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We consider the product of a large number of two 2 × 2 matrices chosen randomly

(with some correlation): at any round there are transition probabilities for the matrix type,

depending on the choice at previous round. Previously, a functional equation has been

derived to calculate such a random product of matrices. Here, we identify the phase

structure of the problem with exact expressions for the transition points separating

“localized” and “ergodic” regimes. We demonstrate that the latter regime develops

through a formation of an infinite series of singularities in the steady-state distribution of

vectors that results from the action of the random product of matrices on an initial vector.

Keywords: random matrices, the product of correlated random matrices, the phase structure, the main

singularities, the reflected singularities, the paradigm of complexity

1. INTRODUCTION

Products of random matrices are one of the most important subjects in the statistical physics of
disordered systems [1–8], with a large number of interdisciplinary applications [5]. The continuous
distribution of random matrices has been intensively studied in condensed matter physics, see,
e.g., references [7, 8], while biological applications typically deal with discrete sets of matrices
[9–15]. Another difference is that in the condensed-matter problems the choice of matrices in
random products is usually a random process, while for interdisciplinary applications one considers
correlations between the choice of matrices at different rounds.

In this paper, we treat the random choice of matrices type as a Markov process. Let us take
a reference vector, then consider how the reference vector changes after multiplying it by the
random product of n matrices of two types. The vector’s norm after n steps is characterized by the
Lyapunov exponent for the product of matrices, see reference [16]. In references [17, 18] we gave
the semi-analytical solution for the probability distribution for the resulting vector. We derived a
system of functional equations, and expressed the maximum Lyapunov index via the steady-state
solution of this system of equations.

Previously, a closed functional equation had been obtained in reference [19] for the
one-dimensional Ising model in a random magnetic field. Similar functional equations had been
derived also in reference [20] to describe the transmission of electrons trough a chain of disordered
random scatterers. The main difference between our model and those of reference [20] is that here
we consider a correlated choice of matrices, such that the probability of choosing of the next matrix
depends on the choice at the last step (“dynamically correlated disorder”), whereas those references
studied the case of uncorrelated choice of predefined (static) disorder. Here we identify the phase
structure of the correlated random product of matrices, and derive an exact analytical expression
for the transition points between different phases of this random product.
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Let us now set the stage and specify the model. Consider two
2 × 2 matrices M0 and M1. In this paper, we focus on the case
of real-valued matrices and vectors. Assume that at the start, we
have M1. We define the transition probabilities qij to choose the
matrix of type i = 0, 1, when at the previous round we have the
matrix of type j = 0, 1. The balance condition for the transition
probabilities reads:

q00 + q01 = 1, q10 + q11 = 1.

We choose the vector |z0〉 ≡ (x0, y0) at the start and denote the
sequence of vectors in the course of evolution as |zn〉 = (xn, yn).
We then formulate the following iteration rule to deduce zn from
the values at previous rounds:

|zn+1〉 = Min |zn〉 ≡ M|z0〉,

M =

n
∏

k=1

Mik (1)

for the in = 0 or in = 1 choices of the matrix type at the
n-th round.

It is convenient to introduce the following representation of
vector zn in terms of the polar coordinates:

|zn〉 = (evn cosαn, e
vn sinαn), (2)

where α is the angle of the vector, and v parameterizes the
norm of the vector. We assume that the norm of |zn〉 grows
exponentially with n:

〈zn|zn〉 ∼ e2Rn, (3)

Then R is identified as the maximum Lyapunov exponent of
the matrix product. The main idea of the derivation of R is to
consider a correlated random matrix product as a random walk
on a two-channel one-dimensional chain.

In addition to the calculation of the Lyapunov exponent, the
random product of matrices is characterized by the distribution
of angles αn after nth step (and in the steady state at n → ∞).
Below, we will analyze this distribution and identify the phase
transition points (depending on the switching probabilities q01
and q10) between the phases where the angles in the steady
state remain localized and those where they cover the whole
phase space.

The structure of the paper is as follows: in section 2, we briefly
overview the main analytical results of reference [17], which
will serve as the basis for the following analysis. In section 3.1,
we perform a numerical analysis for the case of non-singular
matrices. We discuss the phenomenon of emergence of “reflected
singularities” in the distribution of angles in section 3.2. In
section 3.3, we consider the case of singular matrices. Finally, in
section 4, we discuss the obtained results and present the outlook
for further studies.

2. THE KNOWN RESULTS ABOUT THE
FUNCTIONAL EQUATION

To describe the random process, we consider an ensemble of the
states. We should then look at the probability distribution for the

vector zn or, equivalently, for αn and vn. Introducing the master
equation for ρi(n,α) (where i = 0, 1) describing the distributions
of α when the matrix Mi is applied at round n, we derive the
following system of functional equations [17]:

ρ0(n+ 1,α) =
[

q00ρ0(n, f0(α))+ q01ρ1(n, f0(α))
]

f ′0(α),

ρ1(n+ 1,α) =
[

q10ρ0(n, f1(α))+ q11ρ1(n, f1(α))
]

f ′1(α),

(4)

where we define the functions fi as

fi(α) = arccos
(M−1

i )11 cosα + (M−1
i )21 sinα

√

〈α|(M−1
i )2|α〉

for (M−1
i )21 cosα + (M−1

i )22 sinα ≥ 0, (5)

and

fi(α) = 2π − arccos
(M−1

i )11 cosα + (M−1
i )21 sinα

√

〈α|(M−1
i )2|α〉

,

for (M−1
i )21 cosα + (M−1

i )22 sinα < 0, (6)

where

|α〉 = (cosα, sinα)

Assuming a steady-state distribution, we get for such a
distribution the set of functional equations

ρ0(α) = [q00ρ1(f0(α))+ q01ρ2(f0(α))]f
′
0(α),

ρ1(α) = [q10ρ1(f1(α))+ q11ρ1(f1(α))]f
′
1(α), (7)

and calculate the Lyapunov index as [17].

R = −

∫

dα[ρ0(α)g0(α)+ ρ1(α)g1(α)], (8)

where the function gi(α) is given by

gi(α) =
1

2
ln〈α|(M−1

i )2|α〉. (9)

For the case of singular matrices, we use an alternative system
of equations:

ρ0(f̄0(α))f̄
′
0(α) = q00ρ0(α)+ q10ρ1(α),

ρ1(f̄1(α))f̄
′
1(α) = q01ρ0(α)+ q11ρ1(α), (10)

where the functions f̄i are defined similarly to fi, with the
replacement of matricesM−1

i withMi:

f̄i(α) = arccos
(Mi)11 cosα + (Mi)21 sinα

√

〈α|(Mi)2|α〉

for (Mi)21 cosα + (Mi)22 sinα ≥ 0, (11)
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and

f̄i(α) = 2π − arccos
(Mi)11 cosα + (Mi)21 sinα

√

〈α|(Mi)2|α〉
,

for (Mi)21 cosα + (Mi)22 sinα < 0. (12)

Similarly, we introduce the function

ḡi(α) =
1

2
ln〈α|(Mi)

2|α〉 (13)

that determines the Lyapunov exponent, as in Equation (8).
When deriving Equations (4) and (10), we have assumed a
continuous distribution in some interval (that can be the case,
e.g., for a continuous distribution of the initial vector z0), and an
asymptotically stable distribution for the steady state.

3. THE PHASE STRUCTURE AND
SINGULARITIES

3.1. The Phase Transitions Between
Phases for Non-singular Matrices
For the non-zero transition probabilities, let us first consider the
symmetric case q01 = q10 ≡ q. Let us assume that the maximal
eigenvalue of the first matrix corresponds to the eigenvector

|α0〉 = (cosα0, sinα0) (14)

and for the second matrix to the eigenvector

|α1〉 = (cosα1, sinα1) (15)

We also denote also α0 = 2πX0 and α1 = 2πX1. For the zero
transition rate q = 0, we will have the steady-state distributions

ρ0(α) = δ(α − α0), ρ1(α) = δ(α − α1).

The main question we are going to answer is: How would
these angular delta-distributions evolve when the transition rate
is non-zero. We start by numerically solving the functional
equations for the steady-state angular distributions in the case
of non-singular matrices. We take for our numerics the two
non-commuting matrices:

M0 =

(

3. 1.
1. −1.

)

M1 =

(

0.01 1.01
1.01 0.01

)

For q≪ 1, we observe that ρ0(α) has a maximum at α0 and ρ1(α)
has a maximum at α1, i.e., the delta-distribution for q = 0 are
only slightly broadened and remain localized. For our choice of
matrices the positions of the maxima are at X0 = 0.231 and X1 =

0.785.
With increasing the transition rate q, we encounter different

situations. Let us look at the distribution ρ1(α). For the small

transition rates q, we have a peak in Figure 1. This corresponds
to the first phase. It disappears while increasing q (Figure 2), and
we enter to the second phase (see Figure 3). In the second phase
we get a wider distribution for ρ1. Thus, we observe numerically
a transition between the phases where the angular distributions
are “localized” and “de-localized” in the phase space.

We can identify the transition point between the first and
second phases. Let us assume a singularity of the distribution
ρ1(α) near the point X1,

ρ1(α) ∼
K1

|α − α1|
γ

(16)

with γ → 1 and K1 → 0 for q → 0. For q → 0, this distribution
becomes a delta-distribution, as it should:

ρ1(α) ∼
ǫ

|α − α1|
1−ǫ

∣

∣

∣

∣

ǫ→0

= δ(α − α1). (17)

For the small transition rate for almost diagonal matrices, an
exact solution with the scaling singularity has been derived in
reference [11], which supports our ansatz. Moreover, this scaling
ansatz allows for a correct solution of our functional equation
near the singularity point.

Let us denote

b0 = f̄ ′0(α0),

b1 = f̄ ′1(α1). (18)

Then we get from the second equation in Equation (7)

(b1)
1−γ = 1− q (19)

and find γ from this equation. The transition point from the
behavior by Figure 1 to the one by Figure 2 is at γ = 0,

1− q = b1. (20)

Equation (20) has a solution for

|b1| < 1 (21)

In our case, the transition point for the ρ1 is at q ≈ 0.02.
Figures 1, 2 confirm well this our findings about transition point.

Similarly, we can assume a singular behavior for the
distribution ρ0,

ρ0(α) ∼
K0

|α − α0|
γ̄
, (22)

and derive the following expression for the critical index

(b0)
1−γ̄ = 1− q. (23)

The transition point is at q = 0.62.
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FIGURE 1 | The numerical results for probability distribution of x = α/(2π ). The smooth line is ρ0 (x), the dashed line ρ1(x). (Left) q01 = q10 = 0.005, and (Right)

q01 = q10 = 0.010.

FIGURE 2 | The numerical results for probability distribution of x = α/(2π ). The smooth line is ρ0 (x), the dashed line ρ1(x). (Left) q01 = q10 = 0.015, and (Right)

q01 = q10 = 0.020.

FIGURE 3 | The numerical results for probability distribution of x = α/(2π ),

q01 = q10 = 0.03. The smooth line is ρ0 (x), the dashed line ρ1(x).

3.2. The Reflected Singularities
In Figure 1 we have single peaks for the distributions (within
our accuracy of numerics). In Figures 2, 3, we see several peaks
for ρ1, and many peaks in Figures 4, 5. Further, in Figure 5 we
observe five high and eight low peaks in ρ1. Some of the peaks
have identical locations with the peaks in ρ0, while other peaks
have independent locations.

How can we explain this phenomenon? Here, it is convenient
to use the representation of the functional equations for the
distributions that we derived for the singular matrices (it is also
applicable for the non-singular matrices). Let us look at the
distributions near the point α1 in the equation for ρ1 and near
the point α0 in the equation for ρ0. From these equations, we get
a new singularity near the point

α01 = f̄0(α1) (24)

for ρ0(α), as well as a new singularity near the point

α10 = f̄1(α0) (25)

for ρ1(α). In fact, iterating this analysis, we find singularities at
any of the points

α00..1 = f̄0(. . . f̄0(f̄0(α1))) (26)

for ρ0(α), and singularities near the points

α11..0 = f̄1(. . . f̄1(f̄1(α0))) (27)
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FIGURE 4 | The numerical results for probability distribution of x = α/(2π ), q01 = q10 = 0.060. (Left) The smooth line is ρ0(x), and (Right) the dashed line ρ1 (x).

FIGURE 5 | The numerical results for probability distribution of x = α/(2π ), q01 = q10 = 0.20. (Left) The smooth line is ρ0(x), and (Right) the dashed line ρ1 (x).

for the ρ1(α).
Consider the case of the power-law singularity addressed

above. We assume

ρ0(α) ∼
K10

|α − α10|
γ̄
,

ρ1(α) ∼
K01

|α − α01|
γ

(28)

Then we can express K01 and K10 via K0 and K1.
In Figure 2, the distribution ρ1 is just between α0 and α10.

Actually we have peaks for the mixed choice of functions f̄0, f̄1
in Equations (26) and (27); only the heights are suppressed via
higher powers of q:

K ∼ q. (29)

Let us find the reflected singularities near the point α10.
Considering

f0(α) ≈ f0(α1)+ f ′0(α1)(α − α1), (30)

we get

K01 = K1
q

f̄0(α1)1−γ
. (31)

In the same way, we get

K10 = K0
q

f̄1(α0)1−γ̄
. (32)

The distribution ρ1 is extended between α0 and α10, even after
the transition point (see Figure 3).

Then we observe a copy singularities: Further increase of
the transition rate brings to the new groups of the peaks (see
Figures 4, 5). We can identify the locations of first and second
high peaks, then the last peak in Figure 5. We have also done
numerical calculations with a different matrixM0,

M0 =

(

1.2 1.
1. −1.

)

getting qualitatively similar results.

3.3. Singular Matrices
We have done numerics for the choice

M0 =

(

3. 1.
1. −1.

)

M1 =

(

1 1
1 1

)

Let us look at f̄ ′0(α):
The singular case is described by Equation (10). Here, we have

a zero value for the derivative of f̄ ′0 (see Figure 6), so there is no
transition in the behavior of ρ1(α).
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FIGURE 6 | The function f = f̄0(x). We take a singular matrix for M1.

4. DISCUSSION

We have considered the correlated random product of two
distinct 2 × 2 matrices, establishing a rich phase structure of
the problem. We have identified the transition points between
the regimes of “localized” and “extended” behavior of the steady-
state distribution of vectors emerging after multiplying an initial
vector with an infinite random product of matrices.

Important characteristics of the system are the values of the
steady-state vector angle α for the pure case with zero transition
rates, α0 and α1, corresponding to the maximum eigenvalues of
the two matrices involved. For very weak small transition rates,
we have two singular power-law distributions, each representing
a broadened delta-function around the steady-state values α0,α1.
We assumed a scaling singularity, as was rigorously derived in
reference [10], where an exact solution for the small transition
rates was obtained for nearly diagonal matrices. Here, we have
assumed such a singular behavior for the general case of matrices
M0 andM1 that do not commute with each other.

We can define the order parameter of delocalized phase
1/ρ0(α0), 1/ρ1(α1). They are zero at localized phase, while
becoming non-zero in de-localized phase.

Introducing ansatz (16), it is straightforward to identify the
critical indices for the angular distributions. While in the related
evolution model with the fluctuating fitness landscape (which
randomly chooses one of the two landscapes) the distributions
of α in the steady state, ρ0, ρ1, are located in the interval [α0,α1],
now the distribution is non-zero outside of these intervals (see
Figure 1), with the singularities at α0 and α1.

Increasing the transition rates, we enter the phase where
ρ1 is smooth, without any singularity (see Figure 2). We have
identified the transition point between the first (“localized”)
and second (“extended”) phases. With further increasing the
switching probability, we obtain a series of new peaks, one of
them at the point near α0 (Figure 2).

What we have observed, besides the singularities at the points
α0,α1, is that there is an infinite sequence of singularities,

originating from the two original ones. We refer to these
emergent singularities as to reflected singularities. It is a general
property of functional equations of the type determining the
steady-state distributions in the present problem. We have
identified the locations of the new singularities, as well as their
scaling properties.

We note that the existence of the reflected singularities is a
general property of the functional equation, which should be
valid in the general case (even when the broadened delta-function
is not described by a scaling singularity at small q). We have
also performed the numerical calculations for the case when the
second matrix is singular. For the chosen case of singular matrix
there is no transition to the second phase.

We considered only the case of symmetric transition
probabilities. For the asymmetric case the reflected singularities
again should exist, only the phase structure will become more
complicated. We can apply our functional equation method
to solve exactly the general case of diagonal matrices product.
Here the distribution could depend on a starting choice of the
matrix The reflected singularities should present again, only
the phase structure will became more complicated. We hope
that the results reported in this paper will further stimulate the
advances in this interesting area of statistical physics, having
implications on various fields from condensed-matter physics to
biological evolution.

Let us briefly describe our simulation code. We first build our
functions f,g, and identified steady points f0(α0) = α0, f1(α1) =
α1. We consider 500 discrete values of α between α0,α1.
We considered 20,000 samples of 1,000 iterations. During any
iteration we randomly change the type of matrices, depending on
the current type.

We are grateful to I. V. Gornyi for interesting discussions and
critical remarks on the manuscript, as well as for attracting our
attention to reference [20].
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