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We report a scheme for generation of high-order quadrature vortex states using two-mode
photon-number squeezed states, generated via the non-linear process of Spontaneous
Parametric Down Conversion. By applying a parametric rotation in the quadratures (X̂ , Ŷ ),
using a ϕ converter, the Gaussian profile of the photon-number squeezed input state can
be mapped into a superposition of Laguerre-Gauss modes in the quadratures with N
vortices or singularities, for an input state containing 2N photons, thus mapping photon-
number fluctuations to interference effects in the quadratures. Our scheme has the
potential to improve measurement sensitivity beyond the Standard uantum Limit (SQL
∝

��
N

√
), by exploiting the advantages of optical vortices, such as high dimensionality or

topological properties, for applications requiring reduced uncertainty, such as quantum
cryptography, quantum metrology and sensing.

Keywords: orbital angular momentum, photon-number squeezed states, optical vortices, structured light,
spontaneous parametric down conversion

1 INTRODUCTION

In quantum optics, a beam of light is in a squeezed state if its electric field amplitude has a reduced
uncertainty, in relation to that of a coherent state. Thus, the term squeezing refers to squeezed
uncertainty. In general, for a classical coherent state withN particles, the sensitivity of a measurement
is limited by shot noise to the Standard Quantum Limit (SQL ∝

��
N

√
). On the other hand, quantum

states, such as photon-number squeezed states, hold the promise of improving measurement
precision beyond the SQL. Squeezed states of light find a myriad of applications, such as in
precision measurements, radiometry, calibration of quantum efficiencies, or entanglement-based
quantum cryptography, to mention only a few [1–10].

An optical vortex is a singularity or zero point intensity of an optical field. More specific, a
generic Laguerre-Gauss beam of order m of the form ψ∝ eimϕe−r2 , with ϕ its azymuthal phase and
r � ������

x2 + y2
√

its radial coordinate, has an optical vortex in its center for m> 0. The phase in the field
circulates around such singularity giving rise to vortices. Integrating around a path enclosing a vortex
yields an integer number, multiple of π. This integer is known as the topological charge. There is a
broad range of applications of optical vortices in diverse areas, such as in astronomy for detection of
extra-solar planets, in optical tweezers for manipulation of cells and micro-particles, in optical
communication to improve the spectral efficiency, in Orbital Angular Momentum (OAM)
multiplexing, and in quantum cryptography to increase communication bandwidth [11–20].

In this article, we report a scheme for generation of high-order quadrature vortex states using
two-mode photon-number squeezed states generated via the non-linear process of Spontaneous
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Parametric Down Conversion (SPDC). By applying a parametric
rotation in the quadratures (X̂, Ŷ) using a ϕ converter, the
quadrature representation of the photon-number squeezed
input state can be mapped into a vortex state in the
quadratures containing N vortices or singularities, for an input
state containing 2N photons, thus mapping photon-number
fluctuations to interference effects in the quadrature, giving
rise to the emergence of a state with a well-defined number of
vortices. Our scheme has the potential of exploiting the
advantages of optical vortices, such as high dimensionality or
topological properties, for applications requiring precision
beyond the SQL ∝

��
N

√
, such as quantum cryptography,

quantum metrology and sensing.
A ϕ converter, also called mode converter, is customarily

used in classical optics to convert two orthogonal Hermite-
Gauss modes into a Laguerre-Gauss mode. The main
motivation of the present work is to explore if an equivalent
operation exists that can transform a Hermite-Gauss
quadrature representation into a Laguerre-Gauss
representation. We found such operation indeed exists. A
remarkable feature of this operation is that it can be
experimentally realized by using a balanced 50:50 beam
splitter. A key application of the scheme reported here is in
generation of photon-number squeezed states from quadrature
vortex states, by implementation of the inverse protocol.

The article is structured as follows: First, in Section 2 we
review the properties of two-mode photon-number squeezed
states such as their quadrature representation and photon-
number distribution, second in Section 3 we introduce the
concept of quadrature rotation. Next, in Section 4, we present
the quadrature representation of the rotated states in terms of
Laguerre-Gauss modes. In Section 5, we present numerical
simulations confirming the creation of N vortices for a
squeezed input state containing 2N photons. In Section 6, we
present analytical and numerical derivations for the photon-
number distribution of the resulting quadrature vortex states,
revealing super-Poissonian photon statistics. Finally, in Section
7, we present our conclusions.

2 2-MODE PHOTON-NUMBER SQUEEZED
STATE

Consider a truncated two-mode photon-number squeezed state,
produced by SPDC, in the Fock state representation of the
form [21]: ∣∣∣∣ψ〉 � D

cosh r
∑N
j�0

(tanh r)j∣∣∣∣ j〉a∣∣∣∣ j〉b (1)

where (a, b) are modes labels, D is a normalization factor and r is
the squeezing parameter. In what follows, we consider∣∣∣∣j〉a∣∣∣∣j〉b � ∣∣∣∣j, j〉. The wave-vector and polarization for each
mode will be determined by the specific type of SPDC process
and configuration being used. For example, in the case of non-
collinear type-I SPDC, the two modes would correspond to
distinct directions governed by the wave-vectors of signal and

idler photons. In order to keep our description as general as
possible, we do not limit to a particular SPDC process.

To obtain a quadrature representation of the wavefunction
for the state in Eq. 1, we use the standard representation of Fock
states ({|n〉}) in the position basis ({|x〉}) which, up to a scaling
factor, is equivalent to the Hermite-Gauss polynomial of order
n, of the form 〈x|n〉 �

����
1

π2nn!

√
Hn(x)e−(x2)/2 [24]. A 2D

representation can be obtained by ascribing orthogonal bases
({∣∣∣∣x, y〉}) to each mode, where

∣∣∣∣x, y〉 � ∣∣∣∣x〉∣∣∣∣y〉 are the
eigenvectors of the quadrature operators X̂ � â+â†�

2
√ and

Ŷ � b̂+b̂†�
2

√ , with eigenvalues x and y, respectively. Here (â, b̂)
are annihilation operators for the two modes (a, b) [24]. In
this notation, the two-mode photon-number states

∣∣∣∣nx, ny〉 can
be written in the quadrature representation as 〈x, y

∣∣∣∣nx, ny〉 ����������
1

π2(nx+ny )nx !ny !

√
Hnx(x)Hny(y)e−(x2+y2)/2 [22–25]. Using these

expressions, the two-mode photon-number squeezed input
state

∣∣∣∣ψ〉 has a quadrature representation of the
form 〈x, y

∣∣∣∣ψ〉 � ψ(x, y):

ψ(x, y) � D
cosh r

∑
j�0

N

(tanh r)j ×�������
1

π4j(j!)2
√

Hj(x)Hj(y)e−(x2+y2)/2. (2)

The quadrature representation of the input state
∣∣∣∣ψ〉 is

depicted in Figure 1B and Figure 1C. Such quadrature
representation reveals a Gaussian profile, with no vortices or
singularities for squeezing parameter r � 1. Note that the
quadrature profile is not equivalent to the transverse
profile of the beam, since X̂ and Ŷ are quadrature operators,
not transvese coordinates. Moreover, the plots in Figures 1B,C
correspond to the quadrature representation of the
wavefunction of the input state ψ(x, y), which is not
equivalent to the Wigner function in phase space. The
photon-number distribution for the input state P(n, n) �∣∣∣∣〈n, n∣∣∣∣ψ〉|2 can be calculated obtaining the well known sub-
Poissonian quantum statistics. Tracing over one mode we

obtain P(n) �
∣∣∣∣∣∣tanh rncosh r

∣∣∣∣∣∣2. Photon-number distributions for

different values of the squeezing parameter r � 1, 0.5, 0.1 are
displayed in Figure 1D, revealing thermal statistics when
tracing over one mode, while the overall photon-number
statistics for the 2-mode squeezed states is sub-Poissonian.

3 QUADRATURE ROTATION

The photon-number squeezed state depicted in Figure 1
displays a standard Gaussian profile in the quadratures
(X̂, Ŷ), with no topological charges or phase singularities. In
order to imprint a vortex in the quadratures (X̂, Ŷ), we
introduce a rotation Ĉ by an angle ϕ, represented by a
unitary operator of the form:

Ĉ � ei2ϕ[â† b̂+b̂† â], (3)
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where (â†, â) and (b̂†, b̂) are creation and destruction operators
for modes (a, b), which satisfy the standard commutation rules
[â†, â] � 1 and [b̂†, b̂] � 1. Interestingly, Ĉ is mathematically
equivalent to the unitary operator describing the action of a
beam splitter in Fock space [1], therefore it can be easily
implemented in the laboratory.

The input state transformed under the unitary operator Ĉ
becomes

∣∣∣∣ψ′〉 : ∣∣∣∣ψ′〉 � Ĉ
∣∣∣∣ψ〉, (4)

which represents a rotation of the quadrature by an angle ϕ. In the
Heisenberg picture, considering standard commutation rules for
creation and annhiliation operators, we obtain the following
expression (see Appendix A):∣∣∣∣ψ′〉 � D

cosh r
∑
j�0

N

(tanh r)j ×

( â†�
2

√ + i
b̂
†�
2

√ )j( b̂
†�
2

√ + i
â†�
2

√ )j

|0, 0〉 (5)

By a binomial expansion in Eq. 5 we obtain:∣∣∣∣ψ′〉 � D
cosh r

∑
j�0

N

Ar,N
j ×

∑
k�0

j ∑
l�0

j

Bϕ
k,lC

Nj
kl

∣∣∣∣ j − (l − k), j + (l − k)〉.
(6)

where D is the normalization factor. The coefficients in the sums

are of the form Ar,N
j � (tanh r)j

����
(j)!(j)!
2N

√
, Bϕ

k,l � (i2ϕ)l+k, while CNj
k,l

takes the form (see Appendix A):

CNj
lk �

�����������������(j − l + k)!(j + l − k)!√
k!(j − k)!l!(j − l)! . (7)

In order to observe the action of the rotation Ĉ in the quadratures
we turn to the quadrature representation of the transformed ket
〈x, y

∣∣∣∣ψ′〉 � ψ′(x, y).

4 LAGUERRE-GAUSS MODE EXPANSION

The quadrature representation of the rotated state ψ′(x, y)
results in:

ψ′(x, y) � D
cosh r

∑
j�0

N

Ar,N
j ×

∑
k�0

j ∑
l�0

j

Bϕ
k,lC

Nj
lk Hj−(l−k)(x)Hj+(l−k)(y)e−(x2+y2)/2, (8)

where Hj−(l−k)(x) � 〈x
∣∣∣∣j − l + k〉 and Hj+(l−k)(y) � 〈y

∣∣∣∣j + l − k〉
are Hermite-Gauss polynomials of order (j − l + k) and
(j + l − k), respectively.

It is well known that Hermite-Gauss (HG) modes with spatial
dependence Hp(x)Hq(y) may become a single Laguerre-Gauss

FIGURE 1 | (A) Two-mode photon-number squeezed input state
∣∣∣∣ψ〉. (B,C) Quadrature representation of input state (not Wigner function) displaying a Gaussian

profile with no vortices or singularities, for squeezing parameter r � 1. (D) Photon-number distribution for different values of squeezing parameter r � 1, 0.5,0.1, revealing
thermal statistics by tracing over one mode (see text for details).
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(LG) mode of order Lp−qq (x2 + y2) provided a phase change of π/2
in the mode profile is achieved [11]. Such Laguerre-Gauss mode is
associated with a quadrature vortex number of (p − q) [16, 21–24,
26–34].

By choosing the rotation parameter ϕ � π/4, we may obtain
the required phase change to convert the Hermite-Gauss modes
into a single Laguerre-Gauss mode. By relabeling the indices
(l − k) � m, with m � 0, . . . ,N/2, we note the quadrature profile
can be written as a sum of products of HG modes of the form
Hj−m(x)Hj+m(y). Selecting ϕ � π/4, the quadrature profile can be
written in terms of LG modes of the form L2mj−m(r2), thus resulting
in a superposition of LG modes of order 2m in the quadrature
representation.

5 NUMERICAL RESULTS

To explore the resulting mode-profile in the quadrature (X̂, Ŷ),
we performed numerical simulations for a superposition of LG
modes of the form:

ψLG(x, y) � 1
cosh r

∑
j�0

N ∑
m�0

j

Ar,N
j CNj

kl ×

L2m
j−m(x2 + y2)e−(x2+y2)/2, (9)

where r is the squeezing parameter and the coefficients take the

form Ar,N
j � (tanh r)j

����
(j)!(j)!
2N

√
, CNj

lk �
����������
(j−l+k)!(j+l−k)!

√
k!(j−k)!l!(j−l)! .

We performed numerical simulations in the quadrature for
different values of squeezing parameter r, and different values of
photon-number N. The results are depicted in Figure 2 and
Figure 3. The main result we observe is that, for a sufficiently
small squeezing parameter r, the resulting quadrature profile
exhibits N/2 vortices for an input state with N/2 photons per
mode. In this way, we have mapped the reduced uncertainty in
photon-number in Fock space, to a reduced uncertainty in
vortex-number in the quadrature.

5.1 Dependence on Squeezing Parameter r
In order to better understand the impact of the squeezing
parameter r in the formation of vortices in the quadrature, we
performed numerical simulations for different squeezing
parameters, and for different total number of photons N. This
is displayed in Figures 2A–F. Figure 2 left column corresponds
to N � 2 total photon number and right column corresponds to
N � 4 total number of photons. Different rows in decreasing
order correspond to squeezing parameters r � 1, 0.5, 0.02.
Numerical simulations clearly reveal that vortices are formed
as r decreases, thus as the uncertainty in photon-number
decreases, as expected. Thus confirming that the reduced

FIGURE 2 | 3D plots of amplitude
∣∣∣∣ψLG(x, y)

∣∣∣∣ for resulting Laguerre-Gauss mode in the quadrature representation, depicting the impact of the squeezing parameter
r on the formation of vortices, for different values of squeezing parameter r and total photon-number N. Insets correspond to phase profiles

∣∣∣∣ϕLG(x, y)∣∣∣∣ for resulting
Laguerre-Gauss mode revealing vortices or singularities in the quadratures (not in the transverse profile of the beam). (A) N � 2, r � 1, (B) N � 2, r � 0.5, (C) N � 2,
r � 0.02, (D) N � 4, r � 1, (E) N � 4, r � 0.5, (F) N � 4, r � 0.02. As the squeezing parameter decreases, the formation of N/2 vortices in the quadratures becomes
apparent (see text for details).
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uncertainty in Fock space is mapped to reduced uncertainty in
vortex number, in the quadrature.

5.2 Dependence on Photon-Number N
To confirm the viability of generation of high-order vortex states
in the quadratures we performed numerical simulations for larger
total number of photons (N > 2). This is depicted in Figure 3, for
a squeezing parameter r � 0.02. Figures 3A–F display plots of
phase profile associated with ψLG(x, y), calculated via

ϕLG(x, y)� tan−1[I[ψLG(x,y)]
R[ψLG(x,y)]], for N/2 � 3, 4, 5, 6, 7, 8 input

photons per mode, further confirming the azymuthal charge
and vorticity in quadrture space increases with the number of
photons. Insets display 3D plots of mode amplitude

∣∣∣∣ψLG(x, y)
∣∣∣∣.

As predicted, in all cases the number of vortices is equal to thel
number of photons per mode N/2 in the initial 2-mode photon-
number squeezed state containing N photons, thus confirming
the mapping of photon-number in Fock space to quadrature
vortex-number in quadrature.

6 PHOTON-NUMBER DISTRIBUTION OF
QUADRATURE VORTEX STATES

The generation of vortices in the quadrature can be considered an
interference effect arising from photon-number fluctuations, therefore
it is expected that the photon-number distribution should be modified
for quadrature vortex states. To further confirm that photon-number
fluctuations are mapped into interference effects in the quadratures,
resulting in the emergence of vortices, for a two-mode photon-number
squeezed input state, we calculated the photon-number distribution
for the resulting vortex states P(n1, n2) �

∣∣∣∣〈n1, n2∣∣∣∣ψ′〉|2. Using
orthogonality of Fock states, the sums in Eq. 6 collapse into a
single sum, of the form:

P(n1, n2) �
∣∣∣∣∣∣ D
cosh r

∑n1+n2
k�0

AN ,r
n1 ,n2

Bϕ,k
n1 ,n2

CN,k
n1 ,n2

∣∣∣∣∣∣2, (10)

where AN,r
n1,n2 � tanh(r)n1+n22

�����������
(n1+n2)!(n1+n2)!

2N

√
, Bϕ,k

n1 ,n2 � (i2ϕ)2k+n2−n1
2 ,

and CN ,k
n1 ,n2 results in:

CN ,k
n1 ,n2

�
��������(n1)!(n2)!

√����������������������������
k!(n1+n22 − k)!(k + (n2−n1)

2 )!(n1 − k)!√ . (11)

Equation 11 reveals the photon-number fluctuations which give
rise to the emergence of vortices. Numerical results for the
photon-number distributions of quadrature vortex states are
presented in Figure 4 and Figure 5, confirming the predicted
photon-number fluctuations and super-Poissonian statistics.

In order to further illustrate the photon-number imbalance
between the two modes, introduced by the rotation in the
quadratures, we performed numerical simulations for the two-
mode photon number distribution P(n1, n2) for vortex states,
taking n1 ≥ n2 and a truncation parameter of N total photons in
the two-mode state, for a rotation parameter ϕ � π/4. Numerical
results for different squeezing parameter values are displayed in
Figure 5: (a) N � 6 and r � 1.0, (b) N � 6 and r � 0.5, (c) N � 10
and r � 1.0, (d) N � 10 and r � 0.5. For a sufficiently large
squeezing parameter, the photon-number distribution peaks
for n1 � n2 ≈ N/2.

7 DISCUSSION

We presented a scheme for generation of high-order quadrature
vortex states starting from a two-mode photon-number squeezed
state generated via the non-linear process of Spontaneous
Parametric Down Conversion (SPDC). By applying a
parametric rotation in the quadratures (X̂, Ŷ) using a ϕ
converter, the quadrature representation of the photon-
number squeezed input state is transformed into a high-order
quadrature vortex state, with N vortices, for an input state
containing 2N photons, thus mapping the fluctuations in
photon-number to interference effects in the quadrature as

FIGURE3 | Phase profile
∣∣∣∣ϕLG(x, y)∣∣∣∣ of resulting Laguerre-Gauss quadrature representation for a squeezing parameter r � 0.02, exploring the impact of the photon-

number (N/2 per mode) in the formation of vortices. Insets correspond to amplitude plots
∣∣∣∣ψLG(x, y)

∣∣∣∣. The numerical results confirm creation of N/2 vortices for N total
input photons. (A) N/2 � 3, (B) N/2 � 4, (C) N/2 � 5, (D) N/2 � 6, (E) N/2 � 7, (F) N/2 � 8, with N/2 input photons per mode (see text for details).

Frontiers in Physics | www.frontiersin.org June 2021 | Volume 9 | Article 6907215

Puentes and Banerji High Order Vortex States

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


FIGURE 4 | Photon-number statistics P(n1 , n2) for quadrature vortex states considering n1 � n2 and a truncation parameter given by N photons per mode. Left
column N � 5 and ϕ � π/4, right column N � 10 and ϕ � π/4. Different rows correspond to squeezing parameters (A) r � 1.0, (B) r � 0.5, (C) r � 0.1, (D) r � 0.2, (E)
r � 0.1, (F) r � 0.05. The photon-number fluctuations due to quadrature vortex formation is revealed (see text for details).

FIGURE 5 | Numerical simulations of photon-number statistics P(n1 , n2) for quadrature vortex states, taking n1 ≥ n2, and a truncation parameter given by N total
photons in the two-mode state, for a rotation parameter ϕ � π/4. Numerical results are displayed in Panel 5 for: (A)N � 6 and r � 1, (B)N � 6 and r � 0.5, (C)N � 10 and
r � 1, (D) N � 10 and r � 0.5. The photon-number distribution peaks at n1 � n2 ≈ N/2.
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depicted by optical singularities with zero-point intensity and
singular phase. Furthermore, we obtained analytical and
numerical expressions for the super-Poissonian photon-
number statistics and fluctuations, giving rise to vortex
formation in the quadratures.

Vortex states are customarily generated using various tools,
such as Dove prisms, spiral plates, fork holograms, or
astigmatic mode converters such as a cylindrical lenses. The
important distinction is that these operations act on the
transverse profile of the input beam. In the context of the
present article, the rotation is performed on the quadrature
representation of the state, which can be readily implemented
in the lab by a balanced beam splitter. A key application of
our scheme is in generation of two-mode photon-number
squeezed states from two-mode quadrature vortex states, by
implementing the inverse protocol.

Our scheme has the potential of exploiting the advantages of
optical vortices, such as high dimensionality and topological
properties, for quantum applications requiring squeezed
uncertainty beyond the SQL limit (

��
N

√
), such as quantum

cryptography, quantum metrology and quantum sensing
[35–42].
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APPENDIX A

The starting point of the derivation is Eq. 5, which defines a π/4
mode converter:

Ĉ � 1
2
(â†b̂† + â†b̂

†) (12)

where â†(b̂†) are the bosonic mode operators acting on
orthogonal modes and follow regular bosonic commutation
relations. Also, let us consider the initial state of the two mode
system to be the following∣∣∣∣ψ〉 � ∑

j

Aj

∣∣∣∣ j〉a∣∣∣∣ j〉b (13)

The above describes a general two-mode state in the Fock basis
with total number of particles N distributed between the two
modes. Now Eq. 13 can be written in terms of the mode operators
as follows ∣∣∣∣ψ〉 � ∑

j

Aj(â†)j(b̂†)j ∣∣∣∣0〉a∣∣∣∣0〉b (14)

where it is understood that the operator â†(b̂†) acts on mode∣∣∣0〉a(∣∣∣0〉b). We want to find how the state
∣∣∣∣ψ〉 transforms under

the action of Ĉ. Moving to the Heisenberg picture, the mode
operators â†(b̂†) evolve under Ĉ as

â† → exp (i2ϕĈ)â† exp (−i2ϕĈ†) (15)

Using the Baker-Hausdorff lemma, we can write Eq. 15 as follows

exp(i2ϕĈ)â† exp (−i2ϕĈ†) � â† + i2ϕ[Ĉ, â†]+ (16)(i2ϕ)2
2!

[Ĉ, [Ĉ, â†]] + . . . (17)

Solving for the commutators, we see that [Ĉ, â] � −b̂†/2 and.
Plugging these values back into Eq. 16, we see that we can group
the terms as

â† (1 − (ϕ)2
2!

+ . . .) − ib̂
† (ϕ − ϕ3

3!
+ . . .)

� â† cosϕ − ib̂
†
sinϕ (18)

Now for a π/4 mode converter, we put ϕ � π/4 resulting in the
transformation

â† → 1�
2

√ (â† − ib̂
†) (19)

and similarly for b̂
†
. Therefore, Eq. 14 is transformed to∣∣∣∣ψ〉v � ∑
j

Aj(â† + ib̂
†)j(b̂† + iâ†)j ∣∣∣∣0〉a∣∣∣∣0〉b

under the effect of the π/4 mode converter. It is understood in
Eq. 20 that factors 1/

�
2

√
have been absorbed into Aj.

Equation 6 follows from here by a binomial expansion of
the terms.

Frontiers in Physics | www.frontiersin.org June 2021 | Volume 9 | Article 6907219

Puentes and Banerji High Order Vortex States

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles

	Generation of High-Order Vortex States From Two-Mode Squeezed States
	1 Introduction
	2 2-Mode Photon-Number Squeezed State
	3 Quadrature Rotation
	4 Laguerre-Gauss Mode Expansion
	5 Numerical Results
	5.1 Dependence on Squeezing Parameter r
	5.2 Dependence on Photon-Number N

	6 Photon-Number Distribution of Quadrature Vortex States
	7 Discussion
	Data Availability Statement
	Author Contributions
	Funding
	References
	APPENDIX A


