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Inference of the gene regulation mechanism from gene expression patterns has become
increasingly popular, in recent years, with the advent of microarray technology. Obtaining
the states of genes and their regulatory relationships would greatly enable the scientists to
investigate and understand the mechanisms of the diseases. However, it is still a big
challenge to determine relationships from several thousands of genes. Here, we simplify
the above complex gene state determination problem as an inference of the distribution of
the ensemble Boolean networks (BNs). In order to investigate and calculate the distribution
of the BNs’ states, we first compute the probabilities of the different BNs’ states and obtain
the number of states Ω. Then, we find the maximum possible distribution of the number of
the BNs’ states and calculate the fluctuation of the distribution. Finally, two representative
experiments are conducted, and the efficiency of the obtained results is verified. The
proposed algorithm is conceptually concise and easily applicable to many other realistic
models; furthermore, it is highly extensible for various situations.
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1 INTRODUCTION

Gene network is an important tool to study the biological system from the molecular level. Gene
network is an interaction network formed by DNA, RNA, protein, and metabolic intermediates
involved in gene regulation. Gene network research is expected to reveal the function and behavior of
genome from a systematic perspective. It is helpful in explaining the life process in detail from the
genomic level, so as to achieve the goal of systematically explaining cell activity, life activity, disease,
and treatment. Therefore, gene network has attracted great attention in the study of biological
growth, development, and diseases. The research results of gene network have important theoretical
significance and application value.

Genetic regulatory network (GRN) has aroused lots of interests over the past years [1–3]. There
exists a large proportion of genes regulating or interacting with the other genes through proteins,
which can be modeled by the GRN. Various types of GRNs, such as Boolean networks (BNs) and
extended probabilistic Boolean networks, stochastic Boolean networks, and multiple-valued
networks [4–6], have been developed for different applications. For example, BNs were first
proposed by Kauffpman [7, 8] to model the complex and nonlinear biological systems.
Furthermore, various factors, such as gene perturbation, context-sensitive, and asynchronous,
are also thoroughly investigated [9, 10].

However, the research results of BNs are relatively limited, due to the difficulties for solving logical
dynamic systems with a systematic tool [11]. In the viewpoint of biology, considering there are a huge
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number of genes expression states at the same time, this incurs
the difficulties of inferring the states of the gene expression at a
given time stamp.

Recently, Cheng et al. [11] proposed the semi-tensor product
(STP) of matrices, which can only represent the logical equation
as an algebraic equation, but also convert the dynamics of a BCN
into a linear discrete-time control system. Based on such
reformation, many interesting properties have been obtained
for BCN [12–16]. The optimal control is an interesting topic
in system control theory. Other than the STP technique, they
developed statistical methods for solving problems in BNs. A
Mayer-type optimal control problem for BCNs with multi-input
and single-input has been well studied in Refs. [17] and [18],
respectively. The states of biological networks and electronic
networks are often influenced by instantaneous disturbances.
In addition, they may still experience abrupt changes at
certain points, because of the switching phenomenon and
sudden noise, that is, impulsive effects. Impulsive dynamical
networks have attracted the interests of many researchers for
their various applications in information science, bioinformatics,
and automated control systems.

There are many cells with the same function in an organ.
However, it is hard to get the states of every single cell. Here in
this study, we find that the states of a proportion of cells share one
particular distribution. Thus, it is useful for biologists to conclude
whether the illness is caused by the changes of the cell state
distribution or not.

From a biological standpoint, inference of gene regulation
mechanism from expression patterns is becoming increasingly
important, along with the invent of DNA microarray technology.
Thus, we need to get the ensemble distribution of the BNs and
determine the states of genes, which is the key for further
exploration of the expression profiles of thousands of genes.
Specifically, in this study, we proposed an algorithm for
inferring the distribution states of the BNs. First, we compute
the probability of different BNs’ states and get the value of Ω.
Second, we find the maximum possible distribution of the
number of BNs’ states, as well as the function of this
distribution. Finally, two representative experiments are
conducted to verify the efficiency of the obtained results.
Although the practical genetic networks are different from the
BNs in this study, the theoretical and practical results can be
extended easily to the real-world scenarios. Moreover, the
proposed algorithm is highly extensible in various scenarios
because of the computational simpleness.

2 THE FINITE NUMBER OF BOOLEAN
NETWORKS

2.1 The States of Boolean Networks
This section provides a base knowledge for Section 2.1. Ω is the
only hypothesis. In this section, we assume that the probability of
each state is equivalent, which is used for the next efficiency.

First, we suppose that there are many Boolean networks in one
group, and the probability of different BNs’ states is P.

P(Ω) � 1
Ω, (1)

where Ω is the number of BNs.
We assume that ψj is however the jth state,Mj is the number of

ψj in the BNs, and Ej is the weight of ψj. Evidently, the number of
states is M, which is calculated as follows:

M � ∑
j

Mj, (2)

and the value of the cells E is gives as

E � ∑
j

MjEj. (3)

Although we know the number of cells, it is difficult to
determine, even if a distribution Mj is given, what the specific
state of each cell is. For example, suppose there are three cells in
state 1 and five cells in state 2, we do not know which three cells
are in state 1 and which five cells are in state 2. So the theorem 1 is
given as follows in order to solve this problem.

Theorem 1We know the number of BNs in the ensemble is M
and the value of the ensemble E. Given a distribution {Mj}, it is
easy to determine the number of states Ω as

Ω � M!∏jMj
. (4)

Proof: The system consists of M number of identical transforms,
which have M! permutations. Given the condition that the total
number of states do not change, if there exists n transformsM1 →M2,
denoted as the state 1 switching to the state 2, the number ofM2 states
will increase by n, while the number ofM1 states will decrease by n.
Therefore, the state permutation number is ∏ (pi)Mj!, and

Ω � M!∏j(Mj!).
Two specific examples are given to illustrate Theorem 1, while
there is an ensemble with 5 BNs. Thus, M � 5.

(1) We assume that there are three Boolean networks in state j1
and two Boolean networks in state j2, then Ω is

Ω � 5!
3!2!

� 10. (5)

(2) We assume that there are four Boolean networks in state j1
and one Boolean network in state j2, then Ω is

Ω � 5!
4!1!

� 5. (6)

We can easily find that even if the number ofM is very large, the
conclusion still holds.

2.2 The Maximum Probabilistic Distribution
of Boolean Networks
In this section, we study and prove the maximum probabilistic
distribution of the Boolean network. The maximum probabilistic
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distribution is a Gaussian distribution, and then the cells’ states
distribution can be determined as shown in Figure 1.

Although given E,M, and the distributionMj, it is not easy
to figure out the particular states where the BNs are. The best
probability of the distribution needs further calculation.
Given Eq. 1, we can find that the more states in the
system, the larger probability the states are. The
probability of each distribution of the ensemble networks
is proportional to the number of the BN state Ω. Thus, when
determining the maximum probability, the maximum Ω
should be specified. Under the constrained conditions (2)
and (3), we can use the differentiation to calculate the
maximum value of the states. Two Lagrange multipliers α
and ß will be utilized, and the condition of the peak can be
written as follows:

z

zMj
lnΩ − α

z∑jMj

zMj
− β

z∑jMjEj

zMj
� 0. (7)

To determine the probability, we need to assume that the
number ofM is relatively large. In contrast, the data of BNs do not
need be large. When M goes to infinite, Mj also goes to infinite.
For M≫ 1, we can use the Stirring’s approximation to
simulate M!

M! � (M
e
)M 				

2πM
√ (1 + 1

12M
+ 1
288M

+/). (8)

Using Eq. 8 (the specific calculation process is shown in the
Appendix), we can get the following equation:

lnΩ � M lnM −M −∑
j

Mj lnMj +∑
j

Mj. (9)

When we compute the partial derivative of ln Ω, there are two
ways to solve this problem (Eq. (8)), that is, one is fixing the M,
while the other does not fix theM. The difference between the two
solutions is a constant. In order to boost the computation, the
second way for solving Eq. 9 is used.

z lnΩ
zMj

� −lnMj, (10)

zM
zMj

� 1, (11)

zE
zMj

� Ej. (12)

Substituting Eqs 10–12 into Eq. 7, we can get the following
equations:

−ln Mj − α − βEj � 0, (13)

ln Mj � −α − βEj, (14)

So there is

Mj � e−α−βEj . (15)

When given the number of BNM, represented as the scale, we
can get the distribution Mj, given that the parameters α and ß
should be specified in advance. To prove Theorem 2, two
definitions are given as follows.

Definition II1 When Pj is the best probability distribution, the
probability of system in the state j is

Pj ≡
Mj

M
� e−βEj∑je

−βEj . (16)

Definition II 2 Partition function [19] is

Q ≡ ∑
j

e−βEj , (17)

where Q indicates the sum of the probability of all the states. The
partition of Eq. 17 plays an important role as a normalization

FIGURE 1 | State change in a system: (A) all nodes’ state change, (B) one node of these nodes, and (C) the state change rule for one node, and there are eight
states in these nodes.

TABLE 1 | Number of initial states of cells.

State of cell (0, 0) (0, 1) (1, 0) (1, 1)

Number 198 182 319 301
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constant.E ≡ E
M and E � 1

Q∑
j
Eje−βEj is the definition of E for

succinctly, and the latter one in terms of formula expression is
good for clarity and following computation.After the computation
ofPj, α can be eliminated, and ß can be expressed by themean value E:

E ≡
E
M
, (18)

From Eq. 3, it can be rewritten as

E � ∑jMjEj∑jMj

� ∑je
−βEjEj∑je
−βEj

. (19)

Replacing Eq. 19 with Eq. 17, we can get

E � 1
Q
∑
j

Eje
−βEj . (20)

From the result, we can get the information about that in a
canonical ensemble. When E is given,M tends to infinite, Pj and ß
do not have any relationship with M.

FIGURE 2 | Cells of the system (31). The state change in the system (31), and the distribution of these states of combination. (A) Node’s states change, and there
are four states in these cells; (B) the relation of 100 cells, and these cells were randomly generated; (C)main result of the system (31): the distribution of these states of
combination.

FIGURE 3 | Distribution of the cellular network.

TABLE 2 | Cellular network statistical characteristics.

Node Edge Average degree Clustering coefficient

1,000 2,781 2.45 0.04
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Theorem 2When H and E are given and M tends to infinite,
the best of the distribution M is the true distribution. In other
words, the fluctuation is equal to 0.

ProofWe need to talk about a function,

f ≡ f (Mj) ≡ ln Ω − α∑
j

Ej − β∑
j

MjEj. (21)
However,

z2f
zM2

j

� z2 ln Ω
zM2

j

� − 1
Mj

< 0. (22)

Since the second term and the third term of f are the linear
functions, the second derivative of Mj equals to zero, which

FIGURE 4 | Distribution of the cellular network.

TABLE 3 | Number of initial states of cells.

State of cell (0, 0, 0) (0, 0, 1) (0, 1, 0) (0, 1, 1)

Number 54 60 57 48
State of cell (1, 0, 0) (1, 0, 1) (1, 1, 0) (1, 1, 1)
Number 51 54 66 42

TABLE 4 | Cellular network statistical characteristics.

Node Edge Average degree Clustering coefficient

450 1890 3.73 0.046

FIGURE 5 | Cells of the system (33). State change in the system (33), and the distribution of these states of combination: (A) node’s state change, and there are
eight states in these cells; (B) relation of 150 cells, and these cells were randomly generated; (C) result of the system (33): the distribution of these states of combination.
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means the peak is stable.Using the Taylor series which starts
f (Mj) at point Mj, the equation can be obtained as follows:

f (Mj) � f (Mj) +∑
j

zf
zMj

(M −Mj) +∑
j

1
2!

z2f
zM2

j

(M −Mj)2

+/,

� f(Mj) −∑
j

zf
zMj

(M −Mj) + O(ΔM
M

).p. (23)

The peak of f is as follows:

f � f(Mj) � lnΩ − αM − βME. (24)

Substituting Eqs 21 and 24 into Eq. 23, we can get

lnΩ � lnΩ −∑
j

1
2Mpj

(M −Mj)2

+ O(ΔM
M

). (25)

Ignoring the term O(ΔM
M ), we can get

ln
Ω
Ω � −∑

j

1
2Mpj

(M −Mj)2

. (26)
So there is

Ω � Ωe
−∑

j

1
2Mpj

(M−Mj)2

. (27)

Thus, we complete the proof of this theorem.

2.3 The Fluctuation of the Distribution
This section is aiming to prove that cells are impossible in the
same states, when the number of cells goes to infinity.

It is easy to find that Eq. 27 is a Gaussian distribution. Now, we
need to prove the function Eq. 7 is a δ function. We need to prove
the fluctuation would be eliminated when M→∞. Here,
Theorem three is provided as follows:

Theorem 3WhenM→∞, the value of fluctuation tends to be
0, that is,

fluctuation ≡

								
M2

j −Mj
2

Mj
2

√√
�

						
MPj(MPj)2

√√
→ 0. (28)

Proof: There is a distribution that

P(x)∝ e−
x2

2Δ2 .Obviously, there is

x � 0

and

x2 � ∫ x2e− x2

2Δ2dx∫ e− x2

2Δ2dx
. (29)

Then Eq. 29 can be rewritten as

x2 � ∫ x2e− x2

2Δ2dx∫ e− x2

2Δ2dx

� −2 z

z( 1
1
Δ2

) ln[∫ e−
x2

2Δ2dx]
� Δ3 z

z(1Δ) ln Δ[∫ e−
x2
2 dx]

� Δ3.

. (30)

Comparing Eq. 27 with Eq. 30, we can get

(Mj −Mj)2

� M2
j −Mj

2 � MPj

and substituting it into Eq. 28, there is

fluctuation ≡

								
M2

j −Mj
2

Mj
2

√√
�

						
MPj(MPj)2

√√
�

				
1

MPj

√
� 0,

where M→∞. Hence, the proof of the theorem is
completed.Until now, the proof of Theorem three is finished.
When H and E are fixed and M→∞, the distribution with the
maximum probability is the true distribution.

3 EXPERIMENTS

In this section, we perform analysis of the cells’ states distribution
model, that is, Eq 26. We establish that two experiments are
conducted in order to illustrate the distribution of the BNs’ states,
which can be used to verify our conclusions. Since there are no
practical data for the state changes of the same type of cells, we
can only simulate the transformation process of these cells
through Boolean network, and then we also perform extensive
analyses of the data of the state changes of these cells.

3.1 A Boolean Network with 100 Cells
In this example, we choose the state change function [17]. While
the number of cells is 100, the number of the same Boolean is
1,000. And the Boolean network’s state change rule is illustrated
as follows:

{ x1(t + 1) � x1(t)∧ x2 (t)
x2(t + 1) � ·x2(t) , (31)

where (x1, x2) indicates the cell’s state, while x � 1 or 0, and the
function indicates the state change rule. Hence, in this example,
there are four states in 100 cells, and the state change rule is
shown in Figure 2B.
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Assume that the number of four initial states in the cells is
shown in Table 1.

From Theorem 1, we can obtain the k combinations.

k � 1000!
198!182!349!301!

� 8.584 × 10200.

We generate the particular network relationship between cells in a
random manner, where each node represents a cell, and the edge
indicates a connection between two cells. The probability of connecting
the two cells is initialized as 0.05. The indicators of the association
network between the cells are shown in the following table.

Through Figure 3; Table 2, we get the basic characteristics of this
cellular network; there are 1,000 nodes, 2,781 edges, and so on. The
visualization of the network is shown in Figure 2B. In this figure,
different colors of the nodes are expressed as different states of the cells.

When the cell states change, they will be initialized with a
random state, and the influence of states by other states is
modeled as well. Assuming that the number of identical states
between the connected cells is greater than 10, the other cells
directly skip the changed state, and switch directly to the next
state. Thus, the function Ω can be obtained as follows:

Ω � Ωe
−∑

j

1
2Mpj

(M−Mj)2

. (32)

where Ω indicates the distribution, Pi, i � 1, 2, 3, 4 is the
probability of the cells state, M is the number of cells, and Mj

is the number of jth states.
The state change rule as shown in Figure 2A demonstrates the end

state is (0, 0), meaning the cells getting the state (0, 0) twice. In
addition, the state of the cells will be randomly assigned, in Figure 2B,
and it is easy to find that when x � 50, the distribution reaches its
mode, showing that when all the states of the cells are equal, the state
in the collection of cells is the most prominent.

3.2 A Boolean Network with 150 Cells
In this example, we choose the state change function similar to the
previous reported one [12]. Here, the number of cells is 500, meaning
the number of the same Boolean is 500. Along with the Boolean
network’s state change, the mathematical rules can be formatted as⎧⎪⎨⎪⎩ x1(t + 1) � x2(t)∧ x3(t)

x2(t + 1) � ·x1(t)
x3(t + 1) � x2(t)∨ x3(t)

. (33)

where (x1, x2) mean the cell’s state, and x � 1 or 0, and the
function is the state change rule, so in this example, there are
eight states in 450 cells, and the state change rule is shown in
Figure 4B.

Assume that the number of four initial states in the cells is as
shown in Table 3.

Form Theorem 1, we can get there are about k combinations.

k � 150!
18!20!19!16!17!18!22!14!

� 8.6616 × 10367.

We generate a network relationship among cells in a random
manner, where each node represents the cell, and the edge
indicates that there is a connection between the two cells, and

the probability of connecting the two cells is 0.05. The indicators
of the association network between the cells are shown in the
following Table 4.

Through Figure 4; Table 3, we get the basic characteristics
of this cellular network; there are 450 nodes, 1890 edges, and so
on. The visualization of the network is shown in Figure 5B.
Here, different colors of the nodes are expressed as different
states of the cells.

The state change rule as shown in Figure 5A, and the end state is
(0, 0, 1), meaning the cells get the state (0, 0, 1) twice, and the state of
the cells will be randomly assigned, in Figure 5B; it is easy to find that
when x ≃ 18, the distribution reaches the peak. It means that when all
the states of the cells are equal and the number of the eight states is
approximately equal to 18, the collection of cells is the most
prominent state.

From these two experiments, we verify that the distribution of these
states is a Gaussian distribution, and these cells cannot be in the same
state when the number of cells approaches to the infinity. Thus, the
above theorems are right.

4 CONCLUSION

In this article, we study and calculate the distribution of the Boolean
networks’ states. First, we compute the probability of different BNs’
states and get the value of Ω, then we find the maximum possible
distribution of the number of BNs’ states. Furthermore, we calculate
the fluctuation of the distribution. Finally, two representative
experiments are conducted to verify the efficiency of the obtained
results. Although the real genetic networks are different from the BNs,
the theoretical and practical results in this study may be extended for
more realistic models. Since the proposed algorithm is conceptually
concise and efficient, it is highly extensible for various situations.

5 DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material; further inquiries can be
directed to the corresponding author.

6 AUTHOR CONTRIBUTIONS

XC drafted the idea. ZL did the derivation, while BR drafted the
manuscript. All authors have read through the manuscript.

7 FUNDING

This work was supported in part by National Natural Science
Foundation of China (Grant Nos. 62003273, 62073263), Natural
Science Foundation of Shaanxi Province (Grant No. 2020JQ-
217), Fundamental Research Funds for the Central Universities
(Grant No. 3102019HHZY03002).

Frontiers in Physics | www.frontiersin.org November 2021 | Volume 9 | Article 6907487

Cui et al. Determining State Distributions of Boolean Networks

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


REFERENCES

1. Ideker T, Galitski T, and Hood L. A NEWAPPROACH TODECODINGLIFE:
Systems Biology. Annu Rev Genom Hum Genet (2001) 2:343–72. doi:10.1146/
annurev.genom.2.1.343

2. Kim J, Park S-M, and Cho K-H. Discovery of a Kernel for Controlling
Biomolecular Regulatory Networks. Sci Rep (2013) 3:2223. doi:10.1038/
srep02223

3. Zhang Z, Xia C, and Chen Z. On the Stabilization of Nondeterministic Finite
Automata via Static Output Feedback. Appl Math Comput (2020) 365:124687.
doi:10.1016/j.amc.2019.124687

4. Shmulevich I, Dougherty ER, Kim S, and Zhang W. Probabilistic
Boolean Networks: a Rule-Based Uncertainty Model for Gene
Regulatory Networks. Bioinformatics (2002) 18(2):261–74.
doi:10.1093/bioinformatics/18.2.261

5. Liang J, and Han J. Stochastic Boolean Networks: An Efficient Approach to
Modeling Gene Regulatory NetworksBMC Syst Biol (2012) 6:113. doi:10.1186/
1752-0509-6-113

6. Peican Zhu P, and Jie Han J. Stochastic Multiple-Valued Gene Networks.
IEEE Trans Biomed Circuits Syst (2014) 8(1):42–53. doi:10.1109/
tbcas.2013.2291398

7. Kauffman SA. Metabolic Stability and Epigenesis in Randomly Constructed
Genetic Nets. J Theor Biol (1969) 22:437–67. doi:10.1016/0022-5193(69)90015-0

8. Kauffman SA. The Origins of Order. Self-Organization and Selection in
Evolution. Oxford University Press (1993).

9. Zhu P, Liang J, and Han J. Gene Perturbation and Intervention in Context-
Sensitive Stochastic Boolean Networks. BMC Syst Biol (2014) 8–60.
doi:10.1186/1752-0509-8-60

10. Zhu P, and Han J. Asynchronous Stochastic Boolean Networks as Gene
Network Models[J]. J Compu. Biol. (2014) 21(10):771–83. doi:10.1089/
cmb.2014.0057

11. Cheng D. Analysis and Control of Boolean Networks: A Semi-Tensor Product
Approach[M]. Berlin: Springer (2010).

12. Cheng D, and Qi H. A Linear Representation of Dynamics of Boolean
Networks. IEEE Trans Automat Contr (2010) 55:2251–8. doi:10.1109/
tac.2010.2043294

13. Li R, YangM, andChuT. State Feedback Stabilization for BooleanControlNetworks.
IEEE Trans Automat Contr (2013) 58:1853–7. doi:10.1109/tac.2013.2238092

14. Li B, Lu J, Liu Y, and Wu Z-G. The Outputs Robustness of Boolean Control
Networks via Pinning Control. IEEE Trans Control Netw Syst (2020) 7(1):
201–9. doi:10.1109/tcns.2019.2913543

15. Liu A, and Li H. On Feedback Invariant Subspace of Boolean Control
Networks. Sciece China Inf Sci (2020) 63(12):229201. doi:10.1007/s11432-
019-9869-6

16. Zhang Z, Xia C, Chen S, Yang T, and Chen Z. Reachability Analysis of
Networked Finite State Machine with Communication Losses: A Switched
Perspective. IEEE J Select Areas Commun (2020) 38(5):845–53. doi:10.1109/
jsac.2020.2980920

17. Laschov D, and Margaliot M. Observability of Boolean Networks: A Graph-
Theoretic Approach. Cambridge, U.K.: Cambridge Scientific Publishers,
Cambridge (2013).

18. Laschov D, and Margaliot M. A Maximum Principle for Single-Input Boolean
Control Networks. IEEE Trans Automat Contr (2011) 56:913–7. doi:10.1109/
tac.2010.2101430

19. Baxter RJ. Partition Function of the Eight-Vertex Lattice Model. Ann Phys
(2000) 281(1-2):187–222. doi:10.1006/aphy.2000.6010

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Cui, Ren and Li. This is an open-access article distributed under
the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Physics | www.frontiersin.org November 2021 | Volume 9 | Article 6907488

Cui et al. Determining State Distributions of Boolean Networks

https://doi.org/10.1146/annurev.genom.2.1.343
https://doi.org/10.1146/annurev.genom.2.1.343
https://doi.org/10.1038/srep02223
https://doi.org/10.1038/srep02223
https://doi.org/10.1016/j.amc.2019.124687
https://doi.org/10.1093/bioinformatics/18.2.261
https://doi.org/10.1186/1752-0509-6-113
https://doi.org/10.1186/1752-0509-6-113
https://doi.org/10.1109/tbcas.2013.2291398
https://doi.org/10.1109/tbcas.2013.2291398
https://doi.org/10.1016/0022-5193(69)90015-0
https://doi.org/10.1186/1752-0509-8-60
https://doi.org/10.1089/cmb.2014.0057
https://doi.org/10.1089/cmb.2014.0057
https://doi.org/10.1109/tac.2010.2043294
https://doi.org/10.1109/tac.2010.2043294
https://doi.org/10.1109/tac.2013.2238092
https://doi.org/10.1109/tcns.2019.2913543
https://doi.org/10.1007/s11432-019-9869-6
https://doi.org/10.1007/s11432-019-9869-6
https://doi.org/10.1109/jsac.2020.2980920
https://doi.org/10.1109/jsac.2020.2980920
https://doi.org/10.1109/tac.2010.2101430
https://doi.org/10.1109/tac.2010.2101430
https://doi.org/10.1006/aphy.2000.6010
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


APPENDIX

Logarithm Eq. 4, we can get

lnΩ � lnM! − (lnΠj Mj!)
� lnM! −∑

j
lnMj

. A1

Replacing Eq. A2 with Eq. 8, we can get
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