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Divergence is usually used to determine the dissipation of a dynamical system, but some
researchers have noticed that it can lead to elusive contradictions. In this article, a
criterion, dissipative power, beyond divergence for judging the dissipation of a system is
presented, which is based on the knowledge of classical mechanics and a novel dynamic
structure by Ao. Moreover, the relationship between the dissipative power and potential
function (or called Lyapunov function) is derived, which reveals a very interesting,
important, and apparently new feature in dynamical systems: to classify dynamics
into dissipative or conservative according to the change of “energy function” or
“Hamiltonian,” not according to the change of phase space volume. We start with
two simple examples corresponding to two types of attractors in planar dynamical
systems: fixed points and limit cycles. In judging the dissipation by divergence, these two
systems have both the elusive contradictions pointed by researchers and new ones
noticed by us. Then, we analyze and compare these two criteria in these two examples,
further consider the planar linear systems with the coefficient matrices being the four
types of Jordan’s normal form, and find that the dissipative power works when
divergence exhibits contradiction. Moreover, we also consider another nonlinear
system to analyze and compare these two criteria. Finally, the obtained relationship
between the dissipative power and the Lyapunov function provides a reasonable way to
explain why some researchers think that the Lyapunov function does not coexist with the
limit cycle. Those results may provide a deeper understanding of the dissipation of
dynamical systems.
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1 INTRODUCTION

For a deterministic dynamical system

_x � f(x), x ∈ Rn, (1)

it can be divided into a conservative system or a dissipative system. Generally, researchers use the
following criterion, divergence, to judge the dissipation of a system by whether its phase volume
shrinks with the evolution of time in phase space:

Criterion 1 (Divergence [1–4]): The divergence of vector field f(x) measures how fast volumes
change under the flow of f(x) which is given as follows:
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divf(x) � ∑ zfi

zxi

< 0, dissipative;
� 0, conservative;
> 0, the phase space volume increases.

⎧⎪⎨⎪⎩
(2)

Although there are many studies on divergence [5–7], it must
also be mentioned that, for such an important concept, some
researchers have noticed that there will be some elusive
contradictions when judging the dissipation of a system by it.
As such, Chen [8] pointed out that for a system judged as
dissipative by divergence, the divf < 0 does not necessarily
hold at every point in the phase space. Thompson and Stewart
[4] observed that the Van der Pol type systems are dissipative of
which, however, the phase space might have regimes of positive
divergence.

In this article, we only consider planar dynamical systems. As
we all know, there are two types of attractors in planar dynamical
systems: fixed points and limit cycles. It is very difficult to directly
analyze why the divergence criterion is not rigorous or even
impossible to start with. The concrete example is one of the
simple and efficient ways to illustrate the problem. Here, we give
two planar system examples corresponding to these two types of
attractors to reveal that divergence defined by the volume change
of phase space is not a necessary and sufficient condition for
judging the dissipation of the system.

• Linear system: the following is a linear system [9]

_x1 � x2

_x2 � x1
{ , (3)

which has a saddle point and the divergence equals zero.
By divergence (Eq. 2), the system (Eq. 3) is conservative.

However, we found an interesting phenomenon: this planar
linear saddle system with zero divergence, in fact, can be judged
not only as a conservative system but also as a dissipative
system. On one hand, it is a conservative system by
Liouville’s theorem [10], and on the other hand, combined
with the theorem by Borrelli and Coleman [11] that the
conservative system has no attractors and no repellers with
the Sachdev’s statement that a repeller corresponds to an
unstable equilibrium point or a saddle point [12], it is
dissipative.

• Nonlinear system: the following system [13]

_x1 � −x2 + x1 1 − x2
1 + x2

2( )[ ]
_x2 � x1 + x2 1 − x2

1 + x2
2( )[ ]{ , (4)

has an asymptotically stable limit cycle x2
1 + x2

2 � 1 and the
divergence formula of this system is divf � 2(1 − 2x2

1 − 2x2
2).

When x2
1 + x2

2 ≤
1
2, it has div f ≥ 0, which introduces a

contradiction similar to the one Thompson and Stewart
mentioned above. Furthermore, we notice another
contradiction by divergence: in the limit cycle, the system is
dissipative by the negative divergence, and the energy of the
system should eventually be reduced to zero and stop moving. In
fact, it can move infinitely in the limit cycle.

Therefore, it is a central issue to find a suitable method or new
criterion which can be used to give a reasonable explanation and
analyze the problems and contradiction mentioned above. Is
there one? The answer is positive based on our work in this
article: dissipative power.

The article is constructed as follows. In Section 2, a new
criterion, dissipative power, for determining the dissipation of a
system is introduced. In Section 3, we compare the new criterion
and divergence in examples (Eqs 3, 4). Moreover, we derive out
all the results of the four Jordan matrixes corresponding to the
planar linear system, consider another nonlinear system of article
[5] and verify the relationship between the dissipative power and
Lyapunov function. The conclusion and discussion are shown in
Section 4.

2 A NEW DISSIPATIVE CRITERION:
DISSIPATIVE POWER

This section introduces a new dissipative criterion, dissipative
power, which is based on the knowledge of classical mechanics
[14] and a novel dynamic structure by Ao [15–17].

Ao discovered a novel framework which divides the system
(Eq. 1) into three parts from the perspective of mechanics:

[S(x) + T(x)] _x � −∇ϕ(x), (5)

where x � (x1, . . . , xn)τ , τ is the transpose symbol, the
symmetric semipositive matrix S(x) is friction matrix, the
antisymmetric matrix T(x) is the transverse matrix, and the
potential function ϕ(x) was proven equivalent to the Lyapunov
function [18].

Moreover, (Eq. 5) has an equivalent form

_x � −[D(x) + Q(x)]∇ϕ(x), (6)

where [D(x) + Q(x)] � [S(x) + T(x)]−1, the symmetric semipositive
matrix D(x) is the diffusion matrix which can be chosen by
different diffusion modes, and Q(x) is an antisymmetric matrix.
In the following, we will not give a specific description to S(x), T(x),
D(x), Q(x), ϕ(x) if it is not necessary.

When the system (Eq. 5) has two or three dimensions, we
can consider it in the electromagnetic field, of which the electric
and magnetic fields are perpendicular to each other. Then, the
term −S(x) _x denotes the friction force by [14], −T(x) _x (the
rewritten form of e _x × B) is the Lorentz force, and the potential
gradient ∇ϕ(x) is the result of the combined action of the
downward friction force and the horizontal Lorentz force.
Therefore, the potential gradient of the general dynamical
system (Eq. 5) is the result of the interaction of two vertical
forces −S(x) _x and −T(x) _x.

In general system (Eq. 5), the S(x) and T(x) are not zero; then
it can be derived thatD(x) andQ(x) are not zero by [D(x) + Q(x)]
� [S(x) + T(x)]−1. Here, we set D(x) and Q(x) in (Eq. 6) equal to
zero, respectively. And we obtain two special situations which are
as follows:

1) D(x) � 0: the (generalized) Hamiltonian system, of which the
“energy ϕ(x)” is conserved:
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_x � − Q(x)∇ϕ(x). (7)

The Hamiltonian systems [19] that are generally considered
conservative have the form

_x � J∇H(x), (8)

where J � 0 −I
I 0

( ), the scalar function H(x) is called

Hamiltonian or energy function.

2) Q(x) � 0: the (generalized) gradient system, which is a purely
dissipative dynamical system:

_x � −D(x)∇ϕ(x). (9)

The gradient systems [1] that are generally considered
dissipative have the form

_x � −grad V(x), (10)

where V: Rn →R is a C∞ function, and grad V� (zV
zx1

, zVzx2, ... ,
zV
zxn

) .
Because work is a measure of energy change, that is, the

amount of work done by an external force is equal to the sum
of the energy of the object, and its definition is as follows:

W � Fforce × L, (11)

where W, Fforce, and L denote work, force, and displacement,
respectively. Then, the formula for power can be derived as
follows:

P � Fforce · v, (12)

where P usually represents power and v is velocity.
From the perspective of work and energy, forces can be

divided into conservative forces and nonconservative forces.
By taking advantage of the fact that nonconservative forces
(such as friction) consume energy, we combine the dynamic
structure by Ao with the knowledge of classical mechanics
[14] to derive the following criterion for judging the
dissipation of a system: dissipative power, which is written
as HP.

Criterion 2 (Dissipative power): Dissipation can be defined by
dissipative power via friction force ffriction which is denoted as
follows:

HP(x) � ffriction · (− _x)
� (−S(x) _x) · (− _x)
� _xτS(x) _x
� fτS(x)f.

(13)

Then, it has

HP(x) � fτS(x)f > 0, dissipative
� 0, conservative

{ (14)

where τ is transpose symbol, ffriction � −S(x) _x[14], the friction
matrix S(x) is a semipositive definite symmetric matrix, which
derives that HP < 0 is impossible and ensures the property that
friction impedes the motion of an object.

Moreover, by (Eq. 5), we can derive the relationship between
the dissipative power HP(x) and the potential function ϕ(x)(or
called Lyapunov function):

dϕ(x)
dt

� ∑n
i�1

zϕ

zxi

dxi

dt

� <∇ϕ, _x>
� _xτ∇ϕ

� − _xτ[S(x) + T(x)] _x
� − _xτS(x) _x
� −HP(x).

(15)

The physical meaning of ((Eq. 15)) is obvious: the decrease of
“energy function ϕ(x)” along the system trajectory means
dissipation and no change implies there is no dissipation.
Then, we can conclude that this dissipative criterion, HP(x),
classifies the dynamics into dissipative or conservative
according to the change of “energy function” or “Hamiltonian.”

3 ANALYSIS AND SOLUTION

In this section,weuse thenewdissipative criterion to judge thedissipation
of examples (Eqs 3, 4) and compare with the results by divergence.
In addition, the planar linear systems with four types of Jordan matrix
as coefficient matrix are considered. We also considered another
nonlinear system of [5] to analyze and compare these two criteria.

3.1 The Planar Linear System
We first consider the planar linear system and summarize the
results into two tables.

The linear form of system (Eq. 1) can be written as follows:

_x � Fx, F is a constantmatrix. (16)

Kwon, Ao, and Thouless [20] have discussed the construction
of Lyapunov functions of linear systems. And some necessary
formulas are given as follows.

F � −[D + Q]U � −[S + T]−1U, (17)

[D + Q]−1 � S + T, (18)

FQ + QFτ � FD −DFτ , (19)

∇ϕ(x) � Ux, (20)

where only Q is unknown, and U is a symmetric matrix.

Here, set F� f11 f12

f21 f22
( ), Q� 0 q12

−q12 0
( ), D� d11 d12

d12 d22
( ), and

d11, d22, d22 are chosen to satisfy d11,d22≥0,d11d22 −d212≥0. Then,
by (Eq. 19), we have

(f11 + f22)q12 � −f21d11 + (f11 − f22)d12 + f12d22,
d11, d22 ≥ 0, d11d22 − d2

12 ≥ 0.
{ (21)

where only q12 is unknown.
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In system (Eq. 3), F � 0 1
1 0

( ), and (Eq. 21) can be rewritten as

−d11 + d22 � 0,
d11, d22 ≥ 0, d11d22 − d2

12 ≥ 0.
{ (22)

then, we obtain

d12 and q12 arearbitrary real numbers,
d11 � d22 ≥ 0, d11d22 − d2

12 ≥ 0. (23)

We combine with (Eqs 6, 7, 9), separately rewrite system
(Eq. 3) into a (generalized) Hamiltonian system or a (generalized)
gradient system by choosing different groups of values in
(Eq. 23):

• A (generalized) gradient system:

By (Eq. 23), it can choose q12 � 0 and d11 � d22 � 1. Then, we

obtain Q � 0, D � D + Q � [D + Q]−1 � S � I, U � 0 −1
−1 0

( ).
Then, by ∇ϕ(x) � Ux, it can derive the Lyapunov function

ϕ(x) � −x1x2. (24)

And then, it can verify that Lyapunov function (24) does not
increase along the trajectory

dϕ

dt
� −x2

1 − x2
2 ≤ 0, (25)

which shows that dϕ
dt is less than zero except for the

equilibrium point.
Next, the corresponding dissipative power HP(x) and

divergence divf(x) are derived.

HP(x) � x2
1 + x2

2 ≥ 0, (26)

divf(x) � trace(F) ≡ 0. (27)

By (Eqs 25, 26), we can verify

dϕ

dt
� −Hp(x). (28)

Finally, combined (Eqs 6, 9), system (Eq. 3) can be rewritten as
follows:

_x � −[D + Q]∇ϕ(x) � −D∇ϕ(x)
� −∇ϕ(x) � 0 1

1 0
( ) x1

x2
( ). (29)

Obviously, system (Eq. 29) is a gradient system which is
dissipative.

Here, (Eqs 26, 29) indicate that the system (Eq. 3) is a
dissipative system, which is consistent with the result obtained
by combining [11, 12]. However, div f(x) ≡ 0 can not.

• A (generalized) Hamiltonian system:

By (Eq. 23), it can choose q12 � 1 and d11 � d22 � 0. Then, we

obtain D � S � 0, Q � D + Q � −[D + Q]−1 � 0 1
−1 0

( ),
U � 1 0

0 −1( ), where 0 is the zero matrix.

Then, by ∇ϕ(x) � Ux, it can derive the Lyapunov function

ϕ(x) � x2
1 − x2

2

2
. (30)

And then, it can verify that the Lyapunov function (Eq. 30)
does not increase along the trajectory

dϕ

dt
� zϕ

zx1
_x1 + zϕ

zx2
_x2 ≡ 0. (31)

Next, the corresponding dissipative power HP(x) and
divergence div f (x) are derived.

HP(x) � _xτS _x ≡ 0, (32)

divf(x) ≡ 0. (33)

By (Eqs 31, 32), we can verify

dϕ

dt
� −Hp(x). (34)

Finally, combined (Eqs 6, 7), system (Eq. 3) can be rewritten as
follows:

_x � −[D + Q]∇ϕ(x) � −Q∇ϕ(x)

� 0 −1
1 0

( )∇ϕ(x) � 0 1
1 0

( ) x1

x2
( ). (35)

Obviously, system (Eq. 35) is a Hamiltonian system (Eq. 8)
which is conservative.

Here, (Eqs 32, 33) show that system (Eq. 3) is conservative at
the same time. On the other hand, system (Eq. 3) can be rewritten
into a Hamiltonian system is consistent with the result obtained
by Liouville’s theorem [10].

Then, the same result is obtained for another planar linear

saddle system with zero divergence
_y1 � y1

_y2 � −y2
.{ And then, the

results obtained above are summarized in Table 1.

Furthermore, the matrix F � f11 f12

f21 f22
( ) has the following

four types of Jordan’s normal form [21] by invertible linear

transformation:

λ1 0
0 λ2

( ), λ1 0
0 λ1

( ), λ1 0
1 λ1

( ), α β
−β α

( ), (36)

where λ1, λ2 and α ± βi are the eigenvalues of F, λ1 ≠ λ2,
���−1√ � i,

and β ≠ 0.
Similarly, it can obtain all the results of the four Jordan matrix

corresponding systems, the details are given in the Supplementary
Material, and we summarize them in Table 2. Combining Table 1
with Table 2, we obtain the following:

1) When the coefficient matrix of planar linear system (Eq. 16) is
λ1 0
0 λ2

( ), it has the following cases:

• For the case of λ1 + λ2 � 0 (div f � 0 and HP ≥ 0), by the
dissipative power system, (Eq. 16) can be judged not only as a

Frontiers in Physics | www.frontiersin.org September 2021 | Volume 9 | Article 6954894

Gan et al. A New Dissipative Criterion: Dissipative Power

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


conservative system but also as a dissipative system, which is
consistent with the interesting phenomenon we noticed in the
introduction. However, the divergence criterion shows only one
aspect.

• For the case of λ1 + λ2 ≠ 0 (div f ≠ 0 andHP ≥ 0), it contains
two cases λ1 + λ2 < 0 and λ1 + λ2 > 0. 1) When λ1 + λ2 < 0,
the results are always consistent by using the divergence
and dissipative power to determine the dissipation of a
planar linear system. 2) When λ1 + λ2 > 0, the divergence
cannot judge the dissipation of the system, while dissipative
power can judge the system being dissipative.

2) When the coefficient matrix of planar linear system Eq. 16 is

not
λ1 0
0 λ2

( ), it has the following cases:

• For the case of div� 0 andHP≡ 0, these two criteria consistently
indicate that the planar linear system (Eq. 16) is conservative.

• For the case of div ≠ 0 and HP ≥ 0, the div ≠ 0 contains two
cases divf > 0 and divf < 0. 1) When divf < 0, the results are
always consistent by using the divergence and dissipative
power to determine the dissipation of a planar linear
system. 2) When divf > 0, the divergence cannot judge
the dissipation of system, while dissipative power can judge
the system being dissipative.

3.2 The Planar Nonlinear System and Its
Motion on the Limit Cycle
Based on works [16, 18] which studied the dynamical systems
from a physical point of view, we will further analyze and explain
the motion in the limit cycle. For the sake of completeness, the
process is given in (Eq. 4).

For a charged massless particle in the electromagnetic field, its
motion Newton equation is as follows:

fdriving � m€x � 0. (37)

The fdriving is usually divided into two parts, friction force and
conservative force:

fdriving � fconservative + ffriction, (38)

where ffriction � −S(x) _x corresponds to the dissipative part, the
conservative force is derived from the Lorentz force e _x × B(x),
and electric field force −∇ϕ(x) which is the potential gradient:
fconservative � e _x × B(x) + [−∇ϕ(x)], e is the unit electric charge,
(∇ × x)i � ∑3

j�1 ∑3
k�1 ϵijkzjxk, ϵijk is the alternating tensor [22].

By Eq. 38, we can get

S _x + eB(x) × _x � −∇ϕ(x). (39)

Changing the Lorentz force B(x) × _x to T(x) _x, T(x) is an
antisymmetric matrix. Then Eq. 39 can be represented as (Eqs 5, 6).

The article [18] has derived the potential function (Lyapunov
function) ϕ(x) of system (Eq. 4).

ϕ(x) � 1
4
(x2

1 + x2
2)(x2

1 + x2
2 − 2). (40)

Then, it can verify that the Lyapunov function (Eq. 40) does
not increase along the trajectory

dϕ

dt
� −(x2

1 + x2
2)(x2

1 + x2
2 − 1)2 ≤ 0. (41)

And then, we continue to use the Ref. [18] and obtain

S(x) � (1 − x2
1 − x2

2)2
1 + (1 − x2

1 − x2
2)2

1 0

0 1
⎛⎝ ⎞⎠, T(x) � (1 − x2

1 − x2
2)

1 + (1 − x2
1 − x2

2)2
0 1

−1 0
⎛⎝ ⎞⎠,

D(x) � 1 0

0 1
⎛⎝ ⎞⎠, Q(x) � − 1

1 − x2
1 − x2

2

0 1

−1 0
⎛⎝ ⎞⎠,

(42)

−∇ϕ � x1 1 − x2
1 − x2

2( )
x2 1 − x2

1 − x2
2( )( ).

By (Eq. 42), we find that when the system approaches the limit
cycle x21 + x2

2 � 1, the potential gradient −∇ϕ and the
antisymmetric matrix T(x) tend to 0; at the same order, the
friction matrix S(x) goes to 0 at a higher order. The dynamical
system tends to be conservative from dissipative. What needs to
be pointed out is that the Q(x) → ∞ as x2

1 + x2
2 → 1 may be a

reason why researchers are confused about how to construct or
exist a Lyapunov function for systems with limit cycles.

Next, the dissipative power and divergence of system (Eq. 4)
are obtained:

HP(x) � (x2
1 + x2

2)(x2
1 + x2

2 − 1)2 ≥ 0, (43)

divf(x) � 2(1 − 2x2
1 − 2x2

2), (44)

and it can derive out divf(x)|x21+x22�1 � −2≠ 0, HP(x)|x21+x22�1 � 0.

TABLE 1 | Two criteria on the planar linear saddle system with zero divergence.

Types/HP and div f Systems _x= 0 1
1 0( )x _y = 1 0

0 −1( )y
(Generalized) gradient system HP ≥ 0 HP ≥ 0

(only x1 � x2 � 0,HP � 0) (only y1 � y2 � 0, HP � 0)
div f(x) ≡ 0 div f(y) ≡ 0

(Generalized) Hamiltonian
system

HP ≡ 0 HP ≡ 0
div f(x) ≡ 0 div f(y) ≡ 0

TABLE 2 | The Hp and divf of the planar linear system with four Jordan’s normal forms as a coefficient matrix.

div f/HPJordan’s normal norm
λ1 0
0 λ2

( ) λ1 0
0 λ1

( ) λ1 0
1 λ1

( ) α β
−β α

( )
div f(x) � 0 HP ≥ 0 contains two cases HP ≡ 0 HP ≡ 0 HP ≡ 0

HP ≥ 0 (only x1 � x2 � 0, HP � 0)
HP ≡ 0

div f(x) ≠ 0 (divf(x) > 0 and divf(x) < 0) HP ≥ 0 HP ≥ 0 HP ≥ 0 HP ≥ 0
(only x1 � x2 � 0, HP � 0) (only x1 � x2 � 0, HP � 0) (only x1 � x2 � 0, HP � 0) (only x1 � x2 � 0, HP � 0)
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Equation (43) implies that the system (Eq. 4) with a limit cycle
is dissipative and it is conservative in the limit cycle, which will
not only be no contradiction with the theorem by Borrelli and
Coleman [11], but also cannot encounter the problem of
Thompson and Stewart [4]. What is more, judging the
dissipation in the limit cycle by divf(x) � −2 will be faced with
the contradiction noticed by us, but the dissipative power will not.

By (Eqs 41, 43), we can verify

dϕ

dt
� −Hp(x). (45)

Finally, we can analyze the motion of the charged particle in
the limit cycle which is as follows:

• The friction part:

ffriction � −S _x � 0, (46)

then, it can derive
HP(x) � _xτS _x � 0. (47)

• The conservative force part is as follows:
– In the limit cycle, the potential function (Lyapunov function)
ϕ(x) ≡ − 1

4. So the limit cycle is an isopotential cycle, and
the work done by the electric field force is equal to zero.
– Lorentz force is everywhere, perpendicular to the direction of
motion, and do no work.

To sum up, the limit cycle is an isopotential line in which a
charged particles can move infinitely in the presence of a “Lorentz
force,” with zero friction hence no dissipation. Here, the isopotential
line is the unit cycle of system (Eq. 4), so it moves in a circle.

Then, we can conclude that when divergence is used to judge the
dissipation of a system with the limit cycle, there will be contradictions,
and the infinitemotion in the limit cycle cannot be explained. However,
when using dissipative power, not only will there be no contradiction,
but also a reasonable analysis and explanation can be given.

In addition, we analyze and compare these two criteria in
another nonlinear system.

3.3 Analyze and Compare These Two
Dissipative Criteria of a Nonlinear System
By choosing d � 0 and u � −x3

2 of the example 4 in [5], we obtain
the following nonlinear system [5]:

_x1 � −x1x
2
2

_x2 � −x3
2

.{ (48)

Then, we will analyze and compare these two dissipative
criteria of system (Eq. 48).

Solution: Let

ϕ(x) � 1
2
(x2

1 + x2
2), (49)

and we obtain

dϕ(x1, x1)
dt

� zϕ

zx1
_x1 + zϕ

zx2
_x2

� −x2
2(x2

1 + x2
2)

(50)

≤ 0, (51)

therefore, (Eq. 49) is a Lyapunov function of system (Eq. 48).
By [18], we obtain

D(x) � x2
2

1 0
0 1

( ), (52)

S(x) � 1

x2
2

1 0

0 1
⎛⎝ ⎞⎠, (53)

Q(x) � T(x) � 0, 0 is the zeromatrix. (54)

Then, we can derive the dissipative power of system (Eq. 48):

HP(x) � _xτS _x
� x2

2(x2
1 + x2

2) (55)

≥ 0. (56)

Then, we can verify the relationship between dissipative power
and Lyapunov function

dϕ

dt
� −Hp(x). (57)

Futhermore, the divergence of system (Eq. 48) is

divf(x) � −4x2
2 (58)

≤ 0. (59)

Finally, (Eqs 56, 59) can consistently deduce that the system
(Eq. 48) is dissipative, which is in accordance with the results
obtained in [5].

By choosing d � 1, u � −x1 − (β − 1)x3
2, β> 1 of the example 4

in [5] and the Lyapunov function ϕ(x) � 1
2 (x

2
1 + x2

2), it will obtain
similar results.

It should be pointed out that our method has both advantages
and disadvantages.

• Advantages: once a dynamical system can be
decomposed into the dynamic structure of Ping Ao,
the global evolution characteristics of the systems can
be intuitive.

• Disadvantages: 1) as mentioned in [16], it may be difficult
and need huge efforts to decompose a system (Eq. 1) into
the form (Eqs 5, 6); that is, it should satisfy the following two
equations:

∇ × [S(x) + T(x)]f(x){ } � 0 (60)

and

[S(x) + T(x)]−1 + [S(x) − T(x)]−1 � 2D(x), (61)

where (Eqs 60, 61) give n(n−1)
2 and n(n+1)

2 conditions, respectively.

2) There is no general rigorous mathematical proof about the
dynamic structure of Ao.
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4 CONCLUSION AND DISCUSSION

4.1 Conclusion
Our results reveal that the usual definition in textbooks,
divergence, is neither sufficient nor necessary condition for
“dissipation.” A very interesting, important, and apparently
new feature in dynamical systems emerges to classify
dynamics into dissipative or conservative according to the
change of “energy function” or “Hamiltonian,” not according
to the change of phase space volume. The details are as follows:

• For the examples of the planar linear saddle system with
zero divergence, by dissipative power, it can be judged not
only as conservative, but as dissipative. However, the
divergence reflects only one situation. Furthermore, we
derive out all results of the planar linear systems
corresponding to the four types of Jordan’s normal form,
and obtain that the dissipative power always works when
divergence exhibits one-sidedness (λ1 + λ2 � 0) or has no
definition of dissipation (divf > 0).

• For the planar nonlinear system with a limit cycle (4), we
obtain the following: 1) The (Eq. 43) implies that system
(Eq. 4) is dissipative and it is conservative in the limit
cycle, which will be no contradiction with the theorem by
Borrelli and Coleman [11], and cannot encounter the
problem of Thompson and Stewart [4]. 2) For these two
dissipative criteria, only the dissipative power can explain
the meaning of dissipation in an infinitely repeated
motion of the limit cycle: in the limit cycle of system
(Eq. 4), the dissipative power Hp ≡ 0 indicates that the
system is conservative. So the trajectory can move
infinitely in the limit cycle with no dissipation. In
detail, in the limit cycle, ffriction ≡ 0, the value of
potential function is ϕ(x) ≡ − 1

4, which shows that the
limit cycle is an isopotential cycle, the work by electric
field force is zero, and the Lorentz force is perpendicular
to the direction of motion everywhere and does no work.
Therefore, the charged particle can move infinitely in the
isopotential line in the electromagnetic field.

In addition, we also considered another one nonlinear planar
system of article [5] to analyze and compare these two criteria and
obtained the result that they are consistent.

• We obtain the relationship between Lyapunov function
and dissipative power: the decrease of Lyapunov function
along a trajectory is equal to the dissipative power,
dϕ
dt � −Hp. The physical meaning is obvious: the
decrease of “energy function ϕ” along the system
trajectory means dissipation, and no change implies
there is no dissipation.

Though our present work only considers the dissipation of
planar dynamical systems, we are confident to deal with this

problem about the dissipation of dynamical systems in a higher
dimension in the near future, because the attractors can be given a
geometrical classification (see Wolfram [23]): fixed point, limit
cycle, and chaos. Based on the novel dynamic structure of Ao, Ao
et al. have achieved many important results for these three kind of
attractors such as fixed point [20], limit cycle [24–26], and
chaos [27].

4.2 Discussion
By the relationship obtained between the dissipative power
and the Lyapunov function, we will combine these two
criteria from the perspective of system dissipation to
analyze why some researchers believe that the Lyapunov
function does not exist in systems with limit cycles (such
as [1, 19, 28]). As we point out the contradictory
phenomenon by divergence in the limit cycle, if we ignore
this point and continue to judge the dissipativity in a limit
cycle by divergence, we will think that the system (such as (4))
is dissipative in the limit cycle. Then, the energy of the system
should eventually be reduced to zero and to stop moving. It
implies that the derivative of the potential function (or called
Lyapunov function) along the trajectory in the limit
cycle should be less than zero and that the energy of the
system decreases with time until proceeds to zero, so it cannot
be in the limit cycle all the time. On the other hand, the
Q(x) → ∞ as x2

1 + x2
2 → 1in (Eq. 42) may be another reason

for leading researchers to think that systems with limit cycles
do not exist or cannot construct a Lyapunov function. It may
give one explanation to the reason why some researchers
think that the Lyapunov function does not coexist with the
limit cycle.

In addition, for the purpose of communicating with peers, a
preprint manuscript [30](authored by Gan, Xiaoliang, Wang,
Haoyu, Ao, and Ping) can be accessed at https://arxiv.org/abs/
1903.11480. Because Ruoshi Yuan made many helpful
suggestions, which improve this article greatly, we added him
into the author list.
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