AUTHOR=Yu J. S. , Zhou X. , Chen J. F. , Du W. K. , Wang X. , Liu Q. H.
TITLE=Local Shape of the Vapor–Liquid Critical Point on the Thermodynamic Surface and the van der Waals Equation of State
JOURNAL=Frontiers in Physics
VOLUME=9
YEAR=2021
URL=https://www.frontiersin.org/journals/physics/articles/10.3389/fphy.2021.679083
DOI=10.3389/fphy.2021.679083
ISSN=2296-424X
ABSTRACT=
Differential geometry is a powerful tool to analyze the vapor–liquid critical point on the surface of the thermodynamic equation of state. The existence of usual condition of the critical point (∂p/∂V)T=0 requires the isothermal process, but the universality of the critical point is its independence of whatever process is taken, and so we can assume (∂p/∂T)V=0. The distinction between the critical point and other points on the surface leads us to further assume that the critical point is geometrically represented by zero Gaussian curvature. A slight extension of the van der Waals equation of state is to letting the two parameters a and b in it vary with temperature, which then satisfies both assumptions and reproduces its usual form when the temperature is approximately the critical one.