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A one-step new general mesh free scheme, which is based on radial basis functions, is
presented for a viscous wave equation with variable coefficients. By constructing a simple
extended radial basis function, it can be directly applied to wave propagation by using the
strong form-based mesh free collocation method. There is no need to deal with the time-
dependent variable particularly. Numerical results for a viscous wave equation with variable
coefficients show that the proposed mesh free collocation method is simple with accurate
solutions.
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1 INTRODUCTION

The wave propagation exists in an interesting class of problems, such as the micro-scale heat transfer,
seismic data acquisition and processing, etc. Acoustic wave modeling is an essential part of the
technique of acoustic imaging [1]. Such problems have been widely investigated because of their
realistic physical background. Related works can be found in [2] and references therein.

Since the governing equation of the problem considered is complex, and the corresponding
physical domain or the boundary conditions are tangle some, the analytical solutions are almost
inaccessible for most practical engineering problems [3–7]. The development of accurate and
efficient numerical methods becomes an important research topic in computational physics.

The earliest numerical methods for wave equations include the finite difference method [8], the
finite element method [9], the boundary element method [10] and the finite volume method [11]. It
should be noted that most of the existed numerical methods are still based on the finite difference
method (FDM) [12, 13], which lead to two-step finite difference approximations. More specifically,
the finite difference method is used to deal with the time variable, and the rest procedures are finished
by the other numerical methods. Coupled with the FDM, the radial basis function (RBF) collocation
methods are widely-used to many problems thanks to their mesh free features. Akers et al. [14]
investigated a radial basis function-finite differencing (RBF-FD) scheme which is applied to the
initial value problem of the Benjamin-Ono equation. Bhardwaj and Kumar [15] used the FDM-based
mesh less approach for the numerical solution of the nonlinear diffusion-wave equation. Based on
the integrated radial basis functions and a finite difference scheme, the regularized long-wave
equations are investigated in [16, 17]. Oruc [18] examined numerical solutions of Zakharov-
Rubenchik system by using radial basis function finite difference (RBF-FD) mesh less method and an
explicit Runge-Kutta method. The time discretization is accomplished by means of an implicit
method based on the theta-weighted and finite difference methods, while the spatial discretization is
described with the help of the finite difference scheme derived from the local radial basis function
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method. Recently, Lu et al [19] used the radial basis function
mesh less method to solve the irregular region interface problem.
Ranocha et al [20] created new classes of fully-discrete
conservative methods for several nonlinear dispersive wave
equations.

In order to simplify the conventional two-step solution
process, Netuzhylov and Zilian [21] proposed a space-time
mesh free collocation method for solving partial differential
equations by a consistent discretization in both space and
time. Motivated by this work, we aim to provide a truly mesh
free method with one-step approximation, which is based on the
RBFs, for a viscous wave equation with variable coefficients.
Compared with the traditional FDM-based two-step methods,
the newly-proposed one-step direct mesh free method is truly
mesh free with easy implementation. The computational
efficiency is excellent and the computational accuracy is
mainly determined by numerical methods for wave field
simulation.

The paper is organized as follows. In Section 2, formulation of
the direct radial basis function with space-time Euclidean
distance is briefly introduced. This is realized by considering
time-dependent variable as normal time-independent variable.
Thus, the time-dependent variable can be treated easily during
the whole solution process. Section 3 presents the methodology
for a viscous wave equation with variable coefficients under initial
condition and boundary conditions. Numerical results with
detailed discussions are presented for the accuracy of the
proposed mesh free method in Section 4. Section 5 concludes
this paper with some additional remarks.

2 PROBLEM DESCRIPTION

Let’s consider a viscous wave equation on a bounded two-
dimensional domain Ω ⊂ R2

Lu ≡
z2u
zt2

+ α
zu
zt

− z

zt
∇ · (Q∇u) − ∇ · (A∇u) � f (x, y, t), t > 0

(1)

where α is a nonnegative coefficient, f is a source term, Q �
diag(q1, q2) and A � diag(a1, a2) are diagonal, nonnegative
diffusion tensors with q1, q2, a1, a2 constant or variable
coefficients. Solution to Eq. 1 requires the extra initial conditions

u(x, y, 0) � f1(x, y), (x, y) ∈ Ω (2)

ut(x, y, 0) � f2(x, y), (x, y) ∈ Ω (3)

and boundary conditions

Bu(x, y, t) � f3(x, y, t), (x, y) ∈ zΩ, t > 0 (4)

with f1(x, y), f2(x, y) and f3(x, y, t) the given functions. B is a
boundary operator. One should seek for the numerical solution of
unknown function u(x, y, t).

A variety of numerical methods have been investigated for
Eqs. 1–4. Most of them are based on the finite difference method,
which lead to two-step methods. More specifically, the finite
difference method is used to deal with the time domain, which

will lead to elliptic-type problems. Then the rest work is done by
the other numerical methods. In order to improve the perplexing
two-step methods, we propose a direct one-step collocation
method by using an extended RBFs in the following section.

3 FORMULATION OF THE EXTENDED
RADIAL BASIS FUNCTIONS

The radial basis functions (RBFs) are extremely powerful tool for
solving partial differential equations. It is “isotropic” for
Euclidean spaces. The Kansa’s method [22, 23] is one of the
most famous RBFs. It is also called the multi-quadrics RBF with
the expression [24].

ϕmq(rj) � ��������
1 + (εrj)2√

(5)

where rj is the Euclidean distance between two points. ε is the RBF
shape parameter which can balance the solution accuracy.

As is known to all, a linear combination of RBFs can provide
the numerical solutions for boundary value problems governed
by elliptic partial differential equations. In literatures, this can be
not directly used to solve boundary value problems governed by
parabolic or hyperbolic partial differential equations.

To make the direct applications possible, the time variable is
treated equally with the space variables. More specifically, we
construct a simple direct radial basis function by combining the
two-dimensional point (x, y) and the one-dimensional time
variable t as a three-dimensional point (x, y, t) for the space-
time domainΩ × t. For collocation points generation, the time
variable is treated equally to the space variables x and y. For a
simple example, the collocation points in the x− and y−directions
are evenly chosen with fineness hx � hy � 1/n. The time-step for
the rest t−direction is chosen as Δt � 1/n.

Similar to the traditional multi-quadric RBF, the extended
radial basis function (ERBF) has the form

φmq(rj) � �������
1 + ε2r2j

√
�

��������������������������������
1 + ε2(x − xj)2 + ε2(y − yj)2 + ε2(t − tj)2√

(6)

where rj �
				P − Pj

				 represents the distance between two space-
time coordinates P � (x, y, t) and Pj � (xj, yj, tj).

In literatures [25–27], the other researchers have proposed
some space-time radial basis functions with different types. We
have done many investigations and found that they are not
suitable to deal with the wave equations.

4 IMPLEMENTATION OF THE EXTENDED
RADIAL BASIS FUNCTION

4.1 The Extended Radial Basis Function
Solution Procedure
To solve the problem described by Eqs. 1–4, we use the ERBF to
present the detailed procedure. Based on the definition of ERBF,
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Eqs 1–4 can be simulated by a one-step numerical method. The
unknown function u(x, y, t) can be approximated by the
following expression

u( · ) ≈ ∑N
j�1

λjφmq(·j), (7)

where the unknown coefficients {λj}nj�1 should be solved.
To illustrate the ERBF solution procedure, the internal points

{Pi � (xi, yi, ti)}NI
i�1 are located inside the physical domain and

initial boundary points {Pi � (xi, yi, ti)}NI+Nt
i�NI+1 and boundary

points {Pi � (xi, yi, ti)}Ni�NI+Nt+1 are located on the physical
boundary. By substituting Eq. 7 into Eqs. 1–3, we have

∑N
j�1

λjLφmq(Pi, Pj) � f (Pi), i � 1, . . . ,NI , (8)

∑N
j�1

λjφmq(Pi, Pj) � f1(Pi), i � NI + 1, . . . ,NI + Nt , (9)

∑N
j�1

λj
zφmq(Pi, Pj)

zt
� f2(Pi), i � NI + Nt + 1, . . . ,NI + 2Nt , (10)

∑N
j�1

λjBφmq(Pi, Pj) � f3(Pi), i � NI + 2Nt + 1, . . . ,N , (11)

where

Lφmq �
z2φmq

zt2
+ α

zφmq

zt
− − z

zt
∇ · (Q∇φmq) − ∇ · (A∇φmq). (12)

This is similar with the traditional strong-form collocation
approach. We note that the two initial conditions require double
initial boundary points, so the total collocation point number is
N � NI + 2Nt + Nb.

Eqs. 8–11 has the following matrix form

MΛ � F, (13)

where

M �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
M11 M12 M13 M14

M21 M22 M23 M24

M31 M32 M33 M34

M41 M42 M43 M44

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (14)

are N × N known matrix. Λ and F are N × 1 vectors.
The unknown vector Λ in Eq. 13 can be solved by the direct

solver in any software codes. Substitute the coefficients into Eq. 7,

we get the numerical solution for any points in the whole physical
domain.

4.2 Algorithms of the Extended Radial Basis
Function
For the solution procedure of the ERBF, we summarize the
corresponding simple algorithm steps as below.

Step 1. Enter the prescribed functions f (x, y, t), f1(x, y),
f2(x, y), f3(x, y, t), and the coefficients q1, q1, a1, a2.
Step 2. Select the point parameter n which is connected with
the total collocation number N.
Step 3. Generate the collocation points (xi, yi, ti), I �
1, 2, . . . , ,N with internal points {(xi, yi, ti)}NI

i�1, initial
boundary points {(xi, yi, ti)}NI+Nt

i�NI+1 and boundary points
{(xi, yi, ti)}Ni�NI+Nt+1.
Step 4. Compute the interpolation matrix M and the right-
hand vector F.
Step 5. Solve MΛ � F.
Step 6. Substitute Λ into (Eq. 7) to construct the numerical
solution u(x, y, t).

In this paper, the MATLAB is used to realize the algorithms
of ERBF.

5 NUMERICAL EXPERIMENTS

In order to study the convergence of ERBF, the relative errors
between ERBF and analytical solutions are calculated. It should be
noted that the parameter ε in the ERBF should be chosen first.
The optimal choice is similar with the traditional RBFs. For more
details about this topic, we refer readers to [24, 28, 29] and
references therein. In this paper the parameter is determined with
an prior determination. More specifically, the collocation points
are fixed first to find the quasi-optimal parameter, after which it
will be used for the rest computations.

We consider the problem with α � 1, Q � A � I, the
corresponding exact solution is

u(x, y, t) � [1 + 1
2
sin(π2t)]sin(5πx)sin(3πy). (15)

The source function f (x, y, t) can be deduced from the
governing Eq. 1

TABLE 1 | The comparison of the absolute errors at t � 0.5 s.

Coordinates Analytical solutions ERBF Error

(0.1, 0.1) 0.4145 0.4146 7.84 × 10−5

(0.3, 0.3) −0.1583 −0.1584 6.35 × 10−5

(0.5, 0.5) −0.5123 −0.5123 1.90 × 10−5

(0.7, 0.7) −0.1583 −0.1584 6.35 × 10−5

(0.9, 0.9) 0.4145 0.4146 7.84 × 10−5

TABLE 2 | The comparison of the absolute errors at t � 0.9 s.

Coordinates Analytical solutions ERBF Error

(0.1, 0.1) 1.0177 1.0177 4.62 × 10−5

(0.3, 0.3) −0.3887 −0.3875 1.26 × 10−3

(0.5, 0.5) −1.2580 −1.2593 1.28 × 10−3

(0.7, 0.7) −0.3887 −0.3875 1.26 × 10−3

(0.9, 0.9) 1.0177 1.0177 4.62 × 10−5
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u(x, y, t) � π2sin(5πx)sin(3πy)[34 + . . .

(1
2
+ 17π2)cos(π2t) + (17 − 1

2
π2)sin(π2t)]. (16)

For fixed collocation point number parameter n � 8, the total
collocation point is 729, and the number of points in each dimension
is 9 × 9 × 9 in x, y and t dimensions, respectively. To reveal the
numerical solution accuracy of the proposed method, the wave
propagation of nodes is calculated by theoretical formula at t � 0.5s
and t � 0.9s, respectively. From Table 1 and Table 2, we find that
numerical solutions of the proposed ERBF are very close with the
analytical solutions for different points. The corresponding absolute
errors remain the same at t � 0.5s. And the corresponding absolute
errors is a little large for some points, but it is still accurate enough for
practical problems.

Figure 1 describes the contour plots of the numerical solutions
and analytical solutions at time t � 0.5. We find that the
numerical solutions agree very well with the analytical
solutions. It should be noted that the results for the other
times have the same accurate results as shown in Figure 1.

Tables 1, 2 show that the numerical results coincide very well with
the analytical solutions for both t � 0.5s and t � 0.9s. For time
t � 0.5s, the absolute errors for different points are almost the same.
For the time t � 0.9s, the absolute errors for points (0.1, 0.1) and
(0.9, 0.9) are more accurate than the other points. Also, it should be

pointed out that the ERBF results are more accurate than the other
numerical methods [30, 31]. The corresponding comparison is
revealed in Table 3 by using the maximum absolute error L∞.
Fromwhichwe can see that the time step of the proposed ERBF 1/9 is
larger than the other two methods 0.02, but the corresponding
absolute error of the ERBF is smaller than the other two methods.
And the computational time of the ERBF (CPU � 0.92 s) is less than
the method (CPU � 15.70 s) used in [30].

6 CONCLUSION

A one-step new general mesh free scheme for solving a viscous
wave equation with variable coefficients is proposed. It is based on
the strong form-based mesh free collocation method in
conjunction with the radial basis functions. Numerical results
show that the mesh free method is more simple than the other
numerical methods with solution accuracy maintained. The
proposed method with the localized technique can be
extended to large-scale problems easily.
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FIGURE 1 | Contour plot of exact solutions (A) and numerical solutions (B).

TABLE 3 | Maximum absolute error L∞.

Method ERBF Method in [30] Method in [31]

L∞ 1.28 × 10−3 4.59 × 10−2 3.48 × 10−1

Time step 1/9 0.02 0.02
CPU 0.92 s 15.70 s —
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