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The issue of PM2.5 pollution has received significant attention in the literature as it has
social, economic, and political implications. Big data sets have been collected by pollution
monitoring stations (i.e., nodes) throughout the world, and this has made it possible to
quantitatively characterize the dependence of PM2.5 pollution in different regions. Here we
divide the dependency relationship into three types: association, correlation, and
causation. This study conducted such relationships using three approaches: the
random matrix theory (RMT), cross-correlation, and convergent cross-mapping (CCM).
The aim of this study is to determine the above three relationships between pollution data
from different nodes. A random matrix analysis revealed that pollutant time series are not
completely random, but are associated. Further analysis showed that PM2.5 sequences
had clear short-range correlations, yet the long-range correlations were blurred. Moreover,
at the collect level, there were no clear causalities among pollutant concentrations from
different geographical regions, regardless of distance and direction. These results indicate
that the dependence of PM2.5 pollution between different sites is complex. Nonetheless,
this comprehensive analysis based on big data provided insights into critical issues of
general interest, including pollution-induced climate change, and pollution abatement.

Keywords: timeseries analysis, correlation analysis, causation detection, PM2.5, complex systems

1 INTRODUCTION

Air quality is a significant environmental concern around the world. Air pollution and aerosols have
significant impacts on humanhealth, climates,meteorological phenomena, and the environment, andmany
studies have focused on these effects [1–4]. PM2.5, as an airborne particulate, is the deadliest form of air
pollution due to its ability to penetrate deep into the lungs and bloodstream, unfiltered [4]. This allows it to
cause permanent DNA mutations, heart attacks, and premature deaths, and lead to the deaths of three to
sevenmillion people every year [5, 6]. Moreover, the local nature of air pollutionmeans that the particle can
significantly impact temperature, precipitation, and extreme events at a regional level, e.g., aerosols affect
regional climates and ocean-atmosphere feedback [2, 7]. Thus, as Booth et al. have demonstrated,
anthropogenic aerosol emissions influence historical climate events, such as peaks in hurricane activity
and Sahel droughts [8]. Thus, scientists have developed new ways to understand the different factors that
contribute to poor air quality, and this research has been used to develop observational systems using
models and data and to assist decision makers with air quality assessments.
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To investigate these influences, Rohde et al. developed a
technique for mapping air pollution concentrations and
sources using data from monitoring stations; after studying
PM2.5 pollution in China for about four months, a short-
distance effect was found [9]. Dai et al. analyzed six pollutants
in 350 Chinese cities and found both long-term correlations and a
relationship between spatial correlations and provincial
administrative divisions [10]. Additionally, teleconnections
were found to indicate relationships between climate
anomalies at significant distances (i.e., thousands of km) [11,
12]. Moreover, Yu et al. conducted mineral analyses to
demonstrate that the long-range transport of soil particles
contributed significantly to high concentrations of PM2.5

during “dust days” [13]. Kaneyasu et al. focused on the
impacts of long-range PM2.5 transports in Kyushu area and
noticed that the PM2.5 concentration is primarily dominated
by the inflow of long-range transported aerosols [14]. Perrone
et al. demonstrated that Mediterranean sites may be affected by
long-range transported pollution, and its pollution depends on
the airflow [15]. Zhang et al. found that the strongest correlation
between winter and the PM2.5 concentration in the North China
Plain, which is mainly caused by the transport of PM2.5 [16].
Recently, numerous researchers have used network methods to
study climate and environmental issues, where nodes in the
network represent geographic coordinate sites, and cross-
correlation and mutual information about the time series of
two nodes are used to represent connected edges. And they
found that climate networks had very strong links that were
caused by a proximity (i.e., distance) effect. Namely, pairs of sites
close to each other (less than 2,000 km apart) were often strongly
and positively correlated [17–26].

Technically speaking, the association is different from the
correlation. Association means that one variable provides
information about another, but correlation means that two
variables show an increasing or decreasing trend. Correlation
means an association, but not causation. On the contrary,
causality means an association, not correlation [27]. Despite
this research, little attention was given to PM2.5 in regards to
different temporalspatial scales and causal-effect among different
sites. It was generally accepted that climate change causality
detection and human crizes had important roles in future
research on climate and environmental policies [28–30].

In order to explore the association, correlation and causality
between PM2.5 time series in different regions with the changes in
the direction and distance of the monitoring sites, we use the
RMT method to detect the association, the cross-correlation
method to measure the correlation, and finally the CCM to
understand the causality. The latter was recently developed as
a non-linear dynamics based method for ascertaining and
quantifying causal relationships between time series [30, 31].
The results of the study are as follows. First, the RMT analysis
revealed that the time series of PM2.5 at different sites is not
completely random, and there is a certain association. Secondly, a
conventional correlation analysis indicated that there is a clear
short-distance correlation between the time series from different
sites, but there is no concise and clear correlation in the long-
distance range. Finally, the analysis results of the causality

detection algorithm CCM demonstrated that at the collect
level, the causality between the PM2.5 time series of different
nodes is not obvious, and there is no distinct relationship with the
distance and direction between the sites.

2 DATA COLLECTION

Empirical big data sets were analyzed for this study. They were
obtained from global, Chinese, and American monitoring
stations. Time resolutions were given in hours, which allowed
the researchers to capture time evolutions in relation to PM2.5.
Moreover, in order to meet calculation requirements for
correlation and causality algorithms, the data was cleaned:
empty data segments were removed, it was ensured that the
length of each original time series was more than 8,760 h (about
1 y: 24 p 365), and all the time series were adjusted to have
common starting and ending points. As a result, the length,
Lh, of each time series (after the cleaning) was less than 8,760 h.
The basic statistical properties of the filtered data sets can be seen
in Table 1, where N is the number of nodes (i.e., cities, counties,
or regions) and Lh is the length of each time series in an hourly
resolution. Detailed descriptions of the different public data sets
are given below.

2.1 Global Stations
The global data was collected from [32]. It comprised names,
longitudes and latitudes, recorded times (years, months, and
hours), and PM2.5 values. The data was obtained from
December 2016 to December 2017 through a monitoring
network that operated in 632 regions (or cities) across the world.

2.2 Chinese Stations
The Chinese data was collected from [33]. It comprised names,
longitudes and latitudes, recorded times (years, months, and
hours), and PM2.5 time series. The data was obtained from
January 2015 to June 2017 through a monitoring network that
operated in 365 cities across China.

2.3 United States Stations
The American data was collected from [34]. It comprised names,
longitudes and latitudes, and PM2.5 time stamps. The PM2.5 data
was divided into two categories, firm and non-firm, and the non-
firm data was used for the analyses. The data was obtained from
January 2016 to December 2016 through a monitoring network
that operated in 137 regions (or counties) across the
United States (USA).

3 METHODS

This chapter discusses the two correlation calculation methods,
i.e., cross correlation and the RMT, which were used in this study
to determine correlations between nodes. Moreover, this chapter
discusses the causality detection algorithm, CCM, which was used
to measure causalities between the nodes. Finally, the azimuth (α)
polar coordinate system and distance (d) are discussed.
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3.1 Cross Correlation
Previous studies used cross-correlation analyses to measure
correlations between node distances [17–21]. For this study, a
cross-correlation method [18–20] was used to calculate theWmax

and hour resolution (Lh of each time series; (see Table 1). Given
~Td(h), where d was a day and h was an hour (from zero to 23),
each filtered record was defined as
Td(h) � ~Td(h) − (1/Ld)∑d

~Td(h), where Ld was the total

number of days, as shown in Table 1. For each pair of nodes,
i.e., i and j, a cross-correlation in time series was calculated as
follows.

Cd
ij(τ) �

〈Td
i (h)Td

j (h − τ)〉 − 〈Td
i (h)〉〈Td

j (h − τ)〉
σTd

i (h)σTd
i (h−τ)

(1)

where σTd
i (h) was the standard deviation of Td

i (h), τ was the time
lag with a max value of 30 days and Cd

ij(τ) � Cd
ji(−τ). Maximum

time lag was defined as τmax, with which Cd
ij(τmax) is maximum.

Then, positive link weights (Wmax) were defined as follows.

Wij
max �

Cd
ij(τmax) −mean[Cd

ij(τ)]
std[Cd

ij(τ)] , (2)

where the average was a mean and standard deviation was
denoted by “std.”

3.2 Random Matrix Theory
A challenge could arise when interpreting correlations involving
the PM2.5 time series in that the exact natures of interactions were
unknown. However, the RMT was a significant theory in data
analysis often used to extract underlying information in a time
series. Therefore, with minimum assumptions about random
Hamiltonian statistics and a real symmetric matrix with
independent random elements, the RMT was implemented to
address significant amounts of spectroscopic data in regards to
the energy levels of complex quantum systems [35, 36]. The
simplest way to determine correlations between the different time
series was to use the equal time cross correlation matrix C, which
had elements of one in that τ � 0 [37, 38].

After this was completed, the statistical properties ofmatrix Cwere
determined by employing the RMT’s processes. Following this RMT
procedure, Cwas first diagonalized and the eigenvalue λwas obtained.
Next, p(λ) was defined as an eigenvalue density as follows.

p(λ) � 1
N

dn(λ)
dλ

(3)

where N is the number of nodes (as shown in Table 1), and n(λ)
was the number of eigenvalues for C that were less than λ.

Following previous studies, it was determined that Q ≡ Ld/N
and Ld indicated the length of a time series in a day resolution.
Then, p(λ) was computed as follows.

p(λ) � Q
2πσ2

����������������(λmax − λ)(λ − λmin)
√

λ
(4)

where λmin ≤ λ≤ λmax and σ2 were equal to 1 with this
normalization. Additionally, λmax and λmin were calculated as
follows.

λmax
min � σ2(1 + 1/Q ± 2

����
1/Q√ ). (5)

It should be noted that although the RMT was a powerful method
for identifying clues to the underlying interactions of the systems,
its parameter choices differed slightly from the datasets. The basic
parameters of the RMT used in this study are listed in Table 1,
where λmax and λmin are the maximum and minimum eigenvalues
from Eq. 4 and λrealmax is the maximum eigenvalue from the
real data.

3.3 Convergent Cross-Mapping
Causality has been investigated in many studies, such as social,
economic, climatology, and gene perturbation experiments
[39–41]. Indeed, identifying causality in complex systems can be
difficult but exciting in nature, and determining causal relationships is
pertinent to many disciplines with broad applications. Traditionally,
Granger causality analyses can be used as paradigmatic frameworks to
determine such relations [39, 42]. However, Granger causality is linear
and multivariate in nature and involves statistical regression, so
various methods derived from such causality are required for
extensive data [31]. Entropy based methods result in similar
difficulties [43], but CCM [31] is based on non-linear time series
analyses [44] andwas developed to overcome these challenges. That is,
CCM is powerful for detecting and quantifying causations between
pairs of dynamic variables based on time series [31].

For this study, a phase space was developed for each variable based
on a delay-coordinate embedding method [44]. For example, for time
series x(t), the reconstructed vector X(t) �
{x(t), x(tτ), . . . , x[t(Ex − 1)τ]} was used, where τ was a delay
time and Ex was an embedding dimension. The same could be
done for time series y(t) of variable y to yield a reconstructed vector in
dimensional space Ey . The basic principle was to compare the
predictions in each subspace. Consider the pair of vectors
[X(t),Y(t)] at time t, one vector from each subspace. In
subspace Y, one could find a set of neighboring vectors for Y(t)
and identify the corresponding set in subspace X based on which one
could be used to predict the value of X(t). The difference between
X(t) and its predicted value characterized the accuracy of the

TABLE 1 | The basic properties of the three data and parameters of the RMT analyses.

Data sets N Ld Lh Q λmax λmin λrealmax References

Global 632 224 5,338 0.354 7.181 0.462 162.8 Reference [32]
China 365 906 21,728 2.482 2.672 0.133 108.04 Reference [33]
United States 137 362 8,674 2.642 2.609 0.148 9.22 Reference [34]
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prediction. Similarly, based on neighboring vectors in subspace X, a
prediction in subspace Y could be made. Comparing prediction
accuracies regarding the two subspaces could determine the causal
relationship between X and Y.

The principle underlying thismethodwas asymmetry in regards to
directional predictability. Suppose one wished to detect a causal
interaction between two subsystems with the state variables X(t)
and Y(t), respectively. Using X(t), the value of Y(t) could be
predicted, such as Ŷ(t), and correlation ρYX(t) could be predicted
between Y(t) and Ŷ(t). Similarly, using Y(t), a prediction could be
obtained for X(t), such as X̂(t), and the correlation ρXY(t) between
X(t) and X̂(t) could be calculated. If no causal relationship existed
betweenX(t) and Y(t), the predictions in both directions were even,
so statistically, the correlations ρYX(t) and ρXY(t) could not be
distinguished from each other. That is, Δ ≡ ρXY(t) − ρYX(t) � 0.
However, if X(t) was more a cause of Y(t) than the opposite, the
prediction X(t), obtained from Y(t), was better than that of Y(t)
[fromX(t)]. This was because information aboutX(t)was contained
inY(t). Thus, it was determined that ρXY(t) was greater than ρYX(t),
orΔ was greater than 0. Moreover, statistically positive Δ values could
be considered heuristic criteria for determining that the direction of
the causal interaction was from X(t) to Y(t). Likewise, if Δ was less
than 0, it indicated that Y(t) was more a cause of X(t) than the
opposite [31].

3.4 Polar Coordinate System
Generally, the polar system is a two-dimensional coordinate method
in which each point on a plane is determined by a distance from a
reference point and an angle from a reference direction. The reference
point (analogous to the origin of a Cartesian coordinate system) was
called a pole, and a ray from the pole in the reference directionwas the
polar axis. The distance from the pole was called a radial coordinate,
radial distance, or simply radius, and the angle was called an angular
coordinate, polar angle, or azimuth.

3.5 Distance
Orthodromic distance, the shortest distance between two points on
the surface of a sphere, wasmeasured along each surface. In particular,
for any two i and j points specified by ϕi, ηi and ϕj, ηj, where ϕ was a
geographical latitude and η was a geographical longitude, Δϕ and Δη
were absolute differences. The spherical law of cosines was then used
for the central angle Δσ between i and j as follows.

Δσ � arccos[sinϕi · sinϕj + cos ϕi · cos ϕj · cos(Δη)]. (6)

The distance was obtained using d � rΔσ, where r was the radius
of the sphere.

3.6 Azimuth
Azimuth, denoted as α, was defined as a horizontal angle
measured clockwise from a north base line or meridian. For
example, for reference point i with the latitude ϕi and the
longitude ηi, the azimuth of point j (ϕj, ηj) was determined
using the following equation [45].

αij � arctan⎛⎝ sin(ηj − ηi)
cosϕi tan ϕj − sinϕi cos(ηj − ηi)⎞⎠. (7)

As Eq. 7 returned a value in the range (−180+,180+), the result
was normalized to a compass bearing in the range (0+, 360+). The
transformed formula was as follows:

α̂ij � (αij + 360)%360, (8)

where% is (floating point) modulo. Then, moving clockwise in a
circle, the east, south, and west directions had azimuths 90+, 180+,
and 270+, respectively.

4 RESULTS

This section introduces the analysis results of the RMT algorithm,
cross-correlation algorithm, and CCM algorithm. First, we statistically
analyze the distribution of the direction and distance of the
monitoring stations. Secondly, the RMT algorithm is used to
calculate the association between the monitoring stations. Then,
the correlation between the stations is analyzed using the cross-
correlation algorithm. Finally, it shows the changes of CCM
causality between different sites in different directions and distances.

4.1 Empirical Statistical Characteristics
4.1.1 Distribution of Azimuth α
As aforementioned, one of the main aims of this work was to study
correlations and causalities between PM2.5 monitoring station data
sequences in different directions. Therefore, the distribution of PM2.5

monitoring site directions was significant. This section discusses the
distribution of the azimuth α. As can be seen in Figures 1A–C, the
azimuth α distribution for the three different data sets (Global, China
and the United States) had peaked at different values of α. Figure 1A
reports the four main peaks for α in the global data, which was the
largest dataset at around 45+. Most neighbors were located in the
northwest section of the region. Similarly, many neighbors were
located in the east (≈ 90+), northeast (≈ 60+), and southwest
(≈ −110+) sections.

Additionally,Figure 1B shows that cities neighboring each other in
China were generally distributed in the northeast and southwest
directions of the city. Further, Figure 1C demonstrates that the
neighboring cities in the USA United States were generally located
to the east and west. These results were in agreement with the
distributions of urban belts globally, in China, and in the
United States. It should, however, be noted that most of the PM2.5

detection sites were located in urban, i.e., densely populated areas;
PM2.5 monitoring in non-urban or sparsely populated areas was
needed. Nonetheless, this study’s examination of α distribution
diversity provided an understanding of the influence of α on the
associations, correlations and causalities of PM2.5 sequences. These
results help to understand the distribution of the direction as a whole
and avoid the deviation of the conclusion caused by the statistical
differences of the direction in the subsequent data analysis.

4.1.2 Distribution of Distance d
To study trends regarding correlations and causalities between
PM2.5 sites and the distances between the monitored locations,
the distance distributions of the sites were needed. Figures 1D,E
illustrate these distributions with distance d for the three
different data sets; it was found that there were peaks for
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different values of d. The distance distribution for the global
data set had two peaks, while the distance distributions for the
Chinese and American data sets had only one peak each. The
two peaks noted in the global site distribution (Figure 1D)
suggested that the monitoring sites were distributed throughout
two relatively concentrated places. In contrast, the single-peak
distributions of China and the United States (Figures 1E,F)
showed that the monitoring sites were relatively concentrated
and closely connected. Nevertheless, these distributions were
not perfectly bimodal or normal. One reason for this is that the
distributions of the monitoring sites conformed to non-uniform
population distributions. These results help to understand the
distance distribution of the monitoring stations, and at the same
time avoid the deviation of the conclusion caused by the
difference in distance distribution in the subsequent data
analysis.

4.2 Random Matrix Theory
The RMT was helpful for comparing the properties of a null
hypothesis purely random matrix (a strictly independent and
identically distributed random time series) to those of the
empirical correlation matrix C. Deviations from the purely random
matrix could suggest the presence of underlying interactions [37, 38].
TheRMTmethodwas thus used to study the statistical properties of C
in regards to the cross correlations of PM2.5 changes. Initially, the
elements of C were from Eq. 1 when τ � 0; then, they degenerated
into Pearson’s correlation coefficient ρ from a two-time series.Figures
2A–C demonstrates the distribution of ρ for the global, China and
United States data sets, respectively. The means, ρs, and standard
deviations, σs, of the three distributions were as follows: ρ ≈ 0.04 and
σ � 0.14 for global sites; ρ ≈ 0.11 and σ � 0.11 for the Chinese sites;
and ρ ≈ 0.04 and σ � 0.08 for the American sites. Thus, a clear
deviation could be seen between the distribution of ρ and the curve fit

FIGURE 1 | The distribution of azimuth α and distance d. (A) shows the distribution of Azimuth a for the global dataset, (B) shows the distribution of the Chinese
data set, and (C) shows the distribution of the American data set. (D) presents the distribution of distance d for the global station; (E) presents the distribution for the
Chinese station, and (F) presents the distribution for the American station.
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by the normal distribution. These results indicated that thePM2.5 time
series associations for the data were not completely random [37, 38].
Future research should investigate the causes of these non-random
associations, such as whether they were affected by climatic
conditions. These non-normal distributions suggested the existence
of non-trivial relationships between detection sites.

As aforementioned, C was diagonalized to obtain λ eigenvalues.
Finally, the distributions of the eigenvalues from the empirical time
series were considered in regards to the finite strictly independent and
identically distributed random time series. Figures 2D–F represent
the distributions of the eigenvalues of real (green bar) and random
(red bar) time series globally (d), for China (e), and for the
United States (f) with the length Ld (see Table 1). As can be seen,
there were dramatic differences between the random series and the
real PM2.5 time series. The results are qualitatively similar to those of

earlier studies about the global crude oil market and the global stock
market, in which they observed that the largest eigenvalue reflects the
collective effect of the global market, the second to fifth largest
eigenvalues can distinguish six clusters, and the smaller eigenvalues
portray the time series pair with the largest correlation coefficient
[46, 47].

Moreover, the RMT predictions indicated that the distributions of
the eigenvalues should follow the black dash line, which shows a
distinct deviation from the real PM2.5 time series but it is in good
agreement with mimic random series. This result indicates that there
are deviations in the eigenvalue distributions of the correlation matrix
from the empirical data frompurely random time series, implying that
PM2.5 time series are not purely random but with a finite amount of
association. These findings were consistent with results obtained by
examining the distribution of ρ, as shown in Figures 2A–C. However,

FIGURE 2 | The statistical properties of the cross correlation matrix C for the PM2.5 time series. (A) presents the distributions of ρ (τ � 0) for the global data, (B)
presents the distributions for the Chinese data, and (C) presents the distributions for the American data, respectively. In (D–F), the green and red bars represent the
probability distributions of the eigenvalues from the real data and the random series, respectively. The black dashed-dotted line is the theoretical result of Eq. 4.
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this work represented only a preliminary attempt to identify the
associations of real PM2.5 time series. The actual relationship may be
more complex, and the underlyingmechanism of the associations was
not within the scope of the RMT. This indicates that there is a non-
random association between PM2.5 sites, suggesting that there is some
association between our PM2.5 sequences, for example, the correlation
changes with distance [17–21]. Furthermore, future research should
focus on the time-lag cross-correlations RMT, because this method
focuses on the magnitudes of the sequence, so that the method can
quantitatively mine the long-range collective movements hidden
behind the short-range correlation features [48].

4.3 Cross-Correlation Analysis
4.3.1 Illustration of Cross-Correlation
To characterize the transport dynamics of PM2.5, this study aimed to
determine the various hidden relationships between the distinct time-
seriesmeasurement nodes. A straightforwardmethodwas used: cross-
correlation. It had been used in research on pollution transports to
detect Rossby Waves, teleconnection paths, and El Ni~no impacts
[18–20]. Relationships depended on distance, and with the growth of
distance, relationship values followed some specific features (e.g.,
monotonic decreases or increases to relation values, distances that
showed concentration values, and more). To understand the

FIGURE 3 | The correlations and polar coordinates for PM2.5 cross correlations globally, in China, and in the USA. (A) shows that cross correlations decreased with
distance, regardless of direction; correlation strength is represented by the color of the bar. (B) shows the cross correlation distributions for the random time series; a
random relationship was present between cross correlation and distance. (C) shows that cross-correlations increased with distance, regardless of direction; correlation
strength is represented by the color of the bar. (D–F) show Pearson’s correlation coefficient ρ for all possible nodal pairs worldwide, in China, and the United States,
respectively; distance is plotted on a logarithmic scale. Finally, (G–I) show the cross correlation Wmax for all possible nodal pairs worldwide, in China, and in the
United States, respectively. Angles indicate directions between pairs of nodes, and radii indicate distances between pairs of nodes on a logarithmic scale. Dot colors
show relationship values.
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relationships between distances (radial) and angles (azimuth αs) from
a site (i.e., a pole or reference point), the polar coordinate system was
employed (see Methods). For example, given the PM2.5 time series
recorded from a large number of monitoring stations (nodes) in a
given geographical region, a distance and azimuthal angle could be
calculated for each nodal pair. The value of the correlation could then
be represented in terms of color in the polar coordinates for distance
and angle.

Initially, it was demonstrated that cross-correlation was
associated with distance, as shown in panels (a), (b) and (c)
of Figure 3. Further, Figure 3Awas a representative case in which
correlation decreased with distance, regardless of direction.
Finally, Figure 3B showed correlations that were random in
regards to both distance and direction, and could have been a
result of a completely random time series. In contrast, Figure 3C
revealed that as the distance increased, the correlations between
the stations became increasingly stronger but did not suggest
differences in regards to direction. These figures thus indicated
the different types of relationships between distance and cross-
correlation.

4.3.2 Pearson’s Correlation Coefficient ρ in Polar
Coordinates
As aforementioned, one aim of this study was to detect variations in
correlations between different siteswith distance d and direction α̂ (see
Methods). Pearson’s correlation coefficient was a classic method of
measuring a correlation between two sequences. Using the method, a
distribution was thus obtained for Pearson’s correlation coefficients
(ρ) for the three different data sets in the polar coordinate system
(d, α̂). According to Figure 3D, the global data had a clear anti-
correlation between Pearson’s correlation coefficient ρ and distance d;
that is, the shorter the distance, the stronger the correlation. However,
Pearson’s correlation coefficient ρ did not have significant differences
in regards to the different directions, α̂. Similar results were observed
for both China and the United States, as shown in Figures 3E,F.
However, the anti-correlation characteristics of ρ and d for the
United States and China data were not as apparent as those in
the global data, which may have been due to a relatively small
number of observation stations in the United States and China.
In the future, more sites and further detailed data are needed to
study the relationships between ρ, α̂, and d. This result, on a
larger scale and more source data, validates the inverse
correlation between PM2.5 sequences and distances found in
previous studies [9].

4.3.3 Cross-Correlation of Wmax in Polar Coordinates
In recent climate network models articulated to study the
spatiotemporal behavior of the climate system, nodes denote
geographical coordinate sites and a link between a pair of
nodes is defined by the cross-correlation and mutual
information between the time series from the two nodes
[17–20]. Following this approach, one related type of cross-
correlation, denoted as Wmax (see Methods) was calculated:
so-called positive link weights between PM2.5 recordings and
pairs of nodes for the Lh time series. Detailed information on the
(Lh) data is shown in Table 1 and the Methods section.

As aforementioned, one goal of this study was to determine
whether there were long-range correlations between the PM2.5

recordings from the different sites. To accomplish this goal, a
polar representation of cross-correlation was used. Specifically,
for any nodal pair, the distance d and the azimuthal angle α̂ could
be defined (e.g., the zero angle 0+ meant that one node was exactly
north of another node, and 90+ indicated that one node was east
of another node). The correlation between the nodal pair was
then color coded and represented in the polar coordinates (d, α̂).

In Figure 3G and in regards to worldwide PM2.5s, Wmax

correlation values were represented by color-coded dots in the
polar coordinates. Larger values were noted for the positive link
weight Wmax at short distances (fewer than hundreds of km).
Small Wmax values were distributed approximately uniformly at
larger distances and in other directions. This phenomenon was in
agreement with climate network results and was called the
proximity (distance) effect [18–20]. Namely, pairs of sites close
to each other (fewer than 2,000 km apart) were often strongly
positively correlated [18, 21].

However, there were no long-range correlations for the PM2.5 time
series. Similar results were obtained for the China and American
PM2.5s, as shown in Figures 3H,I, respectively. While this was not
ideal, a few points had the large positive link weightWmax distributed
across a long-distance range. The reasons for these outliers were not
the focus of this paper, but future research should investigate these
anomalies with more detailed data. The phenomenon implied that
PM2.5 could not transmit at long ranges. Nonetheless, these results did
not seem to depend on the length of the time series, insofar as it was
reasonable, as shown in Figures 3G–I for the respective data sets.
Moreover, the results indicated only short-range correlations and a
lack of long-range correlations, which suggested that PM2.5 could
transport across only short distances (fewer than hundreds of km) [9].
This result was in sharp contrast, for example, to climate phenomena
in teleconnections [11, 12] and temperature [18–20]. These results
indicate that the PM2.5 sequence and the temperature etc.
meteorological sequences are different, and there is no
teleconnections. Furthermore, our results only display the lack of
long-range correlation between different sequences in the spatial
distance range, but a large number of previous studies including
detrended fluctions analysis (DFA), Detrended Cross-Correlation
Analysis (DCCA) and multifractal detrended fluctuation analysis
(MFDFA) have observed that there is a long-range correlation in
the time dimension [49–51]. Therefore, future research should pay
attention to the correlation of PM2.5 sequence at the time dimension,
so as to be able to deeply understand the trend of PM2.5. Moreover,
future research should focus more on the deeper causes of different
transmission phenomena, for example, the difference in transmission
media [52–55].

4.4 Causality Analysis
4.4.1 The Distribution of Causation Δ
Although previous research expressed non-trivial correlations
between monitoring stations in regards to distance, the detection
of causality between stations had always been a problem of great
theoretical significance and practical value [39–42]. In general,
causation and correlation are not equivalent to each other: two
time series can be highly correlated but without any causal relation
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[27]. However, this study applied CCM to the PM2.5 data to
determine the existence of causal relationships between the time
series and the different geographical locations [31]. This method is
suitable for nonlinear systems in the presence of noise [31, 56].

In particular, for a nodal pair, non-zero Δ value could indicate
a causal relationship between the PM2.5 time series. First, the
relative strength of causation Δ was computed (see Methods) for
the three datasets; their representative distributions can be seen in
Figures 4A–C. These distributions showed that the causation Δ
distribution fit the data well in regards to normal distributions of
the global, Chinese, and American data, respectively. It was found
that the means, Δs, and standard deviations, σs, of the three
distributions were as follows. Δ ≈ 0.00 and σ � 0.02 for the
global data; Δ ≈ 0.00 and σ � 0.02 for the Chinese data; and
Δ ≈ 0.00 and σ � 0.02 for the American data. These perfect
normal distributions suggested that there may be no significant
causality between the PM2.5 sequences at the collective level.
Although no clear causality was observed at the collective level,
this is a useful exploration of the causal-effect in the PM2.5

sequence data. Causality detection would have important roles in
future research on climate and environmental policies [28–30].

4.4.2 Causation Δ in Comparison to Azimuth α
In order to deeply understand the relationship between causation Δ
and direction α between PM2.5 monitoring sites, we examined the
trend of causality with the directions of the sites. It is apparent that in
all three data, causality is basically symmetrically distributed in
different directions. In particular, Figure 4D shows that the mean
value ofΔ followed the straight lineΔ � 0. This result indicated that at
the collective level, the causalities and directions between the different
PM2.5 stations were irrelevant. The dense distribution in some
directions, e.g. α ≈ 45 in Figure 4D was consistent with the
distribution characteristics in Figure 1A. Additionally, Figure 4E,F
indicated similar relationships concerning China and the
United States. It was thus concluded that there is no apparent
causal-effect trend among the different sites in the different
directions. It is apparent that one cannot simply judge the
causality of PM2.5 observation sites based on their direction.

FIGURE 4 | The causality analysis of the PM2.5 time series. (A–C) show the Δ distributions for the global, Chinese, and American stations, respectively. The bar
graph shows the distribution characteristics of the real data, and the black dotted line shows the normal fit of the curve. (D–F) show azimuth α in comparison to Δ
regarding the global, China, and American data, respectively. Finally, (G–I) compare distance d to Δ regarding the global, Chinese, and American data, respectively. The
violin plots present the overall distribution characteristics of each data group. The upper and lower ends are the top and the bottom of each violin’s distribution, and
the middle lines are the means of each violin’s distribution. The gray dots are a scatterplot of the original data.
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4.4.3 Causation Δ in Comparison to Distance d
As aforementioned, a non-trivial correlation was present between the
monitoring sites as distance d changed. This study thus investigated
causality trends between the monitoring sites and distance d.
Figure 4G revealed that as distance d changed, causation Δ was
almost evenly distributed on both sides of the central Δ � 0 axis. This
result clearly indicated that at the collective level, there were no
relations between causality and distance d. A similar result was
observed in both cases from China (Figure 4H) and the
United States (Figure 4I). Although no consistent causality was
observed at the collect level, a relative causality seemed likely at
the individual level. Future research should therefore investigate this at
the individual level, particularly the impact of PM2.5 sequence length.
This result indicates that there is no definite conclusion about the
causality and distance between PM2.5 monitoring stations, and they
should be studied separately according to the different situations of
PM2.5 stations.

5 CONCLUSION

With the development of data collection technology, more and more
studies focus on PM2.5 sequence, some studies focus on the impact of
PM2.5 sequence on climate and meteorology in some places and
periods, and others focus on the correlation of PM2.5 sequence and
distance. However, these studies rarely focus on the various
relationships of PM2.5 in a large-scale spatiotemporal range, not to
mention the causal-effect between PM2.5 sequences. We have
conducted a study of the relations of PM2.5 time series based
purely on massive data. Our statistical and nonlinear analysis of
worldwide PM2.5 time series over the period of one year leads to a
number of findings. Firstly, a randommatrix based analysis indicates
that the spatiotemporal PM2.5 data are not purely random, but with
associations. Secondly, correlation among the PM2.5 time series exists
over a short distance, which is consistent with the first finding.
However, there is lack of consistent Long-range cross correlation,
suggesting that transport of PM2.5 over long distance is complex and
changeable. Thirdly, since correlation does not imply causation in
general, a causality analysis is necessary to assess the likelihood of
Long-range transport, which we carry out by employing the nonlinear
dynamics based CCM method. The analysis reveals an unequivocal
absence of consistent indication of transport of PM2.5 over long
distance (e.g., over 1,000 km). The simultaneous absence of consistent
long-range correlation and statistical causation leads to the conclusion
that transport of PM2.5 over long distance is sophisticated and varied.

It should be noted that these analyses were only statistical.
However, for numerous pairs across a significant distance, a lack
of consistent and definitive casual relations was found (as shown in
Figures 4D–I. That is, over the given distance, the direction of causal
interaction appeared completely random, and this implied a lack of
causation in general. These findings extended prior work about PM2.5

series to a large spatial-temporal scale with causality analysis [30].
Moreover, an absence of consistent long-range transport was found
for three different data sets, both with cross-correlation analyses and
causality detection methods. This finding is promising, however, it
should be explored using other association and causal analyses as well
as different data sets.

Generally, PM2.5 pollution affects only a short distance (nomore
than several hundred km); policies should be changed to address
this. However, while this study was an empirical analysis of direct
PM2.5 time series collected from various monitoring stations, it was
only a preliminary attempt to identify the associations, correlations
and causal effects of real PM2.5 time series. Actual relationships
may be more complex, and the underlying mechanisms that cause
these relationships were not within the scope of this study. Our
results demonstrate that the randommatrix theory can also play an
important role in PM2.5 sequences. Future research should pay
more attention to the specific meaning of eigenvalues and their
corresponding eigenvectors [46, 47]. Meanwhile, the research on
magnitude based on the time-lag cross-correlations RMT is also a
very promising direction [48]. In addition, future research should
focus on the correlation of PM2.5 in the time dimension [49–51].
Moreover, this analysis did not investigate other pollutants, such as
COX , NOX , and SOX , etc [10], nor did it consider meteorological
variables, such as temperature, relative humidity, precipitation,
cloud cover, wind speed, and wind direction [57]. Additionally,
it did not conduct mineralogical composition analyses [52–55],
Total Ozone Mapping Spectrometers [54], or climate models and
biogeochemical interactions [8]. Further research should
investigate these topics and examine the role of PM2.5 in the
spread of disease, especially concerning the recent impact the
coronavirus (COVID-19) has had on the world [58].
Nonetheless, this research is significant as a basis for these
future researches.
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