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EM Estimation of the X-Ray
Spectrum With a Genetically
Optimized Step-Wedge Phantom
Mengzhou Li, Feng-Lei Fan, Wenxiang Cong and Ge Wang*

Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States

The energy spectrum of an X-ray tube plays an important role in computed tomography

(CT), and is often estimated from physical measurement of dedicated phantoms. Usually,

this estimation problem is reduced to solving a system of linear equations, which

is generally ill-conditioned. In this paper, we optimize a phantom design to find the

most effective combinations of thicknesses for different materials. First, we analyze the

ill-posedness of the energy spectrum inversion when the number of unknown variables

(N) and measurements (M) are equal, and show the condition number of the system

matrix increases exponentially withN if the transmission thicknesses are linearly changed.

Then, we present a genetic optimization algorithm to minimize the condition number of

the system matrix in a general case (M < N) with respect to the selection of thicknesses

and types of phantom materials. Finally, in the simulation with Poisson noise we study

the accuracy of the spectrum estimation using the expectation-maximum algorithm.

Our results indicate that the proposed method allows high-quality spectrum estimation,

and the number of measurements is reduced over two thirds of that required by the

widely-used method using a phantom with linearly-changed thicknesses.

Keywords: spectrum estimation, genetic algorithm, X-ray spectrum, transmission measurement,

polychromatic reprojection

1. INTRODUCTION

Knowledge of the X-ray spectrum plays an important role in all X-ray imaging tasks; e.g., dose
calculation [1, 2], dual-energy material decomposition [3], artifacts correction [4], and X-ray
detector performance evaluation/calibration [5]. In some cases of a low X-ray flux, the spectrum
can be directly measured with an X-ray spectrometer which utilizes energy-resolved detectors.
However, besides the cost of the instrument, direct measurement of the energy spectrum of an
X-ray source of a high flux can be complicated and difficult. It is well-known that in clinical
applications the X-ray source is operated at a relatively high tube current to reduce the scan time.
Hence, indirect estimation methods are more practical due to its simplicity. Currently, there are
mainly two types of methods for this purpose: estimation via realistic modeling of the source [6],
and spectral reconstruction from transmission measurements of calibration phantoms [7].

The modeling method can generate a precise spectrum given all specifications (such as target
material, emission angle, and filtration) of the X-ray tube based on a comprehensive physical
model of the tube, but in reality this is technically challenging, and we are usually unable to
obtain all of the specifications and other details due to the fact that the tube design is often
proprietary. Thus, estimation through transmission measurements is more frequently performed.
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A set of calibration materials with known attenuation properties
and thicknesses can be utilized to generate projection data. Then,
a group of linear equations of spectral parameters are given
based on a discrete polychromatic forward model. The spectrum
is finally reconstructed through iterative optimization with
regularization [8–10]. This inverse problem is ill-conditioned and
even under-determined due to the high dimensionality of the
continuous spectrum, making the solution intrinsically unstable.
To stabilize the spectral estimation, different techniques were
proposed, including a limited-variable representation [11, 12]
and mode-combination [13].

In this paper, we focus on reducing the ill-posedness of
the problem by improving data quality [14, 15] for estimation
robustness, which is complementary with the model-based
methods [8, 10, 13, 16]. In practice, aluminum (Al) and
polymethyl methacrylate (PMMA) are the most common
materials used for spectrum estimation. Step-wedge phantoms
or slabs made of those materials are often used to form
representative attenuating paths. The measurement process
usually involves tens of combinations and takes a long time.
However, more combinations do not necessarily reduce the
ill-posedness of the problem due to insignificant changes in
projection data since small thickness variation of light materials
leads to similar attenuation curves. Thus, the investigation for
the most effective combinations of different materials and their
thicknesses would alleviate the ill-posedness and be beneficial
for increased spectrum estimation accuracy with a decreased
number of measurements. Here we therefore search for an
optimal combination of material types and thicknesses in the
set of Al, PMMA, copper (Cu), and iron (Fe). Specifically, we
use the Genetic Algorithm (GA) to minimize the condition
number of the system matrix and offer guidelines for effective
spectral estimation of an X-ray tube. In a simulation study
with Poisson noise, we compare the quality metrics of spectrum
estimations using our method with the optimized phantom and
the conventional method with a linear slab phantom.

2. METHODS

2.1. Measurement Model
Given an X-ray source spectrum distribution S(E) and a
detector spectral response D(E), the transmission signal can be
formulated as

Ii =
∫

E
D(E)S(E) exp

[

−liµi(E)
]

dE, (1)

where Ii represents the intensity of the i-th measurement, and
li and µi(E) are the corresponding total path length and linear
attenuation coefficient of the involved material, respectively.
After flat-field correction and combination of S(E) and D(E) for
a normalized spectrum

W(E) = S(E)D(E)
∫

E S(E)D(E)dE
, (2)

we can express Equation (1) as

pi =
∫

E
W(E) exp

[

−liµi(E)
]

dE. (3)

WithM measurements, a set of linear equations can be obtained
from Equation (3) after evenly discretizing the spectrum into
N bins,

pi =
N

∑

j=1

e−liµijwj, i ∈ {1, . . . ,M}, j ∈ {1, . . . ,N} (4)

where µij denotes µi(Ej), which is the attenuation coefficient
within the energy bin. In the matrix form, Equation (4) becomes

p = Aw (5)

where A ∈ R
M×N with each element aij = e−liµij being positive,

p =
[

p1, p2, . . . , pM
]T
, and w = [w1,w2, . . . ,wN]

T .

2.2. Condition Number With Large N
In conventional practice, the measurements are conducted with
a set of attenuation slabs with linearly-changed thicknesses.
However, this linear arrangement is not optimal and could lead to
the explosion of the condition number of the system matrix A as
the number of unknowns becomes large, while a large condition
number means an instability of the solution to the system of
linear equations.

Let us look at the simplest case ofM = N with a singlematerial
type. Suppose that the thickness of the slab for i-th measurement
is li = l0 + (i − 1)1l, where l0 is the initial thickness and 1l is a
fixed increment. The system matrix in Equation (5) becomes

A =







e−µ1l1 . . . e−µjl1 . . . e−µN l1

... e−µjli
...

e−µ1lM . . . e−µjlM . . . e−µN lM






= VD (6)

where µj stands for the linear attenuation coefficient of the
material within the j-th energy bin; V and D are respectively an
M-by-N Vandermonde matrix and a N-by-N diagonal matrix,
and defined as follows:

V =











1 . . . 1 . . . 1
x1 . . . xj . . . xN
... xj

i
...

xM−1
1 . . . xM−1

j . . . xM−1
N











D =











e−µ1l0 0 . . . 0

0 e−µ2l0 . . . 0
...

...
...

0 0 . . . e−µN l0











where xj = e−µj1l. WhenM = N, A is invertible since det(A) 6=
0. By definition, the condition number of A is

cond(A) = cond(VD) = ‖VD‖ · ‖D−1V−1‖. (7)
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Without loss of generality, let us look at the conditioning with
the infinity norm. Since the ∞-norm of a matrix is equal to the
largest 1-norm of rows, suppose that the k-th row of V has the
largest 1-norm while the k′-th row ofV−1 has the largest 1-norm,
which are expressed as

‖V‖∞ =
n

∑

j=1

∣

∣vk,j
∣

∣, ‖V−1‖∞ =
n

∑

j=1

∣

∣v′k′,j
∣

∣, (8)

where vi,j and v′i,j are elements of V and V−1, respectively. Then,

we have

‖VD‖∞ ≥
n

∑

j=1

∣

∣djvk,j
∣

∣ ≥
n

∑

j=1

dmin

∣

∣vk,j
∣

∣ = dmin ‖V‖∞ , (9)

and

‖D−1V−1‖∞ ≥
n

∑

j=1

∣

∣

∣

∣

v′k′,j
dk′

∣

∣

∣

∣

≥ 1

dmax

∥

∥V−1
∥

∥

∞ (10)

where di, i ∈ {1, 2, · · · ,N} are the diagonal elements of D, and
dmin = mini=1,...,n

∣

∣di
∣

∣, dmax = maxi=1,...,n

∣

∣di
∣

∣.
By substituting Equations (9) and (10) into Equation (7),

we obtain

cond∞(A) ≥ dmin

dmax
‖V‖∞‖V−1‖∞ = dmin

dmax
cond∞(V). (11)

Since the spectrum is fixed and l0 is a preset constant, the fraction
dmin/dmax remains almost constant asN increases (1l decreases).
Hence, the conditioning of A mainly relies on the conditioning
of V . However, the Vandermonde matrix is badly conditioned
as proven in Gautschi and Inglese [17], and the growth rate
of cond∞(V) with N is exponential, and at least O(2N), when
with positive node vectors (i.e., xi > 0 for i ∈ {1, . . . ,N}).
Thus, the condition number of A gets exponentially increased
with N. As a result, we cannot expect to infinitely increase the
spectrum estimation resolution by increasing the number of
measurements under the configuration of single material with
linearly-changed thicknesses.

2.3. Thicknesses Optimization via Genetic
Evolution
As shown in Equation (6), the arrangement for linear change
in thickness leads to a Vandermonde-like system matrix, which
is highly ill-conditioned. Hence, we are motivated to introduce
non-linearity, change the matrix form and improve the condition
number of the system matrix. Given the complexity of this
optimization problem, we use the Genetic Algorithm (GA) [18]
to search for an optimal phantom design with respective to
material types and thicknesses so that the condition number of
the system matrix is minimized. To be practical, we consider a
general case of M 6= N. In this case, the condition number is
calculated in the least square sense with the 2-norm:

cond2(A) = ‖A‖2‖A+‖2 =
σmax

σmin
, (12)

where A+ is the pseudoinverse of A, and σmax and σmin are
the maximum and minimum non-zero singular values of A,
respectively. Generally, a genetic algorithm consists of these
key steps: chromosome representation, crossover operation,
mutation operation, fitness calculation, and selection. Our
adapted genetic algorithm is described in the following.

2.3.1. Chromosome Representation
In this application, we code M thicknesses for measurement as
a vector l =

[

l1, l2, . . . , lM
]

which represents a chromosome.
Each element or gene of a chromosome is bounded within [l0, L]
(unit: cm). To ease analysis, the thickness is discretized at a high
resolution dl ≪ L. The chromosomes can be initialized with an
uniform random number generator within (l0, L), followed by
discretization and sorting in an ascending order.

2.3.2. Crossover Operation
This operation is used to increase the variability of the
chromosomes. In this operation, two randomly selected
chromosomes from the parent generation are paired to generate
two children by mixing the genes from the parents. The
generation process includes three steps: first, the positions of the
genes to be mixed are randomly selected (each gene position has
a 50% chance to be selected); then, the mixing ratio rm ∈ (0, 1)
for each selected position is uniformly and randomly generated
to mix the parent genes in the position, and two types of new

genes are generated following (1 − rm)l
{a}
i + rml

{b}
i (type-1) and

rml
{a}
i + (1 − rm)l

{b}
i (type-2) where l

{a}
i and l

{b}
i are two parent

genes; finally, two children chromosomes are generated by
replacing the genes of parent chromosomes l{a} and l{b} for each
and every selected positions with the type-1 and type-2 children
genes, respectively. The crossover operation is repeated multiple
times according to the product of a pre-defined crossover
probability and the population size. The generated children
chromosomes are added into the population after all crossover
operations are finished.

2.3.3. Mutation Operation
This operation follows the crossover stage, and increases the
gene types of the population via random modification. Each
chromosome has a same predefined probability to be mutated.
The mutation process consists of following steps: first, one
mutation position i is randomly selected for the chromosome;
then, the gene on the position li is increased or decreased with
equal possibility by a random amount, and specifically, the
change is computed as follows:

li =
{

li − (li − l0)rs(1− γ )2, for decrements;

li + (L− li)rs(1− γ )2, for increments,
(13)

where rs is a uniformly distributed random scaling factor drawn
from (0, 1) for each mutation; and γ is the generation ratio
defined by the current number of generations over the maximum
number of generations, which helps regulate the converging
behavior of the solution.
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2.3.4. Fitness Calculation
The fitness is defined by a merit function to determine the
quality of each chromosome. Naturally, we use the condition
number of the system matrix as the ruler (defined in Equation
6, calculated with l), and calculate the fitness as the negative
logarithm of the condition number. The results of the population
are then normalized to have a predefinedmean and unit variance.
The predefined target mean is a hyper-parameter. After the
normalization, the negative tail will be truncated to zero.

2.3.5. Selection Operation
After the population augmentation via crossover and mutation,
the selection operation mimics the natural selection for evolution
to control the population size to the predefined level Npop based
on the fitness of the chromosomes. The survival chromosomes
are randomly selected by repetitively spinning a weighted roulette
wheel Npop times. The weight/chance of a chromosome being
selected is defined as the fitness of the chromosome over the
sum of all fitness of the population. Note that the fitness of the
best chromosome is enlarged by several folds (a preset hyper-
parameter) before the selection, to adopt the elitism strategy.
The thicknesses coded in chromosomes are also sorted in an
ascending order after each selection operation to fix the disorder
caused during crossover and mutation.

After the chromosome initialization, the genetic operations
(crossover, mutation, fitness calculation, and selection) are
iterated to reach the maximum number of generations. Then, the
best quality solution can be found in the youngest generation.
Again, the hyperparameters include the maximum number of
generations, the population size, the crossover probability, the
mutation probability, the population mean of fitness to be
normalized to, and the boosting factor for best chromosomes.

2.4. Spectrum Reconstruction via

Expectation-Maximization
The expectation-maximization (EM) algorithm is widely used
for the spectrum estimation to overcome the illness of the
problem. It is well-known that the EM method converges to
the solution that minimizes the Kullbeck-Liebler distance in the
measurement domain. For the problem described in Equation
(5), the multiplicative update equation is as follows:

w
(k+1)
j =

w
(k)
j

∑

M aij

∑

M

aijpi
∑

N aij′w
(k)
j′

(14)

The EM method inherently guarantees a positive spectrum
if the initial guess is positive. However, it cannot recover
fine details of the spectrum without proper initialization, e.g.,
missing/distorting characteristic lines, as suggested in Sidky
et al. [14]. Hence, we incorporate the positional information
of characteristic lines into the initialization for improved
performance of the EM estimation.More specifically, all elements
of an initial vector are set to 1 except for a few different positive
values at the positions of tungsten characteristic peaks.

20 40 60 80 100 120

10
0

10
2

10
4

Al

PMMA

Cu

Fe

FIGURE 1 | Spectral linear attenuation coefficients of Al, PMMA, Cu, and Fe,

respectively.

3. EXPERIMENTS

3.1. Thickness Optimization
In this study we limit our scope to measurements with a
single material type, as in practice it is common to perform
measurements on one step wedge made of the same material.
Although a phantom made of multiple materials may improve
the condition number of the systemmatrix, it will be complicated
and expensive. To optimize the combination of thicknesses for
spectrum estimation, we evaluated each type of the commonly
available materials including PMMA, Al, Fe, and Cu. The
thickness range was set to [0.02, 10], in the unit of cm, which
is practically feasible. The thickness range was discretized at
the step of 0.001 cm. The spectral linear attenuation values of
the materials were obtained from the database established by
National Institute of Standards and Technology (NIST) [19], and
are plotted in Figure 1. The values at energy points between
the NIST data points were interpolated via log-log cubic-spline
fitting, in the same way NIST used for interpolation from
measured and calculated data points [20]. Without loss of
generality, we considered the spectral range (10, 120 keV) for
typical medical CT, with a relatively coarse resolution of 5 keV
(i.e., N = 22), and used the mean attenuation value within
the energy window of each bin for further calculation. The
hyperparameters were empirically set as follows: the maximum
number of generations as 500, the population size of 1,000, the
crossover probability of 0.65, the mutation probability of 0.1, the
target distributionmean of 10, and the best fitness boosting factor
of 13. In this scenario, an exemplary cost-generation curve during
the search for the optimal solution is shown in Figure 2, with
the thickness range of [0, 5] and Al as the phantom material.
The smooth convergence of the population average cost and
the lowest cost solution from the population demonstrates the
appropriateness of the hyperparameter settings.

3.1.1. Stability of the Optimization Performance
We first tested the stability of GA with 200 repetitions of the
searching procedure for an optimal set of thicknesses within
the range of [0, 5] with nine measurements. One additional
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open beam (zero thickness) measurement was also included,
making the total number of measurements M = 10. The test
was conducted with each of the four material types. The results
from 200 randomly initialized runs show a great agreement
among the solutions. The statistics of the searched thicknesses
and the corresponding condition numbers are summarized in
Table 1. The standard deviation to mean ratios of the condition
numbers are quite small for all four tests, suggesting a high
stability/repeatability of GA in this application. As a result, the
200 solutions are extremely close to each other, which implies
that we are close to the optimal, since GA often has a good global
searching ability.

3.1.2. Optimization With Aluminum
To investigate the optimal arrangement of thicknesses with a
single material type, we first assumed the use of Al which is
most popular in step edge phantoms for spectrum estimation.
Initially, seven measurements were performed, and thicknesses
were searched within [0.02, 10]. The corresponding best
linear arrangement was also searched for, as the baseline. For
comparison, the first thickness was fixed at 0.02 cm for both
linear and non-linear arrangements. In other words, there were
6 thicknesses to be optimized for non-linear arrangement while
there was only one variable (i.e., the maximum thickness) to be
determined for the linear arrangement. The optimization was

100 200 300 400 500

10
5

10
6

The Best Individual

Population Average

FIGURE 2 | Convergence of the GA optimization in terms of condition number.

repeated 30 times for the non-linear arrangement and 5 times for
the linear arrangement, and the smaller number of repetitions
for the linear arrangement is due to its high stability. The best
solutions among the repetitions are presented in Figure 3B. The
standard deviations are close to zero with respect to both the
thicknesses and the condition numbers for the optimal non-
linear arrangement, suggesting the optimality of the solution.
Compared with the best linear arrangement, the condition
number is reduced by almost two orders of magnitude with the
non-linear scheme.

One interesting phenomenon in Figure 3B is that both
the maximum thicknesses of the best linear and non-linear
arrangements do not reach the boundary 10 cm. This suggests
that, for a certain number of measurements, blindly increasing
the maximum thickness does not necessarily improve the
effectiveness of the measurements. This may appear counter-
intuitive since a larger thickness makes transmitted X-ray beam
harder and hence helps the extraction of spectral information
from the measurement, but it is actually reasonable because
increasing the thickness also reduces the signal strength, not
only saturating the information content but also elevating
the instability.

3.1.3. Influence of M
The influence of the number of measurements M was also
studied. The total number of measurements was set to 5, 10, and
15, respectively, with the other factors intact. The corresponding
results in Figure 3 shows that the condition number rapidly
grows as the number of measurements increases. It is also noticed
that the shape of the curve in Figure 3D differs from others with
the condition number and its standard deviation being very large,
but the standard deviations of the thicknesses remain small. This
suggests the numerical unstableness due to the bad conditioning
of the system matrix. This observation implies that for single
material based measurement with a fixed maximum thickness,
a few number of measurements should be enough and a larger
M would cause a higher instability. Another observation is that
the maximum thickness was also changed with the number of
measurements in a positively correlated manner.

3.1.4. Impact of Material Types
The impact of material types on optimization results is
illustrated in Figures 4–6, corresponding to PMMA, Cu, and

TABLE 1 | Summary of the GA searching results with 200 repetitions when N = 22, l ∈ [0, 5]9.

Material Solution vector of 9 thicknesses (unit: cm) Condition # Std./Mean

Al
Mean 0.022 0.090 0.228 0.475 0.892 1.562 2.588 4.051 4.998 77778 –

Std. 0.0004 0.0005 0.0005 0.0005 0.0006 0.0011 0.0012 0.0013 0.0014 65.439 0.00084136

PMMA
Mean 0.105 0.445 0.989 1.711 2.556 3.440 4.240 4.811 4.999 9.4723e+12 –

Std. 0.0003 0.0005 0.0006 0.0007 0.0014 0.0014 0.0014 0.0013 0.0006 9.5565e+09 0.0010089

Cu
Mean 0.002 0.004 0.009 0.021 0.045 0.096 0.201 0.420 0.991 1994.4 –

Std. 0.0007 0.0011 0.0012 0.0017 0.0025 0.0039 0.0062 0.0092 0.0189 136.84 0.068613

Fe
Mean 0.001 0.005 0.013 0.030 0.064 0.135 0.282 0.584 1.367 2159.8 –

Std. 0.0007 0.0004 0.0005 0.0008 0.0015 0.0015 0.0030 0.0048 0.0104 31.345 0.014513
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FIGURE 3 | Optimal thicknesses for the non-linear arrangement against the best linear arrangement for (A) M = 5 (B) M = 7 (C) M = 10 and (D) M = 15

measurements with Al within the range [0.02, 10] cm. The error-bars in the curve stand for the standard deviation of the thicknesses while the numbers in the legend

are the means and standard deviations of the condition numbers from 30 runs.

FIGURE 4 | Optimal thickness arrangement against the best linear arrangement for (A) M = 5 (B) M = 7 (C) M = 10 and (D) M = 15 measurements with PMMA

within [0.02, 10] cm. The error-bars in the curve stand for the standard deviations of the thickness while the number in parentheses in the legend is the standard

deviation of the condition number for 30 repetitions.

Fe, respectively. The figures for Cu and Fe support our
conclusions for Al, (1) the condition number improves in
orders of magnitude with the non-linear arrangement; (2) the
condition number exponentially expands as the number of
measurements increases; (3) the maximum thickness increases
as the number of measurements increases for both linear and
non-linear arrangements. The figure for PMMA does not seem

to follow the trends. The condition number expands much
faster compared to the cases of the other materials, and the
improvement with the non-linear arrangement is still observed
but not huge, which can be explained by the maximum thickness
being capped by the boundary. Figure 4D even demonstrates
unstable optimization results and decreased maximum thickness
due to the huge condition number under the capped maximum
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FIGURE 5 | Optimal thickness arrangement against the best linear arrangement for (A) M = 5 (B) M = 7 (C) M = 10 and (D) M = 15 measurements with Cu within

[0.02, 10] cm. The error-bars in the curve stand for the standard deviation of the thickness while the number in parentheses in the legend is the standard deviation of

the condition number for 30 repetitions.

FIGURE 6 | Optimal thickness arrangement against the best linear arrangement for (A) M = 5 (B) M = 7 (C) M = 10 and (D) M = 15 measurements with Fe within

[0.02, 10] cm. The error-bars in the curve stand for the standard deviation of the thickness while the number in parentheses in the legend is the standard deviation of

the condition number for 30 repetitions.

thickness, making the numerical calculation unstable. When we
extended the upper boundary to 100 cm, the searching results
become Figure 7, which agrees well with the common trends for
the other material types.

In Figures 3, 5–7, the condition number associated with Al is
the smallest when the number of measurements M is no more
than 7, but Fe and Cu have much smaller condition numbers
whenmore measurements are allowed. The PMMA has the worst
condition number regardless of M, which suggests that PMMA

may not be a good material for spectrum estimation. Fe seems
to have overall slightly smaller condition numbers than that with
Cu. This might be attributed to the 0.2 cm minimum thickness
boundary, as we found that Cu has better performance when the
range is [0, 5] (see Table 1).

3.1.5. Maximum Thickness
As expected, the maximum thickness depends on not only M
but also the material type. Generally, Cu, Fe, Al, and PMMA
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FIGURE 7 | Optimal thickness arrangement against the best linear arrangement for (A) M = 5 (B) M = 7 (C) M = 10 and (D) M = 15 measurements with PMMA

within [0.02, 100] cm. The error-bars in the curve stand for the standard deviation of the thickness while the number inside parentheses in the legend is the standard

deviation of the condition number for 30 repetitions.

correspond to increasingly largermaximum thicknesses given the
number of measurements, which agrees well with the relative
order of their linear attenuation values, as shown in Figure 1.
If we compare the results for Al in Table 1 with Figures 3B,D

against Figure 3C, as well as Figures 4A–D against each other, we
can find that when the maximum thickness is capped, increasing
the number of measurements large enough makes the condition
number explode. The rapid explosion of the condition number
suggests that the increased number of measurements does not
introduce more information. Unfortunately, this is the case often
seen in practice; i.e., taking many measurements with a relatively
small step wedge phantom made of Al, PMMA, or other plastics.
Using wedges made of Cu or Femay help address this issue due to
their much smaller maximum thicknesses required to obtain the
same number of effective measurements. In addition, if we relax
the lower bound of thickness to zero, ten effective measurements
can be obtained with Cu and Fe with the condition number being
about 2,000 as shown in Table 1.

3.1.6. Shape of the Thickness Sequence
As projected in the figures, the optimal thickness arrangement is
close to an exponential sequence. The results without maximum
thickness capping in Figures 3, 5, 7 can be well-fitted into an
exponential function, as summarized in Table 2. The Sum of
Squares due to Error (SSE), R-square, and Root Mean Squared
Error (RMSE) were used tomeasure the fitting quality. The fitting
results demonstrate that the R-squared values are very close to 1,
and SSE values are tiny, suggesting the thickness data fit well into
an exponential function.

3.2. Spectrum Estimation With Noisy Data
To illustrate the impact of the optimal thickness arrangement
on the quality of spectrum estimation, the spectrum estimations

from numerically simulated measurements were compared, with
three step wedges made of Al, including one conventional
phantom and two specifically designed phantoms. The
conventional step wedge (or conventional phantom) was
simulated with 50 linearly arranged thicknesses ranging from
0.05 to 2.50 cm. One special phantom (the linear phantom)
consists of 15 optimized linearly arranged thicknesses while
the other wedge phantom (the optimal phantom) consists
of 15 optimally arranged thicknesses corresponding to the
results in Figure 3D. The tube spectrum was simulated with
SpekCalc [6] assuming an operating voltage of 120 kV with a
default filter of 0.8 mm Beryllium, 1 mm Al, and 0.11 mm Cu.
The spectrum ranges from 12 to 120 keV with a sampling step
of 1 keV, resulting in N = 109 energy bins. For simplicity,
we assumed a perfect detector and the transmission data
were calculated using Equation (5) and only compromised by
Poisson noise fPoisson(N0p), where fPoisson denotes the Poisson
distribution and N0 stands for the mean number of incident
photons. In addition, the tube spectrum is usually measured
from a small pencil beam confined with a collimator, which
is very similar to the setup for the measurement of the NIST
attenuation data [21]. Hence, we did not further consider
the scattering (Compton) since it is already included in the
LAC data from NIST. The expectation-maximization (EM)
algorithm was used for the spectrum reconstruction from the
measurements. An all-one vector except for a few different
values at positions of tungsten characteristic peaks was used
as the initial guess to help the EM method recover the fine
details of the spectrum [14]. Two simulated noise levels
correspond to the numbers of incident photons N0 = 106 and
N0 = 108, respectively.

For a quantitative comparison, two common metrics, the
normalized root mean squared deviation (NRMSD) and the
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TABLE 2 | Fitting results of the optimal thicknesses curves in Figures 3, 5–7, respectively.

Material
y = aexp(bx) Fitting quality

a b SSE R-squared RMSE

Al

M = 5 4.205× 10−3 1.356 5.518× 10−5 0.9999 4.289× 10−3

M = 7 6.831× 10−3 0.9655 6.523× 10−3 0.9998 3.612× 10−2

M = 10 2.991× 10−2 0.5811 1.751× 10−2 0.9998 4.676× 10−2

Cu

M = 5 3.255× 10−3 1.063 1.927× 10−4 0.9993 8.015× 10−3

M = 7 3.602× 10−3 0.8024 8.457× 10−4 0.9989 1.301× 10−2

M = 10 3.924× 10−3 0.5922 3.333× 10−3 0.9983 2.041× 10−2

M = 15 5.236× 10−3 0.4065 1.882× 10−2 0.9971 3.805× 10−2

Fe

M = 5 3.134× 10−3 1.119 2.019× 10−4 0.9996 8.203× 10−3

M = 7 3.507× 10−3 0.8419 1.006× 10−3 0.9992 1.418× 10−2

M = 10 3.888× 10−3 0.6184 4.935× 10−3 0.9985 2.484× 10−2

M = 15 6.093× 10−3 0.4141 1.844× 10−2 0.9983 3.766× 10−2

PMMA

M = 5 8.191× 10−2 1.023 9.285× 10−2 0.9993 0.1759

M = 7 0.2008 0.6856 0.4825 0.9990 0.3106

M = 10 0.5176 0.4465 3.486 0.9982 0.6602

M = 15 1.418 0.2733 21.39 0.9977 1.283

mean energy difference 1E were used with definitions as follows:

NRMSD =

√

∑N
i (ŵi − wi)2

maxi∈[1,··· ,N](ŵi)−mini∈[1,··· ,N](ŵi)
, (15)

1E =
N

∑

i=1

(wi − ŵi), (16)

where ŵ and w are the estimated spectrum and the ground
truth, respectively.

The results from the optimal phantom against the linear
phantom are shown in Figure 8. Although the two phantoms
have the same number of thicknesses, the results of the optimal
phantom demonstrate a greater robustness to the noise and the
number of iterations as suggested by the stable shape of the
estimated spectrum in contrast to the oscillation in the linear
phantom results when the noise is stronger or the number
of iterations is inadequate. Quantitatively, it can be seen in
Figures 8A,C that the results from the optimal phantom are in
a better quality especially for stronger noise than that from the
linear phantom, also being resilient against inadequate number
of iterations. When N0 was increased by 100 times, the Poisson
noise became much smaller, and the reconstructions from both
phantoms in Figures 8D–F were improved in both metrics
relative to those in Figures 8A–C. The results from the optimal
phantom were still in a better quality. There is a mismatch
near the regions of the characteristic peaks for both phantoms,
since the EM method is relatively weak at restoring these high-
frequency details.

Similar results from the optimal phantom against those
from the conventional phantom are shown in Figure 9. Note
that the conventional phantom has M = 50 measurements
within the range [0.05, 2.5] while the optimal phantom has
much fewer measurements (M = 15) distributed in the range

[0.02, 10]. Although the significantly more measurements were
made on the conventional phantom, the results are still worse
than those from the linear phantom shown in Figure 8, and
not even comparable to those from the optimal phantom. This
phenomenon illustrates the key point that blindly increasing the
number of measurements does not necessarily help the spectrum
estimation, while a few well-designed measurements may be
effectively enough for the purpose.

4. DISCUSSIONS

The combinations of heterogeneous materials has a good
potential to achieve better results. We have summarized the best
results with individual Al, PMMA, Cu, and Fe materials and
five measurements within the range [0, 10] discretized at dl =
0.001 cm in Table 3. As seen in the table, Cu has the smallest
condition number around 41.267. When multiple materials are
used in the same phantom, the condition number can be further
squeezed. By coding the thicknesses of four materials into one
chromosome, i.e., l ∈ [0, 10]20, we can search for the potential
optimal combinations in a much larger space. Indeed, we have
found one combination that has achieved a better result than that
with Cu, with a condition number 38.587. However, searching
for the optimal solution from a smaller number of measurements
is possible but the optimization in the case of a large M
is rather difficult since the searching space is exponentially
increased according to (L/dl)4M . Due to the huge searching space
and limited computing resource, there is a high chance that
the iterative process will not converge to the global optimal.
Nevertheless, this is a good topic for future research.

In our model, we have adopted a widely used spectrum
model, i.e., decomposing the spectrum into a number of
energy bins with equal width using a set of basis functions,
such as delta functions [11] or linear B-splines [14]. This
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FIGURE 8 | Spectrum estimations from M = 15 optimally arranged thicknesses against M = 15 best linearly arranged thicknesses through Niter iterations under two

noise levels characterized by N0, (A) N0 = 106, Niter = 2.00× 103, (B) N0 = 106, Niter = 2.00× 104, (C) N0 = 106, Niter = 2.00× 105, (D) N0 = 108,

Niter = 2.00× 103, (E) N0 = 108, Niter = 2.00× 104, and (F) N0 = 108, Niter = 2.00× 105. The initialization is shifted upward by 0.03 for better visibility. The mean

energy difference and the NRMSD of the estimated spectra against the ground truth are included.

method is intuitive but introduces too many unknown variables
(equal to the number of bins N), making the inverse problem
highly under-determined. Inspired by Zhao et al. [13], we can
significantly reduce the degree of freedom by approximating the
spectrum as the sum of basis functions in the form of a set of
known spectra,

S(E) =
Ns
∑

k=1

ckSk(E), (17)

where coefficients ck are the weights over Ns known
spectra with different filters. In practice, Ns is often smaller
than 10 in contrast to N > 100. Then, the spectrum
estimation becomes over-determined. With our optimized
thickness arrangement, a significantly reduced number
of measurements should result in a more robust and
accurate spectrum.

Based on our results, the optimal thickness arrangement
should be close to an exponential sequence. However, the

commonly available step-wedge phantoms often have the step
wedge thicknesses linearly arranged. Here, we suggest two easy-
to-implement techniques which can achieve various transmission
thicknesses with either slabs or rods. Using a rod with a proper
radius r and let an X-ray pencil beam penetrate through the
rod with the rod placed perpendicular to the beam propagation
direction, then the X-ray path length (i.e., the transmission
thickness) can be adjusted by varying the distance d between the
pencil beam and the rod center, by lateral translation of the rod,
which is expressed as l = 2

√
r2 − d2. With a slab of thickness t,

by inclining the slab to form an angle θ smaller than 90◦ with the
X-ray beam, the X-ray path length can be computed as t/ cos θ .
With these techniques, a series of customized thicknesses can
be obtained.

5. CONCLUSION

We have studied the optimal thickness arrangement for
transmission data measurements with commonly available
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FIGURE 9 | Spectrum estimations from M = 15 optimally arranged thicknesses against M = 50 conventional linearly arranged thicknesses through Niter iterations

under two noise levels characterized by N0, (A) N0 = 106, Niter = 2.00× 103, (B) N0 = 106, Niter = 2.00× 104, (C) N0 = 106, Niter = 2.00× 105 (D) N0 = 108,

Niter = 2.00× 103, (E) N0 = 108, Niter = 2.00× 104, and (F) N0 = 108, Niter = 2.00× 105. The initialization is shifted upward by 0.03 for better visibility. The mean

energy difference and the NRMSD of the estimated spectra against the ground truth are included.

TABLE 3 | Optimal thickness arrangements for M = 5 measurements with each of the material types including Al, PMMA, Cu, and Fe, as well as one exemplary

arrangement with the combination of four materials yielding a smaller condition number.

Material Thickness, unit: cm Condition #

Single

Al 0.000 0.034 0.196 0.831 3.464 82.574

PMMA 0.000 0.393 1.750 4.835 10.000 626.206

Cu 0.000 0.002 0.011 0.063 0.341 41.267

Fe 0.000 0.002 0.016 0.088 0.470 42.341

Combination

Al 0.000 0.066 0.000 0.000 0.001

38.587
PMMA 0.001 0.372 0.001 0.001 0.914

Cu 0.054 0.000 0.000 0.340 0.000

Fe 0.015 0.014 0.000 0.001 0.000

materials, including Al, PMMA, Cu, and Fe, for high-quality
X-ray spectrum estimation, and the condition number of the
system matrix has been minimized via genetic evolution. Then,
under various conditions the spectra have been estimated via

EM iteration. Several interesting observations have been made
as follows:
1. Compared with the best linear arrangement of thicknesses,

the condition number of the system matrix can be
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improved by orders of magnitude with the optimal non-
linear arrangement;

2. Each material can only support a very limited number
of measurements since the condition number exponentially
expands as the number of measurements increases;

3. Themaximum thickness required by the optimal arrangement
increases as the number of measurements increases;

4. The aforementioned maximum thickness also depends on
material type, and generally it goes in a descending order for
PMMA, Al, Fe, and Cu, whose linear attenuation coefficients
become increasingly larger in the order of these material types;

5. Within the maximum thickness, further increasing the
number of measurements does not provide more benefit, as
indicated by the explosion of the condition number;

6. When the minimum thickness is constrained, e.g., l0 > 0.02
cm, the Al achieves the best result whenM ≤ 7, but for larger
M, Fe, and Cu are better choices;

7. PMMA has the worst outcome among the four materials
regardless of M, which implies that it may not be an
appropriate material for this task, although it has been
widely used;

8. The optimal thickness arrangement follows an
exponential sequence.

The spectrum estimation performance with the EM algorithm
has also been studied with the measurements from optimally
arranged thicknesses, best linearly arranged thicknesses and
conventional linearly arranged thicknesses, with Poisson noise
of different levels. The results from the optimal phantom
demonstrate a superior performance over the other two
in both NRMSD and mean energy difference metrics,
demonstrating robustness to noise. These results suggest
that with optimized thicknesses and a proper material, the

number of measurements can be significantly reduced while
still obtaining decent estimation quality. Our future work
will consider the combination of different materials per
measurement for even better results and the validation with
physical experiment data.
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