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An important question in the theory of fracture is what kind of lifetime distributionsmay exist
for materials under load. Here, this is studied in the context of a one-dimensional fracture
model with local load sharing under a constant external load, “creep.” Simulations of the
system with Weibull distributed initial lifetimes for the elements show that the limiting
distribution follows from extreme statistics and takes the Gumbel form eventually, with
longer and longer crossovers in the system size from aWeibull-like distribution, depending
on the initial Weibull exponent.
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1 INTRODUCTION

The statistics of strength is a classical problem in statistical fracture mechanics and is also realized to
be very closely related to concepts in statistical physics such as percolation and scaling [1–3]. The
main mathematical tool of the statistics of extremes [4] may be translated into the language of
renormalization: the classes of limiting distributions, their basins of attraction, and the rate of
convergence with increasing sample size [5, 6]. Another example of the close relationship arises from
the depinning of cracks and the finite-size corrections and scaling of the critical stress or sample
strength.

In brittle fracture, simple models have brought together a comprehensive understanding of the
predictions of statistical physics [7]. This concerns the role of disorder, the phase diagrams for the
statistics, and the interaction of cracks with disorder. An important point is the role of loading as in
tensile failure and in the propagation of cracks, the physics is different from compressive loading with
the formation of shear bands, self-averaging, and changing effective elastic interactions. Similar ideas
of scaling have also been applied to the question of fracture lifetimes [8–14]. In the case of brittle
quasi-static failure rheology or time-dependent physics being absent by definition, one can invert the
problem by simply upscaling from the representative volume—element level. Correspondingly, given
the lifetime distribution with a certain local stress (history), the exercise becomes to understand how
or when a bigger sample fails taking into account the interactions (load sharing) in the sample.

The goal of this note is to study a typical model of the time-dependence of fracture. We start
from an initially Weibull-like microscopic failure time distribution and evolve it using local
load sharing (“growth of microcracks”). The setup is that of creep under a constant load applied
to the system. The main features of this model are the quasi-brittle behavior of the
elements—constant load-carrying capacity—until failure and the lack of plasticity or the
irrelevance of strain as a quantity. Also, it assumes Markovian local behavior: each element
has a remaining lifetime, which depends on the local stress level, and when local stress
enhancements lead to an elevated stress, the local lifetime is consequently shortened. This
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means that the original sample-dependent element lifetime
distribution changes with element failures due to the local
stress enhancements. The process is qualitatively similar to
what happens in lattice models of brittle failure with quenched
thresholds, in that the series of element failures is dictated by
the disorder and the buildup of stresses.

The next section explains the model used. Section 3 outlines
the results, and Section 4 finishes with a brief discussion.

2 MODEL

We resort to a variant of 1D fiber bundle models with local load
sharing [15]. The main point of the dynamics is a local lifetime
rescaling rule which is defined by an exponent ρ [16–23]. In
concrete terms, this means that when one re-evaluates the
remaining lifetime ti of a fiber/element i at any time t0, it
follows the scaling

ti,new − t0 � (σ i,0/σ i,t0)
ρ(ti − t0), (1)

and this in particular applies at each fiber break; one sees that for
those fibers where the load sharing brings no increment in the
local stress, the remaining lifetime stays the same. This amounts
to a Markovian dynamics in that the past history of loading is
reflected only in the current remaining fiber lifetime. To
recapitulate, the rule accounts for the lifetimes for the
remaining lifetimes, and after each break, the load of the
broken fiber is equally divided to the nearest intact neighbors
and their lifetimes are recomputed. Then, the smallest lifetime
of the remaining ones is identified, and the current value sample
lifetime evolves to that. In the end, there will be a runaway effect

when a catastrophic crack is nucleated and starts to grow, which
is illustrated in Figure 1.

For the initial fiber lifetime distribution, we use for the same
purpose a Weibullian distribution characterized by the same
exponent ρ. Time-dependent fiber bundle models of this
type—and more complicated lattice models—have been
studied to a great detail. The main features of these are the
potential role of 2- or 3-dimensional geometry (“damage
clusters”) compared to 1 dimension—which we neglect—and
the change in the fracture characteristics with the ρ-exponent.
Obviously, a higher value of ρmakes the expected behavior more
brittle-like, whereas the opposite limit of ρ being small exhibits in
analogy to the example of the static slow fracture case features of
percolation and extensive damage, and the limiting statistics of
lifetimes becomes Gaussian.

3 RESULTS

The basic behavior behind the lifetime statistics is depicted in
Figure 1, where we show how ρ influences the localization of
damage. The figure depicts the failure time for each fiber, so there
are 1,000 (inset) and 128,000 symbols for the failure time vs.
location. For very brittle systems that fail at one point, the
symbols are very clustered and difficult to tell apart. For small
N and large ρ, the initial damage is able to localize the
development of a crack that will span the system. The
opposite case then clearly shows that the initial failures are
not determining the failure location or time: the system can
tolerate some damage. The figure also shows clearly how the finite
size, N, influences the damage and lifetime. Localization is
inhibited for smaller ρ for N large.

FIGURE 1 | Activity plots of failure: three cases of activity plots, failed element location per time step, for large systems (N � 128000), and three different values of ρ,
4, 6, and 8 (blue, red, and black symbols). The inset shows the first case for N � 1000.
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Plotting the averaged lifetimes for various N and ρ leads to
the results shown in Figure 2. We see that a semilogarithmic
plot fits the three cases so that the smallest ρ � 4 follows best this
kind of scaling, instead of a Weibullian 1/ρ-power law decay
with N. We discuss below that implication of these kinds
of data.

To this end, it is instructive to consider in detail the relation
of the weakest element and the smallest element lifetime t1, in
the system to that of the whole system, tlife. Scatter plots for

various ρ are shown in Figure 3. For each system, the tlife > t1 as
it obviously should, but the question is if these are linearly
proportional, does the original distribution of lifetimes just get
shifted by a constant factor? Except for ρ � 8, this is clearly not
the case. Thus, collective fracture dynamics plays a role for the
other ρ-values.

A further step is to fit a slope to each different data set (N)
separately. Values of (close to) unity imply such linear
proportionality between tlife and t1. For ρ � 4, this is never the

FIGURE 2 | Lifetime size effects: average lifetime tlife(N) for various ρ on a semilogarithmic scale. Color code as earlier.

FIGURE 3 | Correlations of failure times: the statistics of actual lifetimes vs. the first failure times (t1) of elements for various N and ρ.
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case; for ρ � 6, deviations start to appear forN≫ 1000; and for the
largest value of ρ, one may see at the largest system sizes that the
linearity starts to break down, as demonstrated by Figure 4.

We finally consider in detail a Gumbel-like plot of ρ � 4 data.
Figure 5 shows the data in the way that illustrates potentially
the double exponential (Gumbel) nature of the cumulative
distribution P(tlife) and its dependence on tlife and N. In
usual statistical fracture, the related dependence of the
fracture strength on applied stress is quadratic due to the

dependence of the stress intensity factor on flaw size; here,
the bulk of the lifetime distribution follows instead a linear one.
This may be argued to result from the nature of the stress
enhancement in the 1D model (crack tip stress is linearly
dependent on flaw size). For small systems and large tlife, the
linearity breaks down and instead the t1 dictates tlife (left-hand
tails of the distributions). This means that in small systems, the
large lifetimes are due to fluctuations in the system tolerance
since the weakest element is strong.

FIGURE 4 | Evolution from the Weibull distribution: the slope of tlife vs. t1 for all the data (N, ρ). Color code as before.

FIGURE 5 | Gumbel-like behavior: the cumulative lifetime distributions P(tlife ,N) for the case of ρ � 4.
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4 CONCLUSIONS

Here, we have studied the possibility of obtaining the Gumbel
distribution as the limiting behavior for a fiber bundle model of
time-dependent failure, where the microscopic distribution for
elements follows the Weibull distribution. The answer is yes, and
that is due to the impact of microcrack formation and damage
tolerance. For stronger disorder, the “samples” split into sub-
volumes where the growth of microcracks determines the local
strength in a way that makes the Weibull distribution irrelevant,
at least in the limit of large system size.

In this limit, we get the typical logarithmic behavior of the
Gumbel class in regard to the scaling (decrease) of the lifetime
with system size. The shape of the distribution reflects the one-
dimensional nature of the model. It would be interesting to look
at the limit p→1, the limit of extensive damage.
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