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Collective behavior may be elicited or can spontaneously emerge by a combination of
interactions with the physical environment and conspecifics moving within that
environment. To investigate the relative contributions of these factors in a small
millimeter-scale swimming organism, we observed larval zebrafish, interacting at
varying densities under circular confinement. If left undisturbed, larval zebrafish swim
intermittently in a burst and coast manner and are socially independent at this
developmental stage, before shoaling behavioral onset. Our aim was to explore the
behavior these larvae as they swim together inside circular confinements. We report
here our analysis of a new observation for this well-studied species: in circular confinement
and at sufficiently high densities, the larvae collectively circle rapidly alongside the
boundary. This is a new physical example of self-organization of mesoscale living
active matter driven by boundaries and environment geometry. We believe this is a
step forward toward using a prominent Dbiological model system in a new
interdisciplinary context to advance knowledge of the physics of social interactions.
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INTRODUCTION

The emergence of complex collective behavior of natural and artificial motile agents has long been a
question of interest to scientists in many disciplines. The transition from disordered to ordered
collective motion can be seen across scales, from micron long bacteria and colloids, to millimeter long
ants and bees, to centimeter long crickets and bristle-bots, and even to meter-long fish and humans
[1-3]. The complex behavior of flocks of birds, colonies of ants, swarms of bees and schools of fish
emerges from the interactions of the constituent parts of the respective systems. While similarities in
the patterns that such groups produce have suggested general principles governing the self-
organization [4], it is also becoming clear that the specific patterns depend on the type of motile
agent, scale, and also the type of interaction. For example, for fluid-immersed micro-scale units such
as motile bacteria and colloids, it has become clear that mechanical interactions often mediated
through the liquid are paramount to the type of eventual patterns [5, 6]. For larger animals such as
birds, mechanics are not the only factor as others may become more prominent, e.g., visual input for
birds [7], environmental factors for bees [8], sensory stimuli or social cues for humans [9].
Despite the large effort in studying the emergence of collective motion for various motile agents,
little has been done to study how this behavior changes when the agents are confined, whether by
hard walls or soft impediments. Recent work has shown that when swimming bacteria, colloids,
spermatozoa, and even bristle-bots are placed in circular or racetrack dishes, then they will
spontaneously start to circulate [5, 6, 10-13]. Even soft confinement can lead to locust milling
[4] and human mosh pits [14]. Our approach was motivated by the need to develop a model where
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FIGURE 1 | Experimental observation of larval zebrafish

swimming collectively at various densities. (A) Schematic of
experimental set-up. (B) Image of a larval zebrafish at 6 days post-fertilization,
scale bar 1 mm. Rostral (head) is to the left. (C) 30 larval zebrafish in the
arena as captured by the camera. (D) 130 larval zebrafish in the arena. Scale
bar for C-D 1 cm.

behavior can be observed easily, which is amenable to
neurobiological perturbations, and which generates interesting
and quantifiable individual and collective behavior. In the
popular biological model organism Danio rerio, the zebrafish,
swimming is influenced by fluid mechanics as well as by
sensory stimuli [15-18]. Adult zebrafish have been studied
extensively in both individual and collective contexts [19-24].
However, at the 5days post-fertilization larval life stage, when
zebrafish are approximately 4 mm in length, before the onset of
social shoaling behavior [25, 26], they utilize different movement
patterns from adult fish. Larval zebrafish, a millimeter with 2 Ls
swimmer move in what is often termed a beat-and-glide or burst-
and-coast discontinuous manner; they swim in bouts of movement
followed by pauses [27]. This species has been extensively studied
in terms of their kinematics, neurobiology, development, and
behavior [28-32] but the individual or collective motion of
larvae in confinement has not been explored previously.

At this life stage, larval zebrafish placed in low density have a
usual social avoidance area of approximately 50 mm®
surrounding their body and will initiate escape responses to
avoid contact [33]. However, the set of observations we report
here included confinement and a range of densities where larvae
were forced to interact with others and did not permit them to
maintain their preferred social avoidance area. These “escape”
responses are short duration, high velocity movements, and can
be directed away from noxious stimuli [34, 35, 36]. Here, we
observed that when in confined environments at sufficiently high
densities, larval zebrafish may spontaneously collectively perform
a novel circling behavior or short duration “panic waves” along
the confining dish. We report conditions under which the
phenomenon of collective circling behavior may be elicited in
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larval zebrafish by use of confinement. Confined collective
motion is a new and developing area of interest in the field of
living active matter, where experiments at this scale and
intermediate Reynolds number remain rare [36].

MATERIALS AND METHODS

Animals

Larval zebrafish used in these experiments were 5 days post-
fertilization (dpf) AB wild-type (origin: ZIRC stock center,
Eugene, Oregon) reared in an incubator at 28.5°C with a 14L:
10D light cycle. Larvae were generated from an adult colony
maintained at NJIT in the Severi lab under Rutgers University-
Newark TACUC oversight, PROT0201800041.

Acquisition

High-speed videos were collected on a custom-built setup
(Figure 1A, Supplemental Table S1). A high-speed camera
(Mikrotron GmbH, Germany) attached to a rail (ThorLabs) fitted
with a 35 mm F1.4 lens (Fujinon) and an 850 nm bandpass filter
(Midwest Optical) were used to acquire images to a Dell Precision
5820 computer fitted with a frame grabber (National Instruments)
and running custom-written LabView software (National
Instruments, available upon request) saving TIFF image stacks for
each trial. Larvae were illuminated with 850 nm IR LEDs which are
not within their visible spectra (Waveform Lighting) under an acrylic
platform stabilized by Thorlabs components covered with light
diffusers (Pro Gel, B&H Photo) within a custom-built enclosure
(MiniTec Framing Systems, LLC) which was left open to room light.
Videos were acquired at 200 Hz with 1,423 ps shutter speed at 648 x
648 pixel resolution, and trials were 6,000 frames or 30 s in duration.
The same larvae were used for each trial. Videos were captured
approximately 1-5min after larvae were placed in the behavior
enclosure to allow time for acclimation following handling. Animals
were counted and added to the arena group before trial repeats
occurred at each density stage (Table 1). Animals were recorded at
room temperature during daytime in round petri dishes with 5.4 cm
diameter.

Tracking and Trajectories

To generate tracks from raw videos, we utilized trackR, an R
package written by Dr. Simon Garnier [38]. trackR is an object
tracker for R allowing users to perform multi-object video
tracking by background subtraction and adaptive thresholding.
trackR outputted object trajectories as .csv files however with
discontinuities, i.e. we could not assign particular tracks to
individual larvae. These tracks were imported to MATLAB
and plotted. To determine the distance traveled over tracks in
separate regions within the dish, tracks were imported to
MATLAB and the arena boundary and center were
determined using a custom function, with a radius of 310
pixels. The inner circle was 70% of the radius (217 pixels)
with the same center coordinates Figures 2A,B. Tracks within
those regions were segregated and distances across all tracks for a
given trial were calculated for three trials with 30 larvae and three
trials with 130 larvae over 1,497 frames of the trial. Each trial and

Frontiers in Physics | www.frontiersin.org

September 2021 | Volume 9 | Article 678600


https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles

Zaki et al.

TABLE 1 | Table of density across trial noting when circling behavior was observed.

Zebrafish Swim Collectively Under Constraints

Arena diameter (cm) Number of larvae (n) Density (larvae/cm?) Circling behavior Trials
5.4 5 0.218 not observed 5
5.4 10 0.437 not observed 5
5.4 30 1.310 observed 1/5 5
5.4 50 2.183 observed 2/5 5
5.4 70 3.057 not observed 5
5.4 100 4.367 observed 3/6 6
5.4 130 5.677 observed 8/10 10
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FIGURE 2 | Distribution of larval positions varies as a function of
distance from the arena wall. (A) Tracked trajectories for a single trial with 30
larvae. (B) Tracked trajectories for a single trial with 130 larvae. (C) Standard
deviation z-projection for the frames corresponding to A. (D) Standard
deviation z-projection for the frames corresponding to B. (E) Average gray area
of standard deviation z-projections plotted from the center of the arena to the
border of the arena for 5 trials at each density. The mean is shown in bold and the
standard error of the mean is shaded in a color corresponding to the density.
Densities tested were: 10 larvae, 30 larvae, 50 larvae, 70 larvae, 100 larvae, and
130 larvae, in the same arena. Scale bar for A-D 1 cm.

the means were plotted along with the standard error of the mean
Figure 2C. A standard t-test was applied between groups (ttest2
function in MATLAB) and p-values < 0.05 were considered
significant. The mean tangential velocities and circulating

order parameter were calculated using the trajectories from
trackR with MATLAB custom code (Figures 2D,E).

Radial Distance Measure

To determine how position varied with radial distance Figure 3E
using FIJT (NIH) and MATLAB, videos were reduced by % in FIJI
and cropped to exclude the pixels outside the arena. A standard
deviation z-projection was applied to the image stacks to create a
single image using FIJI. This process outputs a single image where
each pixel represents the standard deviation value over all images in
the stack at that particular pixel location (https://imagejdocu.tudor.lu/
gui/image/stacks#zproject). Using the MATLAB function average
radial_profile 2 (Image Analyst, Mathworks author id:31,862) the
average radial profile was calculated from a center location of each
image and plotted.

Qualitative Assessment

For determination of the circling behavior (Table 1), a pair of
qualitative assessments of the captured videos were used. First,
when watching the videos at 30 Hz playback and paying
attention to the region just inside the arena boundary, some
collective circling instances were immediately obvious based on
easily discernible rotational movement. When many
conspecifics began moving in a coordinated manner around
the edge of the dish in a single major direction, we took this to be
circling behavior. A second qualitative identifier of circling
motion was a correlate of the behavior that arises due to
fluid flow. When a significant number of the larvae are
circling near the boundary of the dish, a radial region of the
larvae within the circling ring will exhibit larvae in counter-
rotation, moving in the opposite circular direction to the major
circling direction of the outer ring. This is characterized through
the obvious lack of self-propelled movement (the larvae
themselves are static), and oftentimes a drifting motion in a
backward direction which is not a gait present in this species.
Based on our understanding of fluid motion [6], this is strongly
indicative of coordinated circling in one major direction. With
either or both of these qualifications met, we could categorize a
captured video to have circling behavior.

RESULTS

We set out to observe larval zebrafish behaving spontaneously
under confinement at various densities and to determine whether
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collective behavior emerged. Observing larval zebrafish behaving
spontaneously at varying densities, from 5 to 130 individuals, in a
5.4 cm diameter arena (Figure 1), we found the animals moved
freely within the arena in short bouts of swimming. We
systematically tested a range of densities (Table 1) and found
that at low densities the animals behaved relatively independently
of each other, though the circular wall affected their motion as
they tended to swim or stop by it more often. At high densities
however the animals exhibited a high-speed circling behavior,
with incidence increasing alongside density. At this density the
larvae are forced to interact with other larvae as well as the
boundary. The circling behavior appeared to initiate on occasions
when larvae came close to each other, producing a response in the
contacted larvae, and that the size and shape of the arena and the
interaction with the wall produced a group of larvae circling near
the edge of the arena (Figure 2, Supplementary Movie S1).
Tracking the positions of the animals confirmed there was
a propensity to spend time in the outer region of the arena in

A

900

(o]

[—

800 -| L4
700-|
600 -|
500-|

[ ]

400-|

300 -|

200~

100 . i s

[ . T T T
wo\e A\ w8 (o
ONCT W AT W
nef V20 et 120
VA 0\\(\
A

Distance traveled by all tracks by
region over trial (cm)

30 larvae 130 larvae }

0.5
0 distance from center (mm) 270 o distance from center (mm) 270

FIGURE 3| Larval zebrafish traverse space differently at different densities
when bordering the arena wall in comparison to in the center of the arena. (A)
Trajectories for a trial with 30 larvae segregated into an outer ring adjacent to the
wall (blue) and the arena center (magenta). (B) Trajectories for a trial with

130 larvae segregated into an outer ring adjacent to the wall (blue) and the arena
center (magenta). Scale bar for A-B 1 cm. (C) Summed distance traveled in cm
for alltracks in a trial. Trials with 30 larvae (open circles) were compared to trials of
130 larvae (filled circles) and wall-adjacent regions (blue) were compared to the
inner circle of the arena (magenta). Means per group are in black open circles
and error bars are the SEM. n.s. = not significant, *p < 0.05, **p < 0.01. (D-E).
Mean tangential velocity <v> versus the radial distance from the dish center for 3
trials each of n = 30 (D) and n = 130 (E) larvae.
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proximity to the arena walls (Figures 2A,B). While a
preference for the arena edges is well noted and was found
at densities of 30 or greater larvae, the distribution in spatial
position was highly biased toward the outer circumference of
the arena at higher densities (Figures 2C-E). These higher
densities of 100 larvae and greater 5.4 cm dish correlated with
more frequent observation of the circling behavior (Table 1).
We observed instances where the collective circulation slowed
down, stopped, or initiated in competing directions with one
direction of flow emerging as the dominant direction. This
needs to be explored in future work investigating the factors
that determine initiation, stopping, and direction of motion,
keeping in mind that the fish can interact with others and the
boundary not just through direct contact but also through
fluid-mediated mechanical forces.

Indeed, when the traveled distances of each tracked position
were plotted and separated into the wall-adjacent boundary
region of the arena and compared to the central inner circle
away from the boundary (Figures 3A,B), there were significant
differences in the distance traveled when comparing high and low
densities, and when comparing the two spatial regions at high
densities (Figure 3C).

We quantify the active swimming bouts of the larvae by
examining the azimuthal flow profile vi = <v-t>¢ where v
is the instantaneous larva velocity measured from the trajectories,
and t is the tangential direction at the larval position. Figures
3D,E show the profiles of v; as a function of the distance from the
dish center for three experiments each at n = 30 larvae
(Figure 3D) and n = 130 larvae (Figure 3E). The positive
direction is taken to be one with the dominant circulation
direction (clock-wise or counter-clockwise). We notice higher
V¢, especially closer to the edge, for the higher density, meaning
the larvae are moving tangentially, i.e., alongside the boundary
especially since vy is highest there. Negative v{ means counter-
rotating movement, which matches the observations. We also
calculate the vortex order parameter

_ Zilv,wt,»l/ ZiHviH -2/
B 1-2/n

0]

This parameter is used in many studies of confined collective
motion to quantify collective circulation [6, 39]. ® = 1 means the
motion is perfectly tangential/azimuthal, ® =0 means the
motion is disordered, and ® <0 means the motion is radial.
For our examples with n = 30 larvae, we get
@ = 0.0759, 0.0580, 0.0898, whereas for n = 130 larvae we get
@ =0.1295, 0.1327, 0.1120. We note that @ is higher for the
higher density cases, meaning there is more circulation in those
cases. While this is not as stong a signal as in the examples of
bacteria [39], note that larval zebrafish do not have constant
swimming speed and move in bouts.

DISCUSSION

The collective motion of animals and other active agents in enclosed
areas is an evolving but promising area of study, as is collective
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motion at the mesoscale [6, 37]. We see similarities but also
differences in the self-organization of larval zebrafish to other
types of motile agents under circular confinement. Here we refer
to collective motion simply as an emergent group behavior that only
occurs as a function of the interactions of the conspecifics and their
environment and would not occur if a single larva were in isolation
or in free space. At high densities the larval fish transition to short
bouts of circulation alongside the dish boundary and tend to be
found swimming closer to the walls than at low densities. A largely
similar circulating collective motion pattern is seen across scales
from single-cell organisms to humans when the motile units are
placed in hard or soft circular enclosures. And yet the specific
physical and neurobiological capabilities of larval fish give rise to
distinct behavior. Their individual non-uniform speeds and
preference for social avoidance may be influencing the non-
uniform circulation or “panic wave” which at times may stop or
even reverse direction. Their preferred social distancing, possible
visual cues, and fluidic interactions may influence why they can
mostly be found at a certain distance from the confining wall that
increases with density.

Unlike smaller swimmers like bacteria, algae or spermatozoa
[40], these relatively larger larval fish have more complex
individual motion patterns. They are well-studied however,
and much is known about their biology, locomotion,
individual, and social behavior. Groneberg et al.,, 2020 shows
that the preferred distance between animals changes due to early
life social interaction, and that these responses are driven by
vision and by the sensory lateral line, which senses water flow
around fishes [33]. While thigmotaxis or “wall-hugging” as a
response to anxiety-inducing stimuli has been well documented
in larval zebrafish [41], it is interesting to consider this emergent
circling behavior in the context of social anxiety caused by
crowding and confinement. It was observed in work involving
small groups of zebrafish at the same life stage with much smaller
arenas housing seven larvae at a time, that one larva in the group
could set off chain reactions of escape responses: if one animal
escaped it would collide with another setting off a domino effect
[42]. It’s possible this emergent collective circling results from
these same chains of escapes, created by the interaction with the
confinement of walls and the high density of conspecifics, which
then catalyze this circling behavior. In future work we are
interested in identifying mechanistic drivers of transitions
between states, as has been identified in other species [43].

Another interesting observation was noted just inside the
extreme edges of the arena, where immobile larvae can be seen
drifting rearwards, in counter-rotation with the adjacent larvae
circling at the dish circumference. We presume this can be
attributed to fluid flow as the animals do not appear to be
oscillating their tail or actively moving, and larval zebrafish
have not been observed to swim backward. This is reminiscent
of the collective behavior of bacteria in circular chambers where the
fluid flow disturbed by the edge-swimming bacteria pushed back
the middle-swimming ones [6]. The interaction between water flow
generated by the circling proportion of animals and the diameter
and shape of the confinement is a point of interest which we will
model and further test experimentally in the future. The study of
individual or collective animal motion at intermediate Reynolds

Zebrafish Swim Collectively Under Constraints

numbers remains underexplored. A better understanding of the
mechanisms and interactions that give rise to the confined
zebrafish collective motion will allow us to optimally direct their
behavior by designing appropriate confining boundaries.

In future work, we hope to experimentally manipulate these
various sensory inputs and systematically study the triggers for
collective circling. It is highly advantageous to develop collective
motion paradigms in a model system with an extensive genetic
and optical toolkit to allow experimenters to observe and
manipulate neural circuits [44-53]. Insects are also known to
display a transition from disordered to ordered movement with
increasing density, most famously in locusts [4]. Zebrafish sit in
an advantageous space between invertebrate models where
sensory systems may be easily perturbed to investigate
mechanisms [54], and humans which display complex
behavior but inaccesssible neurobiological underpinnings,
although techniques like fMRI permit some measurement of
individual human neural activity during complex social
decision making [9].

Here we share a new paradigm where collective motion can
be induced by confinement in a model system amenable to
genetic and neurobiological tools to investigate the underlying
neural circuits. By understanding what influences this
collective behavior and manipulating the enclosure scales
and shapes in the future, we can determine fundamental
interaction rules that could be widely applicable to other
organisms and systems.
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