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In this paper, we introduce new features of silicon in fullerane structures. Silicon, when
placed in a fullerane structure, increases its electron affinity and electrophilicity index,
compared to placement in a diamondoids structure. These nanoparticles can be used to
make optical sensors to detect viral environments. In this work, we theoretically examine
the changes in the UV-Visible spectrum of sila-fulleranes by interacting with viral spikes. As
a result, we find out how the color of silicon nanoparticles changes when they interact with
viruses. We apply N- and O-Links for viral glycoprotein structures, and Si20H20 silicon
dodecahedrane, respectively. Our computational method to obtain optimal structures and
their energy in the ground and excited states, is density functional theory (DFT). Besides, to
get the UV-Visible spectrum, time-dependent density functional theory (TD-DFT) approach
has been used. Our results show that the color of sila-dodecahedrane is white, and turns
green in the face of viral spikes. We can use the optical sensitivity of silicon nanoparticles,
especially to identify environments infected with the novel coronavirus.
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INTRODUCTION

If environmental health can reduce the role of viruses, the complex issue of treating viral patients will
be removed from its critical state. But with the spread of human societies, can old methods clean the
environment from microbial contamination? These methods are based on disinfecting suspicious,
susceptible, and busy places. These are very costly due to the large statistical target population; as a
result, it is sometimes impossible to do so [1]. Therefore, the need for substances that detect microbial
contamination of the environment, whether viral or bacterial, etc., is felt more and more.

Nanoparticles can be sensitive to the viral environment. This sensitivity can appear as changes in
color, light or even electrical properties. Metal nanoparticles have previously been studied to identify
a variety of microbes. However, they usually have high chemical softness, which not only causes them
to be unstable, but also causes unpredictable changes in biological systems [2, 3]. From non-metallic
nanoparticles, carbon can be affected by the environment, if it is located in a structure with sp2 orbital
hybridization, such as graphene, fullerenes, etc., due to the resonance of unlocated electrons, and so
can be used as a sensor [4–7]. But graphene-based nanoparticles also always tend to oxidize [8].

Silicon, as the most popular metalloid, exhibits significant properties when placed in the form of
nanoparticles. In 2013, Moore et al. showed that silicon nanoparticles can be used as optical sensors
[9]. Biocompatibility and sensitivity to surface factors make silicon nanoparticles more attractive to
therapeutic agents in biological systems [10–12]. In this study, we investigate the sensitivity of silicon
nanoparticles to biological contamination, and introduce a type of nanoparticles as a virus-sensitive
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identifier [13–16]. We indicate that when silicon is placed in a
fullerane structure, its electron sensitivity increases, so that we do
our study on sila-fulleranes [17–21]. Since the electronic
properties of sila-fulleranes with sizes between 1 and 2 nm, are
very close to each other, we focus on our smallest samples to save
on computational costs [22]. Also, to remove the edge factors, we
have selected the most symmetric sila-fullerane for this purpose
[23–25]. As a result, we select the sila-dodecahedrane with the
chemical formula Si20H20, which has icosahedral (Ih) symmetry
[26, 27]. Finally, we generalize the results to a set of sila-fulleranes.

COMPUTATIONAL METHOD

Our calculations are based on density functional theory. We
obtain the optimal and stable geometry of the structures and their
energy in the ground and excited states, by B3LYP hybrid
functional [28–30]. Using time-dependent density functional
theory, we obtained the UV-visible spectrum for the studied
structures [31, 32]. We describe the orbitals of the atoms by basis
set, which include the split valence, polarized and diffuse
functions, that is 6-31 + G (d,p) basis set [33, 34, 35]. The
calculations are performed by the Gaussian package [36, 37]. We
also used AIM2000 software to analyze the interaction between
the structure of the sensor and the glycoproteins studied [38].

RESULTS

Virus spikes are usually made up of glycoproteins. Glycoprotein is
a combination of protein and carbohydrate. There are different
types of glycoproteins, however, the most common glycoproteins
that make virus spikes, like the spike of the coronaviruses, are
O-Link and N-Link types [39–43]. If the causative of
carbohydrate-binding to protein is oxygen atoms, it is called

O-Link, and if it is nitrogen atoms, it is called N-Link. The
structure of these two types of glycoproteins is shown in Figure 1.

In this study, we propose that silicon nanoparticles have the
ability to sense N-Link and O-Link glycoproteins. Because, in
addition to biocompatibility, they are also electron sensitive.
Although silicon is usually placed in the diamond structure,
but when silicon placed in a fullerane structure, the rate of
quantum confinement effect will be smaller. Unlike sila-
diamondoids, sila-fulleranes does not consist of pure sp3

hybridization structure. Especially if fulleranes structures
consist of a number of fused hexagon rings (NFHR), deviation
from sp3 hybridization occurs more frequently [22]. Finally, this
deviation causes difference in the electronic properties of sila-
fullerans and sila-diamondoids.

Using the following equations [44–47], we can obtain
electronic information, such as the HOMO-LUMO gap,
chemical potential, chemical hardness, and finally an estimate
of electron affinity:

EGap � ELUMO − EHOMO. (1)

µ � (EHOMO + ELUMO)
2

. (2)

FIGURE 1 | The common glycoproteins, which make up virus spikes, are N-Link and O-Link types.

TABLE 1 | A list of some of the electronic features of the first six structures of Sila-
fullerane (in unit eV).

Nanoparticle HOMO LUMO EGap µ η EA IP ω

Si20H20 −6.83 −2.36 4.48 −4.60 2.24 2.36 6.83 4.72
Si24H24 −6.70 −2.39 4.31 −4.54 2.16 2.39 6.70 4.78
Si28H28 −6.88 −2.49 4.39 −4.69 2.20 2.49 6.88 5.00
Si30H30 −6.86 −2.48 4.39 −4.67 2.20 2.48 6.86 4.97
Si36H36 −6.78 −2.49 4.29 −4.64 2.14 2.49 6.78 5.02
Si60H60 −7.05 −2.59 4.46 −4.82 2.23 2.59 7.05 5.20
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η � (EHOMO − ELUMO)
2

. (3)

EA � −ELUMO. (4)

IP � −EHOMO. (5)

The new index, electrophilicity, can be obtained using
chemical potential and chemical hardness through Eq. 6.
Regarding electrophilicity, the difference between the type of
structures is clearly visible [48, 49].

ω � µ2

2η. (6)

We calculated the above electronic information for the six
structures of sila-fulleranes. You can see the electronic
information of them in Table 1.

Our previous researches on silicon nanoparticles shows that
diagram of quantum confinement effect (QCE) for sila-fulleranes
smoothly change than sila-diamondoids, especially in the range
of 1–2 nm [22]. As a result, the HOMO-LUMO gap of fulleranes
close to each other in this range, and because many properties
such as chemical hardness, chemical potential and indexes such
as electrophilicity are derived from this gap, so the properties of

FIGURE 2 | The first six structures of Sila-fulleranes.

FIGURE 3 | The HOMO and LUMO orbitals for diamondoids, sila-diamondoids and sila-fulleranes (Isovalue � 0.02).

FIGURE 4 | Si20H20 and Si60H60 structures, which have icosahedral
symmetry.
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these two fullerenes will be similar. For this reason, comparing
the values of the above specifications for the Si20H20 and
Si60H60 structures, it cannot be concluded that these two
structures have different electronic properties. Despite the
different values of electrophilicity, even this sensitive index
does not classify the two structures studied in different types.
In the following, the structures of the studied sila-fulleranes
are shown in Figure 2.

According to the data in Table 1. It can be concluded that the
high chemical hardness combined with significant electron
affinity of the sila-fulleranes, make them a good candidate
for chemical sensors due to increased electronic interaction
with the environment. To determine the advantage of fullerane
structures over diamond structures, Figure 3 shows the HOMO
and LUMO orbitals in the smallest diamondoids, sila-
diamondoids, and sila-fulleranes. The localized orbitals of
HOMO and LUMO in diamonds and their silicon analogues
mean that the electrons in their structure have less impact on the
environment.

As mentioned earlier, we used the most symmetrical
structures, to remove the effect of the edges. The formulas for
our structures are Si20H20 and Si60H60, which have an icosahedral
symmetry. The geometry of these two types of structures is shown
in Figure 4.

Now, according to the data given in Table 1, our selected
sample to save time in calculations, is the sila-dodecahedrane
with the chemical formula Si20H20. We investigate the ability of
the Si20H20 to see if it can sense the presence of the desired
glycoproteins. We examine the reaction of Si20H20 to the presence
of the desired glycoproteins with the probable changes in the
density of states (DOS) diagram. Figure 5 shows the changes in
the diagram of the density of states of the Si20H20, due to the
presence of N- and O-Link glycoproteins. The diagrams of this
study are plotted with Gauss Sum software [50].

Silicon nanostructures have a very sensitive surface, so that in
the face of high electronegative factors such as oxygen, its HOMO
energy level increases, which is also confirmed by the density of
states diagram, which it is confirmed by the density of states

FIGURE 5 | The DOS diagrams of the Si20H20 in the absence and presence of N- and O-Link glycoproteins.
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diagram. This is because the presence of oxygen increases the
chemical potential of the structure and causes the electron to
ionize or excite with less energy than before. So, changes in the
DOS indicate differences in properties related to the electronic
behaviors, such as optical properties. Now, we want to show how
the color of the Si20H20 changes due to the presence of N- and
O-Link glycoproteins?

Due to its large EGap of about 4.5 eV, the color of our nanoparticle
should be white. In other words, since the spectrum of visible light,
about 1.6–3.2 eV, does not have enough energy to act on the
electrons of the Si20H20, the total radiation returned to space at
each wavelength, without any absorption.

The calculation of the optical gap also confirms our results.
Optical gaps are usually smaller than HOMO-LUMO gaps. The
optical absorption gap can be calculated by subtracting the total
energy of the optimized-ground state from the total energy of the

excited state in the same ground state geometry, as shown in
Figure 6.

Because the number of electrons of the Si20H20 is even, its spin
state will be singlet, in the ground state. The lower-energy triplet
excited-state is optically inactive, according to theΔS � 0 selection
rule. Therefore, the lowest-energy allowed optical transition
excites the system into the singlet excited state [51–55].

The energy of the singlet excited state is higher than the triplet
state, due to larger repulsive Coulomb interactions between
antiparallel spins. Therefore, the excited system may relax
from the singlet state into the triplet one. Therefore, we
calculate the emission bandgap from the relaxed excited triplet
state to the ground state at the same energy, as shown in Figure 6.
In Table 2, we present the calculated absorption and emission
gaps of the Si20H20. The difference between the absorption and
emission gaps shows the Stokes shift.

The calculated absorption and emission gaps confirm our
prediction, that the color of the Si20H20 is white. Because the
absorption gap is about 3.7 eV, and also, the emission gap is about
3.3 eV, none of them are in the range of the visible spectrum.

Our investigates show, the optimal distance between
glycoprotein and sila-dodecahedrane depends on the
condition and orientation of the glycoprotein relative to
the sensor structure. But in general, it can be concluded
that when the distance of hydrogens of both strucures have
more than 2�A of together, the energy of the correlation
between them is close to zero. Table 3 shows the electron
properties of sila-dodecahedrane intracted to the studied
glycoproteins.

Our calculations using AIM software analysis show that
intermolecular interactions can take place between sila-
dodecahedrane and glycoproteins in four zones (see Figure 7):

Zone (a): Between the hydroxyl oxygen of carbohydrate part of
glycoprotein and the hydrogen sila-dodecahedrane, the distance
between which is about 7.8�A. At the critical point of this
interaction, the electron density is about 0.0001 e.bohr−3 and
the Laplacein density is about −0.0001 e.bohr−5.

Zone (b): Between the carbonyl oxygen of carbohydrate part of
glycoprotein and the hydrogen sila-dodecahedrane, the distance
between which is about 2.2�A. At the critical point of this

FIGURE 6 | The absorption and emission gaps of the system.

TABLE 3 | A list of HOMO, LUMO and the H-L Gap for O and N-Link glycoproteins, Si20H20 and their complex systems together (in unit eV).

Structures HOMO LUMO H-L gap

O-Link −6.20 −0.98 5.22
N-Link −6.13 −1.05 5.07
Si20H20 −6.83 −2.36 4.48
O-Link and Si20H20 −6.32 −2.07 4.25
N-Link and Si20H20 −6.06 −2.67 3.39

TABLE 2 | The absorption and emission gaps for the Si20H20 (in unit eV).

Spin state Singlet (ground) Triplet Absorption gap Singlet Triplet (ground) Emission Gap Stoke shift

ETotal −1,57,889.48 −1,57,885.77 3.71 −1,57,889.26 −1,57,885.94 3.32 0.39
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interaction, the electron density is about 0.0179 e.bohr−3 and the
Laplacein density is about −0.0147 e.bohr−5.

Zone (c): Between the nearest hydrogens of glycoprotein and sila-
dodecahedrane, the distance between which is about 2.0�A. At the
critical point of this interaction, the electron density is about 0.0112
e.bohr−3 and the Laplacein density is about −0.0080 e.bohr−5.

Zone (d): Between the carbonyl oxygen of protein part of
glycoprotein and the hydrogen sila-dodecahedrane, the distance
between which is about 7.8 Å. At the critical point of this
interaction, the electron density is about 0.0003 e.bohr−3 and
the Laplacein density is about −0.0003 e.bohr−5.

The following Figure 8 shows the distance between atoms that
interact with each other:

Now, by obtaining the UV-Visible spectrum for the desired
glycoproteins, we see that these structures also have no
absorption in the visible spectrum [56]. The absorption range
of N-Link and O-Link glycoproteins is in the ultraviolet part. But,
interestingly, when van der Waals interaction between the
Si20H20 and the desired glycoproteins is established, the
absorption of the new combined system enters the visible
region, as shown in Figure 9.

The details of our final absorption spectra for the complex
system of sila-dodecahedrane and O and N-Linke glycoproteins
are given below in Table 4 using Gauss Sum software.

Since the absorption spectrum of the combined system of
Si20H20 and desired glycoproteins also includes violet light, we
expect to see the composite system in yellowish-green, based on
the complementary wavelength [57–64].

FIGURE 7 | AIM software analysis show that intermolecular interactions can take place between sila-dodecahedrane and glycoproteins in four zones.

FIGURE 8 | The distance between the two structures of sila-
dodecahedrane and glycoprotein in four zones that have intermolecular
interaction.

FIGURE 9 | Van der Waals interactions are established between the
Si20H20 and N- and O-Link glycoproteins, the absorption in the new system
also enters the visible spectrum.
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Our investigations show that what is effective in changing the
spectrum of optical absorption is the distance of oxygen of
the protein part or the carbohydrate part of the glycoprotein
from the surface of silicon nanoparticles. Because the presence
of oxygen changes the electron density around the silicon
nanoparticles, and it increases the dipole moment of the
system from 0.002 about to 10 debye.

Since the electronic properties of silicon nanoparticles can
be easily engineered, significant changes and desired color
can be achieved by functionalizing the Si-nanoparticle surface.
It should be noted that in 2015, Wagner et al. synthesized
silicon dodecahedrane as a sila-fullerane with an endohedral
chlorideIon [65].

CONCLUSION

The present study includes two crucial applications. First, the
diagnosis of viral diseases by using diagnostic kits based on
silicon nanoparticles, which are biocompatible, in addition to
high electrical and optical sensitivity. Second, for environmental
hygiene in the facades of houses, schools, etc. or urban structures, or
at least handles or gloves, the coating of silicon nanoparticles can be

used to detect viral contamination. Coronavirus (COVID-19) is an
example of a viral infection that becomes a global problem today.
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