AUTHOR=Prakash Saripalli Bhanu , Singh Gagan , Singh Sonika TITLE=Modeling and Performance Analysis of Simplified Two-Diode Model of Photovoltaic Cells JOURNAL=Frontiers in Physics VOLUME=9 YEAR=2021 URL=https://www.frontiersin.org/journals/physics/articles/10.3389/fphy.2021.690588 DOI=10.3389/fphy.2021.690588 ISSN=2296-424X ABSTRACT=

For a quick and consistent photovoltaic (PV) module design, an effective, fast, and exact simulator is crucial to examine the performance of the photovoltaic cell under partial or quick variation of temperature and irradiance. The most prevalent modeling strategy is to apply an equivalent (electrical) circuit that encompasses together non-linear and linear mechanisms. This work proposes the modeling and analysis for a four-parameter two-diode photovoltaic cell model based on the manufacturer's data-sheet. The proposed model needs only four parameters compared to the previously developed seven-parameter two-diode model to reduce the computational complexity. To develop a specific model of photovoltaic cells, the fundamental requirement is the data of temperature and irradiance. The variation of these variables totally affects the output constraints like current, voltage, and power. Thus, it is substantial to design a precise model of the photovoltaic cell module with a reduced computation period. The two-diode photovoltaic module with four constraints is identified to be more accurate and have improved performance compared to a one-diode model particularly at lower irradiance. To confirm the accuracy of the proposed model the method is applied on two different photovoltaic modules. The proposed model and modeling method are helpful for power electronic designers who require a fast, accurate, simple, and easy to implement method for use in photovoltaic system simulation. The electrical equivalent circuit and standard equations of photovoltaic cells are analyzed and the proposed two-diode model is simulated using MATLAB/Simulink software and validated for poly-crystalline and mono-crystalline solar cells under standard test conditions.