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In shear wave elastography, rotational wave speeds are converted to elasticity measures
using elastodynamic theory. The method has a wide range of applications and is the gold
standard for non-invasive liver fibrosis detection. However, the observed shear wave
dispersion of in vivo human liver shows a mismatch with purely elastic and visco-elastic
wave propagation theory. In a laboratory phantom experiment we demonstrate that
porosity and fluid viscosity need to be considered to properly convert shear wave
speeds to elasticity in soft porous materials. We extend this conclusion to the clinical
application of liver stiffness characterization by revisiting in vivo studies of liver
elastography. To that end we compare Biot’s theory of poro-visco-elastic wave
propagation to Voigt’s visco-elastic model. Our results suggest that accounting for
dispersion due to fluid viscosity could improve shear wave imaging in the liver and
other highly vascularized organs.
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1 INTRODUCTION

Shear wave elastography is a fast, non-invasive method to estimate tissue elasticity in vivo. Its first
clinical application has been the estimation of liver fibrosis, and it is more and more used as a
replacement for liver puncture, the current gold standard. The method is quantitative through in situ
measurement of the shear wave speed by ultrasonic or magnetic resonance imaging. An estimate of
tissue elasticity is retrieved through inversion of the wave speed. Clinical applications as of today
include ultrasonic 1D elasticity estimation (FibroScan, Echosens, Paris, France), ultrasonic 2D
elasticity mapping (e.g., Aixplorer, SuperSonic Imagine, Aix-en-Provence, France; GE Logiq, Boston,
United States; Canon Aplio, Canon Medical Systems, Tochigi, Japan) and magnetic resonance 2D
and 3D elasticity mapping (e.g., General Electric/Philips/Siemens Healthcare). Linear elastic or visco-
elastic theory is commonly assumed for the elasticity inversion. However, the order of magnitude of
the shear modulus retrieved from elastography and other measurement methods, such as dynamic
mechanical analysis (DMA), differs [1]. Furthermore, ex vivo and in vivo elastographymeasurements
vary, making a standardization difficult [2, 3]. Finally, the observed in vivo shear wave velocity
dispersion with frequency of the liver is badly predicted by visco-elastic theory, and recent in vivo
studies [4, 5] challenge the commonly assumed correlation of viscosity with fibrosis [6]. As of today
questions remain concerning the physical processes behind the observed dispersion. This ambiguity
has led recent studies (e.g., [7]) to drop the rheological model in favor of a model-independent
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dispersion slope as the “viscous” parameter. Our work attempts to
explain the observed discrepancies between theory and in vivo
elastography data by considering the liver as a porous biphasic
medium, which is described by Biot theory, instead of a
homogeneous visco-elastic solid. The introduction of a fluid
phase introduces a new loss mechanism, the viscosity of the
fluid, as well as a change in the effective density of the solid part.
Proper physical modeling of the of the shear wave dispersion is
key to a quantitative elasticity reconstruction and ultimately
might reduce false positives and negatives in elastography liver
characterization. We postulate that to properly account for the
observed shear wave dispersion in the liver, porous theory needs
to be taken into account. This hypothesis is based on our
experimental results in a porous phantom and theoretical
considerations which are compared to existing in vivo data.
The paper is structured as follows:

In Section 1.1 we report various approaches to model the liver
as a porous material. Publications in elastography which regard
the liver as a poro-elastic Biot medium are scarce and
consequently the investigated literature spans includes from
anatomy, dynamic mechanical analysis, surgery simulation,
tissue engineering and numerical fluid dynamics. In Section
3.1 we confirm the results of [8] who found that the shear
wave dispersion in a soft porous material is described by
poro-elastic wave propagation theory. This is unambiguously
shown by comparing the shear wave dispersion in a soft
porous phantom saturated by a Xanthan solution with the
dispersion of the same phantom saturated by water. The
observed results are exclusively explained by poro-visco-elastic
theory, which is introduced as Biot’s theory in Section 2.1.1.
Furthermore, a more intuitive interpretation of Biot’s theory is
given in Section 2.1.2 and the experimental results are compared
to Biot’s model in Section 3.1.1. The experimental results are
followed by analytic modeling of the liver as a porous material in
Section 3.2. We use literature values for the poro-visco-elastic
parameters (Section 2.6.1) to compare the theoretical dispersion
of a model liver with previously reported in vivo shear wave
dispersion measurements (Section 4.2). The analytic modeling
shows that changes in the porous parameters can account for
measured variations in shear wave speed that visco-elasticity fails
to explain (Section 3.2.1, Section 4.2.1). We conclude by
comparing Biot theory with commonly used rheological
models in Section 4.3.1. Finally, we present challenges for
future research in Section 4.3 and a common conclusion in
Section 5.

1.1 The Liver-A Sponge?
Recently, we have shown experimentally that Biot’s theory of
poro-elastic wave propagation well predicts the shear wave
dispersion in a melamine sponge [8]. In Biot’s theory of poro-
elastic wave propagation shear wave dispersion is caused by the
viscosity of the fluid saturating the connected pore space. Several
organs that are of interest to elastography imaging have been
described as porous materials, e.g., the lung, spleen, brain and
liver. The liver is the foremost organ to be clinically imaged using
shear wave elastography. Here, it is usually modeled as an elastic
or visco-elastic solid. However, fresh liver grafts clearly show the

presence of at least one liquid phase: the blood. In fact, the liver is
one of the blood-richest organs and has previously been depicted
as a fluid-filled sponge by several research groups [9–11].
Together with other organs, such as the spleen, the liver serves
as a specific blood reservoir of the body [12]. It is thus justified to
regard it as a soft porous material saturated by a viscous fluid.
Furthermore, blood saturation or liver perfusion and blood
viscosity are not constants. Both vary among individuals as
well as with time for each individual. Perfusion and viscosity
are known to be dependent on many factors such as hydration,
diet, health and physical fitness. Liver diseases do not only alter
the elasticity of the cellular matrix of the liver but are known to
affect the porous parameters, notably porosity and permeability,
as well. These insights led different groups to numerically model
the liver as a poro-elastic or poro-visco-elastic material in the last
decade [1, 9, 13–19]. However, albeit early realization of
interstitial fluid flow as an dissipative mechanism for acoustic
waves [20], few attempts to link the shear wave dispersion in the
liver to its porous and fluid properties have been made to our
knowledge. Some recent studies investigated the influence of pore
pressure on shear wave speed in the liver [21–23], and [24]
describes a 2-parameter pore channel flow model for shear wave
dispersion. The first group focuses on pressure effects. The
second develops a model that incorporates flow in the
constitutive equations, similar to Biot’s first porous theory, the
theory of consolidation [25], and to earlier work in compression
elastography [26]. Recently [27], model the liver as a hyper-poro-
visco-elastic but focus on hyper-elastic deformation and the fluid
pressure effect on the shear wave velocity by assuming low
porosities and permeabilities. The effect of the viscous fluid on
the dynamic wave propagation however, as developed by [28–31]
and presented in Section 2.1.1, seems to have been overlooked by
the ultrasound elastography community. Hence, the application
of Biot theory to ultrasound shear wave elastography seems
overdue.

2 MATERIALS AND METHODS

2.1 Porous Wave Propagation Theory
2.1.1 Biot Theory
A non-phenomenological theory that models porous wave
propagation based on the physics of fluid-solid interaction is
Biot’s theory of poro-elastic wave propagation [28, 29]. Biot’s
shear wave dispersion is governed by the characteristics of the
porous structure and the pore filling fluid. As a consequence, the
expression for the wave speed differs significantly from that of a
purely elastic monophasic wave propagation model. Instead of a
single homogeneous density, the model takes into account the
fluid density ρfl and the density of the solid frame ρfr, which is
expressed in terms of bulk density of the solid material ρs and the
porosity ϕ as ρfr � ρs (1 − ϕ). The mean density is expressed as
~ρ � ρs(1 − ϕ) + ρfl ϕ. Furthermore, the model accounts for
inertial and viscous coupling between the displacements of the
two phases.

The consideration of viscous effects through the fluid viscosity
ηf leads to the frequency dependence of the shear wave speed,
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which is expressed in terms of wavenumber and angular
frequency:

vs � 1

R

�������
ωs

ks
( )−2√

(1)

ωs

ks
( )−2

� q~ρ − ρ2fl
qμfr

, (2)

where μfr is the shear modulus of the foam. The term q can be
expressed in terms of the solid, fluid and porous parameters as:

q � αρfl
ϕ

+ iηF(ζ)
ωsκ

, (3)

where κ is permeability, α is tortuosity and F(ζ) expresses the
frequency dependence of the viscosity, or the deviation from
Poiseuille flow [32]. The permeability is measured in m2 and is a
measure of fluid transmission through a sample. It is defined as
the proportionality constant in Darcy’s law of the volumetric flow
rate. The tortuosity takes into account the pore shape. It is
generally assumed for cylindrical pores and is evaluated as the
total length of the pore divided by the shortest path connecting its
ends or in other words: “the ratio of the arc length of a curve
relative to its end-to-end distance” [16]. It also accounts for the
inertial coupling of the solid and fluid phase, where inertial
coupling signifies that an accelerating solid drags parts of the
surrounding fluid with it [33]. The solid moving in the fluid thus
acquires an additional mass due to the deflection of the
surrounding fluid volume, which can be seen as a
renormalization process (see [34] 1.3.4). The virtual mass of
the solid is thus ρvirt � ρfr + ρa � (1 − ϕ)ρs + ρa, where the
additional or apparent mass is calculated as ρa � (α − 1)ϕρfl.

The derivation from first principles and a detailed description
of Biot’s theory are beyond the scope of this work and can be
found in the cited references as well as several textbooks, e.g.,
[35–37]. In order to follow our reasoning we find it however
helpful to give an intuitive interpretation that is accessible to the
reader who was unfamiliar with poro-elastic theory before
reading the present manuscript.

2.1.2 Loss Mechanism and Significance of Biot’s
Theory
When compared to linear-elastic or visco-elastic theory some
results of Biot’s theory might seem counter-intuitive. We can
however understand the complex inertial and viscous effects of
the fluid in terms of classic elastic theory by looking at the
extreme ends of the dispersion curves when ω → 0 and ω →
∞. If we consider that the shear modulus μfr stays constant with
frequency and we want to find an equivalent to Biot’s wave speed

in terms of the elastic shear wave speed expression vs �
�
μ
ρ

√
, we

immediately see that the density ρ needs to be replaced by an
effective density ρeff (ω → 0) and ρeff (ω → ∞). At very low
frequency, when ω → 0 Hz, the solid and the fluid phase are
locked together through viscous coupling. This signifies that due
to the viscous drag they move in phase without relative
movement between the two. The wave speed is then defined

by the true shear modulus of the solid and an effective density
made up of the densities of the solid and the fluid phase
(ρeff � ~ρ � ρs(1 − ϕ) + ρfl pϕ). In the case of biological tissues,
those densities are approximately equal and the low-frequency
limit is thus the velocity which we would have calculated using
linear elasticity or visco-elasticity and the true shear modulus. At
very high frequencies, when ω → ∞ Hz, which is conceptually
similar to the case when the porous material is saturated by a
superfluid, the shear wave velocity reaches its maximum value.
Because of the lack of viscosity, the fluid is not dragged along by
viscous coupling and rests on average1. The fluid and solid
displacements are thus out-of-phase and the shear wave
experiences a different effective density: the solid frame
density plus an apparent density due to the remaining added
mass effect of the fluid. The added mass effect stems from the fact
that the fluid is considered to be at rest on average, while there is
relative movement between the accelerating solid and the fluid
phase (see [38] I, 11). Ignoring the inertial coupling described in 1,
the expression for the effective density is then: ρeff � (1 − ϕ)ρs + ρa.
The higher the porosity of the medium, the lower the solid
frame density and consequently due to vs �

���
μ

ρeff

√
, the higher

the shear wave speed in the high-frequency limit. Even for
biological tissue, where fluid and solid densities are very
similar, the shear wave speed at higher frequencies differs
thus strongly from the elastic shear wave speed. While
the idealized viscous-less case defines the high-frequency
limit of the shear wave velocity and the phase-locked case
defines the low frequency limit of the shear wave speed, it is
obvious from the gap between the two values that a different
physical mechanism is required to explain the evolution from
low to high frequency. This is done through fluid viscosity,
which introduces dissipation and defines the form of the
dispersion curve in between the low and high frequency
limits. Eqs 2, 3 account for the frequency dependence: ~ρ is
scaled by the factor q which is a frequency dependent function
of the fluid viscosity. To stay within the effective density
model, the term q�ρ could be interpreted as an effective
density which is given through the frequency dependence
of q(ω).

2.2 Visco-elastic Wave Propagation
In Section 3 we compare the poro-visco-elastic model to a simple
visco-elastic model. The shear wave speed of the visco-elastic
model is calculated using Voigt’s model:

μ � μ0 + iωμ1 (4)

vs �
��
μ

ρ

√
, (5)

with μ0 being solid elasticity and μ1 being solid viscosity. In the
present work we explicitly make the choice to compare Biot’s
model only to a simple visco-elastic model. Viscosity is still not

1This is an oversimplification, in Biot’s theory some rotation, which diminishes the
added mass, is induced in the fluid by inertial coupling. The rotation is included in
the calculation of the effective density by multiplying it with (1 − ρ2a

((1−ϕ)ρs+ρa)(ϕρf+ρa)).
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widely inferred for in clinical practice [39] and most in vivo
studies employ a Voigt model with limited success [7]. As a
consequence, a model independent measure of the dispersion
slope has been proposed as diagnostic value [7] and more
complex visco-elastic models, such as Zener’s model are being
investigated [7, 40]. However, these include more springs and
dampers and require complex inversions. One key difference
between viscous and porous models is: the porous parameters in
Biot’s model are physical parameters that can be measured
independently or determined from physical considerations
[40], while the visco-elastic model is phenomenological.
Hence, if we were to measure the porous and fluid parameters
independently of shear wave elastography, the Voigt and Biot
model would exhibit the same number of free parameters, the
solid elasticity and viscosity. Note that [40] finds an equivalence
of the Zener and Biot model for low frequency shear waves.
However, this does not hold for deviations from Poiseuille flow
and Zener’s model does not explain the secondary longitudinal
wave recently shown in a soft porous tissue [8].

2.3 Parameter Inversion
In order to fit the experimental data to the Biot and Voigt model
we perform a constraint global minimization using the
Basinhopping algorithm [41] of the Python library Scipy. The
global method was chosen instead of a local method to avoid local
minima in the optimization. In short, the Basinhoppin algorithm
performs a multitude of local minimizations though the L-BFGS-
B (Broyden-Fletcher-Goldfarb-Shanno) algorithm, which is a
quasi-Newton method [42]. For each minimization it uses
varying starting values and keeps or rejects the result. In
Section 3 all minimizations are performed on the least squares
[42] of the experimental and analytic shear wave speed of the
investigated frequency range:

ϵ � ∑N
i�1

[vexp(ωi) − vsim(ωi)]2
N

, (6)

where N is the number of frequencies at which the shear wave speed
was measured, vexp is the experimental phase velocity, vsim is the
analytic phase velocity and ωi is a experimentally measured
frequency. Eq. 2 is used to calculate the poro-visco-elastic shear
wave speed vsim. The shear wave speed vsim of the visco-elastic model
is calculated using Voigt’s model from Eq. 5. The bounds for the
different minimizations performed in Section 3 are listed inTable 3.

2.4 Penetration Depth
The penetration depth is comparable to the skin depth in
electromagnetics and relates the mathematical model outcome
of any attenuation model to physical wave propagation (see [40]
2.3.2.2). For example, a model with an elasticity μ0 → 0 and
viscosity μ1≫ μ0 will result in a calculated wave speed vs > 0 but a
penetration depth δskin → 0. Hence, the wave is a non-
propagating one. We use the penetration depth as a physical
constraint on the feasibility of a proposed model with:

δskin � ω

2πvsαs
, (7)

where αs is the shear wave attenuation, vs is the shear wave speed
and ω is the frequency for which the physicality of wave
propagation is investigated. We classify a model as being
physical if δskin > 0.5λ. The theoretical penetration depth
separating a diffusion from a propagating wave is lower (see
[40] 2.3.2), but we judge time of flight and phase velocity
measurements on less than half a wavelength as unreasonable
in shear wave elastography because near-field effects are likely to
dominate the wave-field [43, 44].

2. 5 Shear Wave Propagation in a Foam
2. 5.1 Experiment
Similar to [8] we saturate a rectangular Basotect® melamine resin
foam and analyze the shear wave dispersion through the phase
velocity measurement of a frequency sweep. Robust results are
achieved through ultrafast shear wave imaging of plane shear
waves inside the foam. Figure 1 shows the experimental setup:
The foam of dimensions 30 × 18 × 12 cm is immersed in a water
tank. A metal rod driven by a piston (ModalShop Inc. K2004E01)
excites shear waves in the frequency range from 100 to 250 Hz.
The chosen frequency range ensures sufficient wave propagation
and avoids guided waves which exist at lower frequencies due to
the finite sample size. The resulting wavefield is imaged in the x − z
plane using shear wave elastography. Ultrasonic plane waves are
emitted orthogonal to the direction of shear wave propagation at
4,000 fps using a Verasonics Vantage™ scanner and a Philips L7-
4 probe. Phase-based motion estimation [45] of the ultrasound
reflection images results in retrieval of the z-component of the
particle velocity throughout the imaging plane. Because the shear
wave speed in the sample is two orders of magnitude lower than
the ultrasonic wave speed, the particle displacement induced by
the shear wave propagation is well resolved in time. The shear
wave excitation is exemplary shown in Figure 1A) and the
imaging principle in Figure 1B). Because the wave excitation
source is extended in z, the resulting wave front is planar, which is
visible in the insets in Figure 1. Hence, we sum the particle
velocities along the z-axis in order to increase Signal-to-Noise
Ratio. The resulting 2D space-time wavefield is then Fourier
transformed using Matlab’s™ FFT in order to measure the phase
velocities of the frequency sweep. Because a plane wave evolves
according to ei(kx−ωt), the phase of a single frequency evolves
linear in space. The phase velocity can thus be measured from the
linear fit of the phase along the spatial dimension for each frequency.
The phase is fitted using the Random Sample Consensus
(RANSAC) algorithm [46, 47] adapted from [48]. The benefit of
the RANSAC algorithm lies in defining a set of inlier points which
are taken into account for slope estimation and a set of outlier points
which are disregarded. We employ a coefficient of determination
(R2) larger than 0.98 and 70% inliers for each frequency. With ϕmeas

∈ Inlier, the phase velocity is thus measured as:

ϕmeas(ω) � βx + C (8)

vsϕ(ω) �
ω

β
, (9)

where ϕ is the phase, β is the linear slope of the phase, x is the
coordinate of the spatial dimension, C is a Constant and ω is the
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frequency investigated. In contrast to our previous work reported
in [8], we perform two experiments that differ only in the
viscosity of the saturating fluid. For the high viscosity fluid we
choose a 0.1% solution of Xanthan (E415) in water and measure
the dispersion at 40 °C, where 40 °C ensures a good mixing of
Xanthan with water. For the low viscosity fluid we measure the
dispersion in water at 40°.

2.5.2 Poro-Visco-Elastic Dispersion Modeling in
Melamine Foam
The Biot parameters of the foam were independently measured
using the acoustic impedance tube method [49] and a Johnson-
Champoux-Allard-Lafarge model [49–52] for [8]. For the
different methods detailed in [49], the porosity ϕ was found
between 96.7 and 99.7%, the tortuosity α between 1 and 1.02 and
the permeability κ between 1.28 × 10–9 and 2.85 × 10–9 m2. The
viscous length σ is between 11.24 × 10–5 and 13.02 × 10–5 m as
indicated in the microscopic photo at the top of Figure 1, and the
density is 8.8 kg m−3 ± 1 kg m−3. The viscous length is typically
employed in modeling air filled porous materials and not needed
in the classical Biot model. The other quantities were fixed to
ϕ � 99%, κ � 1.276 × 10–9 m2 and α � 1.02.

The elastic parameters are unknown and are likely to have
been altered since the experiments performed by [8] on the same
foam sample due to degassing, compression, immersion in water

and aging. To investigate if Biot’s theory can explain the observed
dispersion we perform a joint least squares inversion [53] on the
unknown parameters μfr (shear modulus of the foam frame) and
ηf (fluid viscosity). To account for viscosity of the foam itself we
introduce the complex shear modulus μfr � μ0 + iωμ1, where the
range for μ1 is taken from the values given for melamine in [54].
This extended Biot theory, including solid relaxation mechanisms,
has been described by Biot [31], and shown to be consistent with
the Kramers-Kronig relations by Turgut [55]. We jointly invert
using Eq. 6 and Python’s Scipy package [56] as detailed in Section
2.3. Because we use the same foam sample at equal temperature in
both experiments, μfr is constrained to be identical for both
experiments. In contrast, the fluid viscosity is bounded to
0.1–100 mPas for the Xanthan experiment and fixed to
0.6 mPas (viscosity of water at 40°) for the foam in the water
experiment.

2.6 Shear Wave Propagation in the Liver
2.6.1 Porous Parameter Values of the Liver
The liver can be roughly separated into hepatocytes, blood vessels,
bile ducts and space of disse or perisinusoidal space. The latter is
part of the interstitial space and contains extracellular fluid. The
blood vessels follow a hierarchical tree-like structure with the
central vein and portal arteriole at the top and the liver sinusoids
at the bottom. The meso- and micro-circulation are exemplary

FIGURE 1 | Experimental setup. (A) Shear waves are excited in a water saturated melamine foam through a frequency sweep of a metal rod. The inset shows a
microscopic image of the melamine foam used for the experiment. (B) Schematic sketch of the imaging principle in ultrasonic shear wave elastography. 2D snapshots of
the plane wave ultrasonic reflection images are acquired at a high pulse repetition frequency. Particle movement of the shear wave induces changes in the sonograms
and is retrieved through phase correlation. uz is displacement along z, Kx is the wave vector in propagation direction. US is the abbreviation for ultrasound, t signifies
timestep and σ is the viscous length.
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show in Figure 2, which is reproduced with permission from [57],
and are gained from a liver corrosion cast. The macro-, meso- and
microscopic structures exhibit different scales of porosity and
permeability. While the portal vein for example can be seen as
a tubular conduct with a very high Darcy permeability
(1 × 10–3–1 × 10–2 m2 [58]), the permeability of the sinusoidal
space has been modeled with permeabilities as low as 1.56 ×
10–14 m2 and the interstitial space with 3.12 × 10–17 m2 [13, 59].
Most studies reporting liver permeability values take a
microstructure approach, investigating single liver lobules or the
permeability across vessel walls. A more general approach was
taken by [17], who modeled a 3D liver using a tissue permeability
of 1.44 × 10–9–2.5 × 10–9 m2 and a vascular permeability of 5.0 ×
10–9 m2. Here, tissue permeability is the permeability derived from
the sinusoids. A permeability of 1.4 × 10–9 m2 for an avascular
model was also found by [60] for a poro-visco-elastic liver model.
These relatively high values are not surprising, considering that the
blood flow into the liver sinusoids equals about 1.35 Lmin−1 at a
pressure drop of 1.2 kPa [12]. As is the case of the permeability,
care has to be taken when comparing literature values for porosity.
Considering only sinusoidal porosity, [61] find 7.4 ± 1.1% while
[13, 62] state values ranging from 14% for a healthy to 24.6% for a
cirrhotic liver. According to [10], total liver porosity values range
from 50 vol% to 70mass% of total free fluid, including blood, water
and bile.

These porosity and permeability values are higher than those
used recently by [27] in a poro-hyper-visco-elastic model. They base
their consideration on the values by [13], who modeled micro-
circulatory or sinusoidal permeability based on hexagonal liver
lobules. We believe however, that the sinusoidal permeability is
not the relevant quantity for shear wave elastography. The region of
interest for any liver elastography method is in the centimeter range
and far exceeds the scale of a liver lobule (0.153 mm3 in [13]).
Therefore, one should take into account mesocirculation and
potentially macrocirculation for proper modeling of the
permeability and porosity in shear wave elastography.

2.6.2 Variability of Porous Parameter Values
For the average adult the normal blood volume in the liver equals
about one third of its mass [63] or 450ml. However, experiments in
cats have shown that the liver can account for up to 400ml of
additional blood per kg of liver and rapidly expel half of the stored
blood from the liver [63, 64]. Concordantly, [12] states that the human
liver can occasionally store up to 0.5–1 L of additional blood in the
hepatic vein and sinusoids. Using ultrasonicmeasurements [65] found
mean diurnal variations of 17% in human liver volume. Recently [66],
found that mice liver volume oscillates with the feeding and circadian
cycle, gaining and loosing 34% each day. Furthermore, fibrosis and
cirrhosis have been shown to change the capillarization and thus the
porous microstructure of the liver [67–69]. For harmonic ultrasound
elastography, [70] found that water uptake leads to a change in the
hepatic shear wave velocity. They conclude that the shear wave speed
is most likely related to a change in vascular load after water intake.
These blood volume variations on short timescales for a single
organism as well as pathologic changes due to liver disease
influence the shear wave speed as predicted by poro-visco-elastic
theory. They notably alter the porosity and permeability parameters in
Biot’s model. Furthermore, the higher the porosity, the more Biot’s
model becomes sensitive to the fluid viscosity. Our research revealed
few studies reporting the tortuosity of the liver pore space. For rat liver
sinusoids it was found to be 1.04–1.11 by [71].

The above cited studies give the range of available literature
values for the porous parameters of the liver and will serve as
input to the analytic modeling of the liver as a poro-visco-elastic
solid in Section 3.2. Table 1 summarizes the porous and elastic
parameter values reported for the liver.

2.6.3 Permeability Calculation
The permeability of a porous sample with tubular pores of a single
fixed radius r is given as [79]:

κ � ϕ
r2

8
. (10)

FIGURE 2 | Visualization of the liver vasculature as presented by [57]. The blood vessels, present at all scales, constitute the main source of porosity in our poro-visco-
elastic liver model. (A). Reconstruction of three mesovascular trees (hepatic artery, portal vein and hepatic venous system) from liver vascular corrosion casts. Reproduced
with permission from Fig. 2 e) in [57]. (B). Scanning electron microscopic image of the sinusoidal microcirculation. Reproduced with permission from Fig. 1 c) in [57].
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TABLE 1 | Literature values for the poro-elasatic parameters of the liver. ϕ is porosity, κ is permeability, η is viscosity, α is tortuosity, E is Young’s modulus and ] is Poisson’s
ratio. The different groups focus on different applications and use different approximations and assumptions, partly explaining the large variability of values. The most
crucial point when refering to literature values with regards to elastography is if the microcirculation only or the meso- and macro-circulation are considered. The liver lobule
model seems to focus on single lobules and micro-circulation in most of the literature we reviewed. For detailed description of measurements, approximations and error
estimations, please see the provided references.

Source Type Type ϕ [%] κ [m2] η [Pa] α [ ] E [Pa] ν [ ]

White et al. [17] 3D Virtual liver Vascular space 29.8 1.4–2.5 × 10–9 3.5 × 10–3 [ ]
Rattanadecho
and Keangin [72]

FEM model Vascular space 60–70 7.7 × 10–11–2.2 ×
10–10

Debbaut et al. [13] CT based 3D model 3D Sinusoidal 14.3 7.0 × 10–16–1.1 ×
10–14

Peeters et al. [62] CT based 3D model 3D Sinusoidal
Cirrhotic

24.6 1.1 × 10–14–7.7 ×
10–13

Siggers et al. [59] Lobule model Interstitial space 3.1 × 10–17 1.8 × 10–3

Bonfiglio et al. [73] Lobule model 2D Sinusoidal 12 7.0 × 10–16–3.3 ×
10–13

4.0 × 10–3 1230a 0.43–0.47a

Komatsu
et al. [71]

In vivo fluorescence
microscopy

Sinusoidal (rat) 1.04–1.11

Meyer [58] Endoscopic Ultrasound Portal Vein 5.5 ×
10–5–1.3×10−3b

Jang et al. [75] Viscometer and
Fibroscan

Healthy, Fatty,
Cirrhotic human
liver

3.3 ×
10–3–2.2 ×

10–2

2,669–76,497

Rand et al. [76] Viscometer Human
hematocrit
20–80c

3.9 ×
10–3–5.3 ×

10–2

Kerdok [2, 10] Porcine ex vivo Perfusion test 50–70 3.9 ×
10–3–5.3 ×

10–2

40–116d

Moran et al. [60] Porohyperviscoelastic
Model

Parenchyma,
avascular

20 1.4 × 10–9 541.6 0.35

Lautt [63, 64] Base value estimatione Blood 20–35
Greenway and
Stark [77]

Base value estimation Blood + Interstitial 37

Chatelin et al. [78] DMA Porcine In vitro 325.7–1,323.7
Chatelin et al. [78] Fibroscan Porcine In vivo 1,200–2,300
Marchesseau
et al. [9]

Rheometry Porcine liver
samples

300–900

Wex et al. [3] Rheometry Porcine Ex vivo,
time dependant

128–316f

Hall and
Guyton [12]

Normal value Blood volume 30g

Author’s
calculation

Based on corrosion cast
by [57, 59]h

Macro- Meso-
and Micro-
circulation

0.35 2 × 10–9

Lautt [64] Venous pressure change
in cats

Additional blood
storage

+400 ml

Lautt [64] Sympathetic nerve action No liver function
impairment

-50–60% of
normal blood

volume
Hall and
Guyton [12]

Backpressure in human
liver

Additional blood
storage

+0.5–1 L or
up to 60%i

Leung et al. [65] Mean diurnal changes Total human liver
volume

±17%
(Volume)

Sinturel et al. [66] Mice sections Total liver volume ±34% (mass)
Ipek-Ugay
et al. [70]

Time harmonic
elastography (human)

Fasting and water
ingestion

±11% (of shear
wave speed)

aBased on Chui et al. [74], who measured in pig livers. Note that the Poisson’s ratio employed in our calculations is a property of the frame. It might this be slightly different from Chui’s.
bCalculated from flow speed and geometry in Meyer [58] using Darcy’s law.
cRepresents the extreme values of Hematocrit for human blood.
dLinear elastic shear modulus for liver parenchyma.
eThe authors state that large volume changes are observed (\gt 20%).
f20–27 and 1 h, respectively.
gCalculated for a liver Volume of 1.5 L.
hThe casting process might lead to shrinking and thus underestimation of porosity and permeability.
iConsidering a liver mass of 1.5 kg
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Following [80], a more realistic permeability can be calculated as:

κ � ∫∞

0

ϕ

8
a2μf(a)da, (11)

where aμ is the mean radius of capillary tubes and f(a) is the
probability distribution density function of the tube radius. In
Section 4.3.1, we use Eq. 11 to calculate the permeability of the
liver corrosion cast of [57].

2.6.4 Poro-Visco-Elastic Liver Model
In Section 3.2, we analytically model how the shear wave
dispersion in the liver is influenced by the porosity and fluid
phase in the poro-visco-elastic wave propagationmodel. The liver
is regarded as a homogeneous solid saturated by a Newtonian
fluid according to Biot’s theory ( [31, 55]. We compare these
analytic curves of a hypothetical liver with some exemplary
literature values of in vivo elastography measurements. The
measurements are displayed in Figure 4 and stem from
Figure 1 of [81]. The data was read off manually by taking
seven and nine points from the experimental curves for the F1
and F3 curve, respectively. Finally, we compare the results to a
best fit of the experimental results with Voigt’s model. The poro-
visco-elastic modeling is equivalent to the melamine foam
modeling presented in Section 2.5.2. However, the foam
parameters are now replaced by liver values from the literature.

Regarding blood as a Newtonian fluid is of course a
simplification, albeit one that is commonly made. A more
accurate description of blood is a non-Newtonian visco-elastic
shear thinning fluid or sol where the viscosity depends on shear
stress, oscillation frequency and Hematocrit [82]. Shear rate is a
function of flow and vessel diameter, which vary widely
throughout the liver [83]. We thus explicitly make the choice
of reducing the model complexity by assuming an average
Newtonian blood viscosity under systolic conditions as for
example measured by [75]. The Biot parameters are inter-
related, hence the sensitivity of the shear wave speed on one
parameter depends on the choice of the others. This leads to a
variety of possible dispersion curves within the range of literature
values given in Section 2.6.1. Exploiting the parameter space is
beyond the scope of this manuscript. Instead, in Section 3.2 we
present the dispersion curves for a low and a high porosity with
changing viscosity. This shows the variety of dispersion curves
which are covered by the porous model with fixed elastic and
changing porous parameters.

To reduce complexity and because the Biot model is less
sensitive towards tortuosity than to porosity ϕ, permeability κ,
and fluid viscosity ηf we fix the tortuosity to 1.05 throughout our
calculations, which is in the range reported in Section 2.6.1.

In Section 3.2 we use the same modeling method to compare
the poro-visco-elastic model to statistics of experimental shear
wave dispersion data acquired by [81] and to Voigt’s model.
Equivalent to how [81] measure the experimental dispersion, the
dispersion of the analytic model is evaluated using the slope of the
linear fit between 73 and 250 Hz. With this range we account for
the experimental conditions of the measurements of Figure 5
[81]: The stated problems at low frequencies and the fact that the
upper frequency for the fit of each point in Figure 5 varied

depending on the quality of the experimental data. The five
parameter optimization of the Biot model exposes the
ambiguity every multi-parameter inversion suffers. We do not
claim to find the true values explaining the experimental data
here, but merely want to evaluate if physical changes in porous
parameters as reported in Section 2.6.2 are able to explain the
experimental trend observed by [81]. We thus explicitly
compare with a two parameter, and thus less ambiguous,
Voigt model, only. To facilitate the multi-parameter
inversion for Biot’s parameters we put further physical a
priori constraints. The aim of the multi-parameter inversion
here is to see if the observed statistical trend in the dispersion
data can be explained by changes in the Biot model. We thus
restrict the solid viscosity of the Biot model to not exceed that
of the point with the lowest Dispersion, effectively fixing the
Voigt viscosity for the entire observed data. Furthermore, we
suppose increasing porosity and permeability for increasing
dispersion, which is reflected in the optimization bounds. The
latter results from Eq. 11: a higher porosity must be
accompanied by a higher permeability if no geometry
changes happen.

3 RESULTS

3.1 Experimental Shear Wave Dispersion in
Melamine Foam
The red and blue crosses in Figure 3 show the shear wave
dispersion curves for high and low viscosity fluids. The
dispersion for the foam in water (blue) differs significantly
from the dispersion of the same foam in Xanthan solution
(red). For example, the measured phase velocity in the foam

FIGURE 3 | Poro-visco-elastic model, visco-elastic model and
experimental measurements for the melamine foam. In the two realizations of
Biot’s model all parameters are equal, except for the fluid viscosity. For all
parameter values see Table 2. The Voigt model is displayed to highlight
the differences with the poro-visco-elastic model. It is not a fit but uses the
same shear modulus, solid viscosity and average density ~ρ � ρs(1 − ϕ) + ρflϕ

as the Biot model.
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saturated by the Xanthan solution at 125 Hz is 2m s−1 (>20%)
lower than that of the foam saturated by water.

3.1.1 Poro-Visco-Elastic Dispersion Modeling in
Melamine Foam
An inversion for the free parameters μ0 and μ1 of the Biot model,
as described in Section 2.3, is performed on both experimental
curves. The parameter bounds and values for the fixed parameters
of the Biot model can be found in Section 2.5.2. The result is a μ0
of 27.3 kPa, a μ1 of 8.2 Pas for the foam and a fluid viscosity of
1.04 mPas for the Xanthan solution. The resulting analytic
dispersion curves are shown as dotted lines in Figure 3 and
expose a good fit with the experimental results. The only
parameter changing between the two experiments is the
viscosity of the fluid and hence solid elasticity and solid
viscosity, the two free parameters of the Voigt model, stay
constant throughout both experiments. As a consequence, we
only model one dispersion curve for the Voigt model. It is
displayed as the dashed black line and represents the
dispersion resulting from a Voigt model, which uses the same
elastic parameters as the Biot model. Due to the Voigt’s model
incapacity of modeling both curves, we did not perform a purely
visco-elastic fit on the experimental data here.

3.2 Porous Dispersion in the Liver
Figure 4 shows themodeling results for a liver with different values
of porosity and permeability and an identical set of visco-elastic
parameters. The exact parameter values can be found in Table 2.
The blue dashed curve represents a low porosity-low fluid viscosity
liver, while the blue straight curve represents a high porosity-low
fluid viscosity curve. The superimposed black curves are two
exemplary shear wave dispersion curves in the liver acquired
through ARFI/SWEI with an Siemens SONOLINE Antares
scanner and a CH4–1 transducer (Siemens Healthcare,
Ultrasound Business Unit, Mountain View, CA), taken from
[81]. The dashed curve represents a liver classified with Fibrosis
stage F1 and the straight curve represents a liver classified with
Fibrosis stage F3. The least-squares best fit of the visco-elastic Voigt
model and the experimental data in the frequency range of
100–400 Hz are plotted in red. Both, the poro-visco-elastic
model results and the visco-elastic model results respect a
penetration depth superior to 0.5 λ (see Section 2.4). The drop-
off of the experimentally measured wave speeds at low frequencies
is attributed to a roll-off of the Fourier transform by Ref. [81]. They
express confidence in their measurements for values >73 Hz.
Within this confidence interval the measurements show an
inflection at 100 and 150 Hz, which the Voigt model is
incapable of reproducing without boosting μ1 to large values
that lead to a penetration depth <0.5λ. In contrast to that, the
observed inflection is an intrinsic property of the Biot model with
steeper slope at lower frequencies for smaller fluid viscosity.

The dotted blue curve represents the modeling result of using
the same set of parameters as for the straight blue line except for
the fluid viscosity ηf. Fluid viscosity is tripled for the dotted blue
curve, leading to a significant decrease of the shear wave speed.
The dash-dotted blue line was achieved likewise from the model
of the dashed blue line. At 200 Hz, a commonly taken shear wave

speed reference frequency, the difference between the low
porosity-high fluid viscosity (dash-dotted) and the high
porosity-low fluid viscosity (straight) model reaches 0.8 ms−1

or 42% of the lower value.

3.2.1 Experimental Support for the Poro-Visco-Elastic
Liver Model
Reference [81] conducted a statistical analysis of in vivo
measurements of shear wave dispersion slope at 200 Hz versus
shear wave speed at 200 Hz for healthy and fibrotic human livers.
In Figure 6 of [81], which is replotted in our Figure 5, one can
observe a positive correlation (R2 � 0.3) of the steepness of the
dispersion slope with the measured speed at 200 Hz [81].
Eyeballing the trend we set three dispersion-speed target pairs
for the inversion: 2.0 ms−1–0.25 ms−1

100Hz, 2.5 ms−1–0.45 ms−1
100Hz,

3.0 ms−1–0.65 ms−1
100Hz. Using Eq. 6 and the Basinhopping

algorithm [41] (see Section 2.3) the inversion for Voigt’s model
results in the points V1,V2, and V3 of Figure 5. They represent the
least squares best fits of the Voigt model and the speed-dispersion
pairs. Using the same speed - dispersion pairs, the least squares fit
using the poro-visco-elastic model results in the points B1, B2 and
B3. The exact parameter values for V1,V2, V3 and B1,B2, B3 can be
found in Table 2 and the bounds for the inversion in Table 3.

4 DISCUSSION

4.1 Poro-Elastic Loss Mechanism of
Melamine Foam
The experiment confirms the results by [8] that the shear wave
dispersion in a highly porous soft phantom is governed by the

FIGURE 4 | Experimental and theoretical shear wave dispersion curves
for the liver. Black: Data acquired with ARFI/SWEI. Values are reproduced
from Figure 1 in [81]. “-” F3 Fibrosis classification, “- -” F1 Fibrosis
classification; Blue: Poro-visco-elastic model developed in this paper, “-”
high porosity and permeability, “- -”, low porosity and permeability,”··” same as
“-” with tripled fluid viscosity, “·-” same as “- -” with tripled fluid viscosity; Red:
Voigt’s visco-elastic model, “-” high shear modulus, “- -” low shear modulus.
The parameter values for the analytic curves are reported in Table 2.
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viscosity of the fluid. Since the dispersion of the foam in Xanthan
solution and in water differ significantly at the same temperature,
viscous effects of the solid matrix cannot be the single reason for
the wave dispersion. The experiment clearly shows that the
difference in dispersion is due to the changed viscosity of the
pore filling fluid. As a consequence, it is impossible for Voigt’s
model to reproduce the observed difference in the dispersion
curves. Thus, modeling of shear wave propagation in soft porous
materials by poro-elastic theory is justified. Biot’s non-
phenomenological theory of poro-elastic wave propagation
takes the fluid viscosity into account by introducing a
mechanism of fluid-solid interaction [28, 29].

It should be noted that the rheology of Xanthan solutions is
non-Newtonian and as such Xanthan shares the shear
dependency of the viscosity with blood. However, Biot’s
approximation of a Newtonian fluid with one constant
apparent viscosity is sufficient for the small frequency range
investigated herein, and in order to show that fluid viscosity is
the single parameter which alters the shear wave dispersion. The
good fit of the dispersion curves, which was retrieved by
restricting the elastic and viscous parameters to lie within the
range of the literature values for melamine foam, indicates that
Biot’s theory is well suited to explain the observed shear wave
dispersion.

Our experiments show a fundamental difference between
porous theory and other rheological models such as Voigt’s
model: the effect of a change in viscosity. A higher value of
the fluid viscosity (Biot) leads to a smaller slope of the dispersion
curve while a higher solid viscosity (Voigt) leads to a steeper slope
of the dispersion curve. This can be understood in the following
way: A higher fluid viscosity signifies stronger solid-fluid
coupling. As a consequence, the shear wave encounters an
increased effective density.

The experimental results were gained on a melamine sponge,
which is an artificial, highly porous, soft solid. Melamine sponge
has already been used to mimic ultrasonic scattering in biological
porous tissue, namely the lung [84]. While the results of [8] and
the experimental results presented herein show that Biot theory
can explain shear wave dispersion in soft porous materials, its
applicability on in vivo organs will be discussed in the following.

4.2 Porous Liver Modeling
The analytic shear wave dispersion curves in Figure 4 are
modeled without a change of the elastic parameters and cover
the experimental curves for a F1 and F3 fibrosis stage liver. While
the Voigt model requires a near two-fold increase of the elasticity
and solid viscosity, the poro-visco-elastic model can reproduce
both curves without a change in neither the elasticity nor the solid
viscosity. Hence, the measurements above 73 Hz could in

TABLE 2 | Modeling parameter values for the poro-elastic and visco-elastic models. The fluid density and the mean density are set to 1,050 kgm−3, which is the reported
value of arterial blood [100]. ϕ-porosity, κ-permeability, ηf-fluid viscosity, μ0-shear modulus, μ1-solid viscosity.

Fig Data Model ϕ [-] κ [m2] ηf [mPas] μ0 [kPa] μ1 [Pa s]

Figure 3 “– –” Biot 0.99 1.28 0.6 27.3 8.2
Figure 3 “– –” Biot 0.99 1.28 1.04 27.3 8.2
Figure 3 “– –” Voigt − − − 27.3 8.2
Figure 4 “– –” Biot 0.42 1.0 3 3.4 0.6
Figure 4 “- –’” Biot 0.42 1.0 9 3.4 0.6
Figure 4 “—” Biot 0.67 4.7 3 3.4 0.6
Figure 4 “. . .’” Biot 0.67 4.7 9 3.4 0.6
Figure 4 “—” Voigt − − − 3.9 1.2
Figure 4 “– –” Voigt − − − 7.1 2.0
Figure 5 B1 Biot 0.5 2.5 3.9 2.5 0.6
Figure 5 B2 Biot 0.6 3.2 4.3 4.4 0.6
Figure 5 B3 Biot 0.7 3.7 3.9 5.9 0.5
Figure 5 V1 Voigt − − − 3.6 1.6
Figure 5 V2 Voigt − − − 6.2 2.8
Figure 5 V3 Voigt − − − 9.4 4.3

× 10–9

FIGURE 5 | In vivo liver dispersion measurements, redrawn from
Figure 6 in [81], with Fibrosis classification. The dispersion slope close to
200 Hz is plotted against the shear wave speed around 200 Hz.
Superimposed are the results of our modeling, which tries to reproduce
the eyeballed trend as described in Section 2.6.4 and Section 3.2.1.
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principle be explained without a change in solid visco-elasticity by
using poro-visco-elastic theory. Since fibrosis classification by
elastography relies on changes in shear modulus, this would
indicate the possibility of false positives in fibrosis
classification due to varying liver saturation. If the poro-visco-
elastic model can be confirmed in vivo, shear wave elasticity
imaging should thus take the porous parameters into account.
Considering that perfusion and blood viscosity have been shown
to be highly variable on short timescales (see Section 2.6.2), we
think that these modeling results should be considered in future
clinical research.

The fluid viscosity in the poro-visco-elastic model is 3.1 mPas,
which is below the commonly assumed whole blood viscosity of
3.5 mPas but above the viscosities given for microcirculation and
interstitial fluid in the liver by [59]. In a recent study [75],
observed an anti-correlation of blood viscosity with liver
stiffness as measured by transient elastography. The authors
suggested pathologic changes as the source of this anti-
correlation. The viscosity induced changes in shear wave speed
of our porous modeling indicate the possibility of a different
explanation. The correlation could be rooted in the inherent effect
of the fluid viscosity on the shear wave speed, and as such be an
artifact of the elasticity inversion.

4.2.1 Experimental Support for the Poro-Visco-Elastic
Liver Model
Our hypothesis that the poro-visco-elastic model is more
appropriate than Voigt’s model to explain shear wave
dispersion in the liver is supported by the analysis of the
experimental results by [81] reported in Figure 5. In Voigt’s
model, an increase in the elasticity modulus will lead to an
increase in measured speed at 200 Hz, but to a decrease of the
dispersion slope. A much larger increase in solid viscosity (μ1)
than in elasticity (μ0) could reproduce the correlation, but to our
knowledge no such physical mechanism is known. On the
contrary, the predominance of μ0 for liver elastic behavior is

well documented [78]. Furthermore, such an increase in solid
viscosity leads to very low penetration depths, effectively making
the modeled wave a non-propagating one. Unlike Voigt’s model,
Biot’s poro-visco-elastic model is able to reproduce a correlation
of increased shear wave speed with increased dispersion slope for
the reported in vivo measurements.

Ex vivo measurements do not reproduce this correlation of
dispersion slope with shear wave speed [85]. This could be owed
to the fact that ex vivo livers are partially drained. The drainage
changes the porous properties, which adds to other factors, such
as fluid pressure, that are inhibiting ex vivo experiments from
properly reproducing the physics that govern shear wave
dispersion in vivo.

While assuming the purely visco-elastic model, the porous and
liquid properties of the liver might thus have largely been
overlooked previously. Studies supporting this statement were
conducted by [21–23, 86], who compared confined and
unconfined ex vivo liver samples and found that the pressure
on the fluid in the liver influences the shear wave speed. Reference
[24] employed a microchannel flow model equivalent to Darcy’s
law and noted that it is superior to Kelvin-Voigt models, because
it is based on tissue architecture instead of a priori information on
springs and dampers. Both findings strongly support our
deduction that porosity plays a crucial role in shear wave
propagation in the liver. However, they do not discuss the
main loss mechanism shown in Section 3.1: the viscosity of
the fluid in the Biot model. While these works deduce elasticity
changes from increased pressure on the tissue, we introduce the
direct role of the fluid phase through porous physics into the
calculation of the shear wave speed.

4.3 Future Research
4.3.1 Biot Parameter Measurements
Why should we introduce another multi-parameter rheological
model? From a mathematical point of view, the introduction of
additional model parameters improves model fit but also

TABLE 3 | Modeling parameter bounds for the poro-elastic and visco-elastic models. ϕ-porosity, κ-permeability, ηf-fluid viscosity, μ0-shear modulus, μ1-solid viscosity.

Fig Data Model ϕ [ - ] κ [m2] ηf [mPa s] μ0 [kPa] μ1 [Pa s]

Figure 3 “– –” Biot 10 1 × 10–4

400 1 × 10–1

Figure 3 “– –” Biot 0.65 10 1 × 10–4

66 400 1 × 10–1

Figure 4 “- –” Biot 0.2 1.0 2 6 1.6
0.5 3.0 5 9.5 2.5

Figure 4 “—” Biot 0.5 3.0 2 6 1.6
0.7 5.0 5 9.5 2.5

Figure 4 “– –” Voigt − − − 5 0.5
− − 20 10

Figure 5 B1 Biot 0.35 1.5 1.5 2 0.1
0.5 3.0 10 11 3

Figure 5 B2 Biot 0.5 2.5 4.3 2.5 0.1
0.6 3.9 4.3 20 0.6

Figure 5 B3 Biot 0.6 3.7 3.9 4.4 0.1
0.7 3.9 3.9 20 0.6

Figure 5 V1-3 Voigt − − − 1 0.5
− − − 30 20

× 10–9
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increases model ambiguity. The critical reader might thus
question the benefit of introducing another complex multi-
parameter model. We agree of course, that conforming to
Occam’s razor [87], a simpler model is to be preferred over a
complex model whenever sufficient experimental data for the
model parameters is lacking. Biot’s model however exhibits
several traits that differentiate it from other complex
rheological models such as Zener’s model or a fractional
Kelvin-Voigt model.

First, it is an entirely non-phenomenological model which is
derived from first principles and the porous parameters can in
principle all be measured independently. This is the main reason
why it is widely applied in geophysical applications, e.g., in oil and
gas exploration. Second, both the liver porosity and permeability
depend heavily on blood vessel size and are not independent
variables. The porosity, i.e., the space occupied by free fluids, can
be estimated as the total volume of blood and extracellular fluid.
Tubes are a good approximation for the average blood vessel
shape and as a consequence permeability and porosity can be
calculated from the knowledge of the distribution of vessel sizes
with Eq. 11.

Reference [69] analyzed the 3D micro and mesoscopic
structure of the hepatic blood vessel tree using high resolution
Computer Tomography of a liver cast. As a final check for the
Biot model we create a normally distributed probability function
for each vessel generation based on their values of the mean and
standard deviation of the pore size and length per vessel
generation. For the interstitial fluid we assume a pore radius
of 0.25 µm, a value derived by [59] for the space of disse, and a
Volume percentage of 12% [77, 88]. Integrating over the
permeabilities for each vessel generation we retrieve κ ≈
2e−9m2 and ϕ ≈ 0.35. Theses values are in the lower range of
the literature values [17], which is in accordance with the
assumption that the cast represents an un- or normally
perfused liver. Reference [57] also evoke a possible shrinking
of the blood vessel diameters due to the casting process.

We assume that a change in liver perfusion in vivo is reached
through vaso-dilatation or vaso-contraction [63, 64, 89]. We can
then calculate the necessary dilatational factor to reach the
maximum porosity of 70% for the poro-visco-elastic model:
For example, increasing the radius of the smallest 8 vessel
generations by two and of the remaining generations by 1.2 as
well as their lengths by 1.5 for the smallest 8 and by 1.2 for the
remaining generations gives a porosity of 70% and a permeability
of 5.6 × 10–9 m2. This rough estimation is in accordance with the
upper limits of the literature2. Furthermore, the dilatational
factors are not purely speculative, since [68] found a
dilatational factor for the sinusoids of nearly two in cirrhotic
rat livers.

As of now, these theoretical porous parameter values are
estimated from the liver cast and the literature, but recent

imaging advances in ultrasound [90–92] and MRI imaging
[93] have shown that porosity and blood vessel size estimation
in vivo are becoming feasible. Another approach that might
advance the imaging of porous properties with shear wave
elastography was recently presented by [94]. They suggest to
use Bayesian inference to deduce microstructure properties from
effective wave parameters. Hence, poro-visco-elastic shear wave
speed estimation could in the future replace the
phenomenological springs and dampers of the currently
applied rheological models with a physical loss mechanism
that is determined by measurable porous parameters. From a
physicist point of view, the added model complexity is then well
justified by a reduction in the model ambiguity. If the poro-visco-
elastic model will also result in improved disease classification
compared to more complex visco-elastic models will have to be
evaluated in the future.

4.3.2 Low-Frequency Dispersion
References [95, 96] show, that in the case of magnetic
resonance shear wave elastography of the brain, a poro-
elastic finite element model following [97–99] is more
accurate than a visco-elastic model at very low frequencies.
Physical reasoning for the observed low speeds at low
frequencies requires much lower elastic moduli than are
commonly inverted for in transient elastography. An
elastography independent measurement of such low elastic
moduli is given by [9, 78] for in vitro porcine liver. They find
storage moduli as low as 300 Pa, using dynamic mechanical
analysis (DMA). Similar values are reported for ex vivo bovine
livers by [3] on fresh porcine liver grafts, using a rheometer
and a fractional Kelvin-Voigt model, and by [60], who
employed a poro-hyper-elastic model. Even lower elastic
moduli are reported for in-vivo mimicking perfusion tests
on ex-vivo liver samples. Reference [10] report linear elastic
shear modulus values of less than 100 Pa for liver parenchyma.

These results in combination with poro-visco-elastic
modeling indicate that the entire observable dispersion
range, including the low frequencies, needs to be taken into
account in order to accurately retrieve the elasticity of the liver.
Future in vivo studies of the liver should thus focus on
acquiring shear wave speeds over a large bandwidth. At
very low frequencies, frequency dependent fluid viscosity
and permeability should be taken into account due to the
pronounced visco-elastic properties of blood.

5 CONCLUSION

Our results show, that for fluid saturated, soft porous materials,
the porous parameters need to be taken into account to properly
model shear wave dispersion. The shear moduli retrieved from
simple visco-elastic models are prone to overestimations in the
presence of porosity. Fluid viscosity, permeability, and porosity of
the diseased as well as the healthy liver can vary inter- and intra-
individual on short timescales. It is thus justified to assume that
the wide range of observed shear wave dispersion curves in the in
vivo liver is partly owed to changes in the porous properties of the

2The largest two vessel generations, e.g., the hepatic vein, are ignored, assuming
that these are avoided by the practitioner in shear wave elastography. The radii of
the biliary tree are also neglected, since its estimated volume percentage of 1.2% is
relatively low.
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liver. Our comparison of poro-visco-elastic and simple visco-
elastic modeling shows, that porous parameter changes can easily
be the reason for false positives in visco-elastic shear modulus
inversion. In the here presented porous liver model porosity
dominates at low frequencies, and solid viscosity is dominant at
high frequencies. Furthermore, the stiffer the matrix of the liver,
the more sensitive the shear wave dispersion becomes to the
porous parameters in the Biot model.

Compared to more complex visco-elastic models, the poro-
visco-elastic model does not require further phenomenological
parameters. Instead it relies on directly measurable quantities.
Furthermore, it gives a physical explanation for the observed
shear wave dispersion in the liver. If our results are confirmed
in vivo, they are likely to have implications for elasticity
imaging of other porous organs, such as the spleen, the
kidney and the brain.
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