonstrated for
Kerr black hole where the phase transition happens at 1/3 order.
Nevertheless, further investigations of other black holes
configurations are required to consolidate these findings, and
establish a more elaborated classification of thermodynamic
phase transitions. Fractional phase transitions in general
thermodynamic systems (including black holes) is a new and
relatively unexplored topic expected to give surprising results
and the preliminary results reported in the current article
deserve further study.

In the paper Mirza B, Naeimipour F and Tavakoli M (2021),
thermal stability and Joule-Thomson expansion of some new
quasitopological black hole solutions have been investigated. At
first, they have studied the higher-dimensional static
quasitopological black hole solutions in the presence of Born-
Infeld, exponential and logarithmic models of nonlinear
electrodynamic. Then, they have also obtained the five-
dimensional Yang-Mills quasitopological black hole solution
and compared it with the quasitopological Maxwell solution.
For large values of the electric charge, and the Yang-Mills charge,
they showed that the stable range of the Maxwell quasitopological
black hole is larger than the Yang-Mills one. To study the Joule-
Thomson expansion, they have considered the temperature
changes in an isenthalpy process during this expansion. Their
results show that the inversion curves can divide the isenthalpic
ones into two parts in the inversion pressure, Pi. For P < Pi, a
cooling phenomena with positive slope happens in T − P
diagram, while there is a heating process with negative slope
for P > Pi. They also have probed the Joule-Thomson expansion
of the Power Maxwell quasitopological black hole.

In the paper Singh A, Ghosh A and Bhamidipati C (2021) the
effect of dark energy on the extended thermodynamic structure
and interacting microstructures of black holes in AdS, through an
analysis of thermodynamic geometry have been studied. Analysis
of R empirically reveals that dark energy parameterized by α,
significantly alters the dominant interactions of neutral, charged
and slowly rotating black hole microstructures. Above a threshold
value of α, R is never negative at all, suggesting heuristically that the
repulsive interactions due to quintessence are long ranged as
opposed to the previously known short ranged repulsion in
charged AdS black holes. A mean field interaction potential is
proposed whose extrema effectively capture the zero crossings of
Thermodynamic curvature. There are several interesting questions
which need to be explored further. For instance, it needs to be

understood why the thermodynamic curvature computed in
different statistical ensembles does not always capture the zeros
and divergences of specific heats, where as the zero crossings seem
to always agree. Furthermore, although the results obtained from
thermodynamic curvature are empirical in nature, is there a
mechanism that can be developed or a specific example that
can be studied to show that the microscopic results agree with
thermodynamic expectations. There is scope for remarkable
progress as the answer to some of these questions might teach
us deeper aspects of quantum degrees of freedom of black holes.

Finally, in the paper Gregory R, Lim ZL and Scoins A (2021) the
thermodynamics of an array of collinear black holes (whichmay be
accelerating) have been evaluated. Also, they have proved a general
First Law, including variations in the tensions of strings linking and
accelerating the black holes. Then, they have analyzed the
implications of the First Law in a number of instructive cases,
including that of the C-metric, which relate to the previously
obtained thermodynamics of slowly accelerating black holes in
anti-de Sitter spacetime. The concept of thermodynamic length is
found to be robust and a Christoudoulou-Ruffini formula for the
C-metric is shown. There are several open questions, such as the
possibility of inclusion of electric charge. Explicit solutions to
Einstein-Maxwell theory describing two electrically charged
black holes connected by a conical singularity, without exterior
strings, are known and it would be nice to explore. Though,
challenges remain as the system of multiple charged black holes
destroys linearity and generalization is not straight forwarded. In
addition, the issue of stability of these black holes system needs a
dedicated study and is an important avenue for future research.

All the articles in this special issue and others in literature
show that the field of black holes in extended thermodynamic
framework is at an exciting juncture, with novel holographic
connections being uncovered at a rapid pace. Apart from several
research directions which have emerged as summarized above, it
should be mentioned that the correct holographic interpretation
of the extended thermodynamics of black holes is not available
yet, and this deserves to be explored further. Another pertinent
question is that although progress is being made in having
pressure and volume terms in the first law of black holes in
AdS space-times via different mechanisms, similar applications to
asymptotically flat and de Sitter space-times need to be explored
as well. All these are important questions and hope the current
collection of articles is found useful in near future in this
endeavor, besides serving as a reference volume in literature.
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