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Real-time explosive detectors must be developed to facilitate the rapid implementation of
appropriate protective measures against terrorism. We report a simple yet efficient
methodology to classify three explosives and three non-explosives by using laser-
induced breakdown spectroscopy. However, the similarity existing among the spectral
emissions collected from the explosives resulted in the difficulty of separating samples. We
calculated the weights of lines by using the ReliefF algorithm and then selected six line
regions that could be identified from the arrangement of weights to calculate the area of
each line region. A multivariate statistical method involving support vector machines was
followed for the construction of the classification model. Several models were constructed
using full spectra, 13 lines, and 100 lines selected by the arrangement of weights and areas
of the selected line regions. The highest correct classification rate of the model reached
100% by using the six line regions.
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INTRODUCTION

In recent years, explosions from terrorist attacks have spread across the globe. The advanced detection
of explosives has attracted the interest of scientists in communities. Many techniques for explosive
detection are well established and include Gas chromatography-Mass spectrometry [1]; Terahertz
spectroscopy [2]; Raman spectroscopy [3–5]; photo-fragmentation, followed by laser-induced
fluorescence [6]; and photoacoustic spectroscopy [7]. Although explosives can be detected by these
advanced spectral methods, they require sample pretreatment and long detection time. A fast, in-situ
method should be developed to identify hidden explosives in transit areas characterized by a high flux
of people and goods. Hidden explosives can be recognized through the detection of their trace vapors or
dispersed particles. The capabilities of laser-induced breakdown spectroscopy (LIBS) make it an
attractive technique for the ultra-rapid, in situ identification of explosives [7, 8]. Given the atomic
spectroscopy technique of LIBS, molecularly specific chemical identification is complicated by the
similar stoichiometry of threats. Spectrochemical information obtained from a surface interrogated by
LIBS provides the elemental composition of a potential surface contaminant and the surface through
ablation. From an analytical point of view, explosives with different molecular structures and
substantially constituent elements can be identified by atom emission [9–11].
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LIBS is a rapid detection method with high efficiency and
accuracy. In LIBS, a tightly focused laser pulse (usually a
nanosecond laser) is used to create a micro plasma
(10,000–20,000 K) on the surface of a sample. During cooling,
the hot plasma emits light radiation at characteristic wavelengths;
the radiation provides information on the identity of the
elemental and molecular species present in the sample. LIBS
has been prolifically evaluated for the detection/identification of
explosive residues [12–26], chemical and biological materials
[27–29], landmines [30], geological materials [28], and plastic
[31]; for food authentication [32]; and other applications [33]. As
an emerging analytical tool, LIBS has numerous advantages,
including in situ application, ability to detect multiple
elements and trace materials, and rapid microanalysis; it also
does not require a separate sample preparation process [34].

Among the multivariate techniques demonstrated to be viable
to classify an unknown sample as an explosive or a harmless
product, the most widely used is elemental peaks ratios [35],
principal component analysis (PCA) [36–41]. Several other
chemometric methods, including soft independent modeling of
class analogy [42], partial least squares Discriminant Analysis
(PLS-DA) [43, 44], support vector machines (SVMs) [45], and
artificial neural network, have been applied to LIBS spectra for
classification and identification [46]. For example, Gottfried et al.
applied PCA and PLS-DA on the LIBS spectra of carbonate,
fluorite, silicate, and soil and reported a correct classification rate
(CCR) of >95%. Femtosecond laser is also used to investigate
spectral signatures of molecular and atomic species in air and
argon atmospheres to correlate the spectral emission with the
chemical structure for energetic materials, the correlation studies
are expected to support the understanding and improve the
discrimination procedures for hazardous materials [47, 48].

In the current paper, we present the results of our initial
classification studies for three common explosives, namely, RDX,
HMX, CL-20, and three interferences, namely, flour, talcum
powder, and polytetrafluoroethylene (PTFE). The principal
component that contains most of the variance information of
the PCA algorithm is often used for data processing. However, the
useful information that classifies different samples is not
necessarily projected on the components with large variance.
Selecting the principal component by using differences in
contribution degrees will lead to serious information loss and
classification deterioration. From the perspective of classification,
the ReliefF algorithm selects the components with high weight
and good effect as principal components to avoid the loss of
important information in PCA algorithm. Therefore, we used a
chemometric SVM method for the classification of the six test
samples. We divided the spectral data of the tested samples into
training and test sets. We calculated the weight of the lines of the
training set by using the ReliefF algorithm and then selected
element lines that could be identified from the National Institute
of Standards and Technology database on the basis of the
arrangement of weight to construct an SVM model for the
classification of the samples. The data size and calculation
time were decreased by using the element lines instead of
complete spectra as input variables for the SVM model.
Although our proposed methodology has only been applied to

six samples, it could be generalized and possibly used to classify
other explosives.

MATERIALS AND METHODS

Experimental Setup
A schematic of the LIBS set-up used in this work is shown in
Figure 1. Plasma was generated using an actively Q-switched Nd:
YAG nanosecond laser. Typical lasers were used for the LIBS
experiments. The lasers produced 10 ns and 80 mJ pulses at
1,064 nm with a maximum repetition rate of 10 Hz. Laser beam
transmission was adjusted using three reflective mirrors and
focused by a 100 mm convex lens onto the sample surface.
The sample was mounted on an X-Y-Z translation stage with
a resolution of 0.1 mm.We ensured that each laser pulse interacts
with the fresh area of the sample. Emission from a plasma spark
was collected by a two-fiber optic bundle that was 600 μm in
diameter. A lens with a 30 mm focal length and 25 mm diameter
was placed in front of the fiber bundle to sufficiently focus the
plasma spark, thus allowing each fiber to collect the same
emission. Each fiber output was sent to a two-channel-gated
charge-coupled device (CCD) spectrometer developed by
AVANTES B.V. Spectral information from each CCD was
stitched together to yield LIBS spectra with a full spectral
coverage of 190–1,100 nm and resolution of 0.3 nm. The
operation of the spectrometer was controlled using customized
electronics, including a high-speed photodetector and a digital
delay/pulse generator (DG535). DG535 was connected to a
photodetector, which produced a delay signal upon detecting a
plasma spark to control spectral collection by the spectrometer.
All LIBS spectra were collected with a 1.28 μs delay to eliminate
plasma continuum effects and a 2 ms integration time
synchronized with the shooting of the laser pulse.

Sample Preparation
Explosive samples of research-grade RDX (C3H6N6O6), HMX
(C4H8N8O8), and CL-20 (C6H6N12O12) were provided by our
School of Materials Science and Engineering at the Beijing
Institute of Technology. The three possible interferent samples

FIGURE 1 | Experimental LIBS setup.

Frontiers in Physics | www.frontiersin.org May 2021 | Volume 9 | Article 6751352

Zhao et al. LIBS Discriminate Explosives ReliefF SVM

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


flour, talcum powder, and PTFE were also used for the study. All
of the samples were in powder form. A piece of double-sided
adhesive tape was secured on a glass slide, and the sample powder
(approximately 1 g or less) was then crushed and spread with a
Teflon block on top of the tape. Excess sample was shaken off,
leaving a uniform thin layer of powder on the tape. We used the
ultrasonic thickness gauge DR85 to measure the thickness of the

powder layer which the total amount of sample with a thickness
of 20 μm on 20 × 40 mm2-thin films upon the tape was
approximately 20–30 mg.

Data Acquisition and Analysis
Although a double-sided adhesive tape is composed of organic
compounds containing C, H, N, O, and other elements, we

FIGURE 2 | Representation spectra of the six samples: CL-20, HMX, RDX, flour, talcum powder, and PTFE.

TABLE 1 | Major emission lines of six samples.

Peak Wavelength (nm) Peak Wavelength (nm) Peak Wavelength (nm)

C I 247.82 Hβ 486.13 N I 746.86
Fe I 358.12 C2 516.32 K I 766.49
CN 384.62 Mg I 517.26 769.89

386.16 518.36 O I 777.42
387.14 Na I 588.89 N I 818.34

Ca II 393.36 589.59 821.52
396.84 Hα 656.28 824.22

Ca I 422.44 N I 742.24 O I 844.63
C2 473.76 744.18

TABLE 2 | Correct classification rate of SVM1 model using full spectra.

Samples CL-20 HMX RDX Flour Talcum powder PTFE Total CCR

CL-20 83.33% 10% 6.67% 0 0 0 83.33
HMX 3.33% 96.67% 0 0 0 0 96.67
RDX 3.33% 10% 86.67% 0 0 0 86.67
Flour 0 3.33% 0 96.67% 0 0 96.67
Talcum powder 0 0 0 0 100% 0 100
PTFE 3.33% 0 0 0 0 96.67% 96.67
Average CCR 93.34
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ignored the interference of the tape to the test the samples because
of its weak spectral intensity. Multiple LIBS spectra were collected
for each thin film. Each LIBS spectrum was collected from a single
laser pulse and on a fresh shot. A total of 100 individual spectra
from each sample of thin film were acquired. The spectra of each
sample were randomly divided into two parts: training set and
test set. For each sample, 70 spectra were used as the training set
to build the classification model, and the 30 remaining spectra of
each sample served as the test set to assess the discrimination
ability of the model. Data analysis was performed without
applying any spectral subtraction to the datasets.

For our LIBS experimental platform, we used SVM Toolbox
program in Matlab version 2016a (MathWorks, Natick,
United States) running Win7 on an Intel Core i7-4790K CPU

with a 3.6 GHz processor and 8 GB of RAM. The LIBS spectrum
collection software was provided by AVANTES B.V.

RESULTS

Figure 2 shows the LIBS spectra of the six samples on a slide
collected from a single pulse in ambient air. The features of interest
were the atomic emission peaks labeled in the spectra. All of the
samples, except for talcum powder, exhibited similar LIBS spectral
characteristics in the 230–1,000 nm region. Each spectrum of the
samples consisted of numerous strong emission lines contributed by
Ca, Na, Mg, K, Fe, O, H, and N, whereas that of the explosives
exhibited few strong emission lines. In the spectra of the explosives,
O and N emission lines could be attributed to ambient air, whereas
Ca, Na, K, Fe, and Mg emission lines were likely from common
contaminants. In flour, the intensity of K lines was stronger than that
of the five other samples because of nutritional requirements. CN
lines, the characteristic emission feature of the spectra of explosives,
were absent from the spectra of the talcum powder. Regardless of
ablation mechanisms and dissociation pathways followed by any
organic compound, all of the spectra of the explosives showed
sequences of the violet system attributed to the CN fragment,

FIGURE 3 | Intensity of different lines and their standard deviation.

FIGURE 4 | 3D plot of the intensity of Na 588.89 nm, H 656.28 nm, and
K 766.49 nm.

FIGURE 5 | 3D plot of the intensity of H 656.28 nm, O 777.417 nm, and
N 742.24 nm.

TABLE 3 | Thirteen lines selected to construct SVM models.

Peak Wavelength (nm) Peak Wavelength (nm)

CN 386.16 N I 742.24
387.14 744.18

Ca II 393.36 746.86
396.84 K I 766.49

Na I 588.89 769.89
589.59 O I 777.42

Hα 656.28
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which is generated mainly through the recombination of C with
atmospheric N in the plume. C2 lines, another characteristic
emission feature of organic compound, were present in the
PTFE, which were mostly attributed to C�C fragments. Table 1
shows the major spectral lines of the six samples.

DISCUSSION

SVM Model Using Full Spectra
To classify the six samples, we used SVM multivariate analysis to
construct a classification model. SVM is a very common classifier. It
has been popular formore than 10 years, and its classification ability is
stronger than that of neural networks. The discrimination model was
built on the basis of three one-versus-one SVM classifiers. SVM
classifiers distinguish two classes of data byfinding the best hyperplane
that separates the data points of one class from those of the other class.
In cases when binary classification problems do not have a simple
hyperplane as a useful separating criterion, nonlinear transformation
with kernel functions can be used [49].

A total of 420 full spectra of the six samples in the training set
were used to construct the SVMmodel. The model built by using
the min–max normalization preprocessing of full spectral data
was called SVM1. The time needed by our computer to calculate
the two models was 35 s. After modeling, we used the test set to
assess the discrimination ability of the model. The test set was also
constructed using min–max normalization preprocessing with
the same parameters used in the model construction
preprocessing. Table 2 shows the CCR of the SVM model.
The average CCR result of the models reached 93.34%.

Lines Selected Based on Intensities
To construct a model with few input variables for classification,
we studied the distribution of the intensities of different lines.

Figure 3 shows the intensities of different lines and their standard
deviation. Different samples had different intensities for the same
line. For the lines of CN 386.16 nm and Ca 393.366 nm and the
Potassium line of K 766.49 nm, PTFE, talcum powder, and flour
had the strongest intensity, respectively. The lines of H, O, and N
had different intensities in the six samples, which may be
beneficial to the classification. A 3D plot of the intensity of Na
588.89 nm versus that of H 656.28 nm and K 766.49 nm, which
had high weight values, is shown in Figure 4. The data separated
into three distinct clusters. The first cluster comprised flour,
which evidently separated from the other samples. The second
cluster comprised HMX and talcum powder, which slightly
overlapped. The third cluster comprised CL-20, RDX, and
PTFE, which seriously overlapped. A 3D plot of the intensity

TABLE 4 | Correct classification rate of SVM2 model using thirteen lines.

Samples CL-20 HMX RDX Flour Talcum powder PTFE Total CCR

CL-20 100% 0 0 0 0 0 100
HMX 0 100% 0 0 0 0 100
RDX 3.33% 0 96.67% 0 0 0 96.67
Flour 0 0 0 100% 0 0 100
Talcum powder 0 0 0 0 100% 0 100
PTFE 0 0 0 0 0 100% 100
Average CCR 99.44

TABLE 5 | CCR of SVM3 model using 100 lines with high weights (weight threshold >0.05).

Samples CL-20 HMX RDX Flour Talcum powder PTFE Total CCR

CL-20 100% 0 0 0 0 0 100
HMX 3.33% 96.67% 0 0 0 0 96.67
RDX 3.33% 3.33% 93.34% 0 0 0 93.34
Flour 0 0 0 100% 0 0 100
Talcum powder 0 0 0 0 100% 0 100
PTFE 3.33% 0 0 0 0 96.67% 96.67
Average CCR 98.34

FIGURE 6 | Scatter plot of the top 100 weights of lines using different
values of nearest neighbors (k).
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of H 656.28 nm versus that of O 777.417 nm and N 742.24 nm is
shown in Figure 5. The data of the six samples separated into six
distinct clusters, indicating that three lines would be beneficial for
classification. Because the spectral line of C 247 nm was not obvious
and the carbon element had a strong peak in the CN band, two
characteristic spectral lines CN 386.16 nm and CN 387.14 nm were
selected to represent the carbon element. According to the
composition of the elements, Ca 393.36 nm, Ca 396.84 nm, Na
588.89 nm,Na 589.59 nm,Hα 656.28 nm,N 742.24 nm,N 744.18 nm,
N 746.86 nm, K 766.49 nm, K 769.89 nm,O 777.42 nmwere very easy
to identify as a single characteristic spectral line with high intensity. A
total thirteen lines were selected to construct the SVMmodels.Table 3
lists the selected lines to construct the model. An SVM model called
SVM2 was constructed using the 13 lines and test set to assess the
discrimination ability of the model. Table 4 shows the CCR of the
model. The CCR of the model was up to 99.44%.

Feature Selection Based on the relieff
Algorithm
The Relief algorithm was first proposed by Kira [50] and initially
limited to classify two types of data. The algorithm is a feature
weighting algorithm that assigns different weights on the basis of
the correlation of each feature and category. The weights of features
that are less than a certain threshold will be removed. The correlation
of features and categories in the algorithm is based on the ability of
features to distinguish neighboring samples. It is widely used because
of its relative simplicity, high operation efficiency, and satisfactory
results; however, its limitation is that it can only process two types of
data. Therefore, Kononenko [51] proposed ReliefF to extend the Relief
algorithm in 1994. ReliefF algorithms can manage multiple categories

of problems. They randomly take a sample R from the training sample
set, find the k neighbor samples (near hits) from the same class of R
and k neighbor samples (nearmisses) from the different classes of each
R in the sample set, and then update the weight of each feature. The
weight of each feature can be represented by Eq. (1).

W(A) � W(A) −∑k
j�1

diff (A,R,Hj)/(mk)+

∑
Ceclass(R)

⎡⎢⎢⎣ p(C)
1 − p(Class(R)) ∑

k

j�1
diff (A,R,Mj(C))⎤⎥⎥⎦/(mk)

(1)

FIGURE 7 | Two-dimensional mapping of intensities of line regions with high weights (A) CL-20, (B) HMX, (C) RDX, (D) flour, (E) talcum powder, (F) PTFE.

FIGURE 8 | Area calculation of CN band line region based on weights by
using the ReliefF algorithm. The weight threshold determines the boundary of
area, which is used to build the SVMmodel. The red dotted line represents the
weight threshold (0.05). The blue dotted line represents the base line.
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In Eq. (1), diff (A,R1,R2) represents the difference between
samples R1 and R2 on feature A.Mj(C) represents the jth nearest
neighbor sample in class C, and Hj(j � 1.....k) represents the k
nearest neighbors from the same class of R. p(C) represents the
proportion of class C, and p(Class(R)) represents the proportion
of class randomly selected in the samples. diff (A,R1,R2) can be
represented by Eq. (2).

diff (A,R1,R2) �
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

|R1[A] − R2[A]|
max(A) −min(A) if A is continuous

0 if A is discrete and R1[A] � R2[A]
1 if A is discrete and R1[A]≠R2[A]

(2)

To reduce the calculation time of the model, we used the
ReliefF algorithm to calculate the weight of each line of the full
spectra (k � 10) and then selected the first 100 lines that involved
high weights (weight threshold >0.05). The intensities of 100 lines
were selected to construct the SVM models. Similarly, an SVM
model called SVM3was constructed with data preprocessing. The
calculation time of the model was 9.2 s in our computer. After
modeling, we used the test set to assess the discrimination ability
of the model. Table 5 shows the CCR of the model. The CCR
result of model reached 98.33%.

Areas of Line Regions Selected From the
Weight Calculated by the relieff Algorithm
The value of k, which indicates the number of nearest neighbors in a
sample, is crucial because different values of k affect the weight of
each line in the ReliefF algorithm. Figure 6 shows the calculated
weights of the top 100 lines with different values of k. Several line
regions, such as CN bands, Na, Hα, K, and Fe, were easily identified.
Na andK contributed higher weights than the non-metallic elements
C, N, O, and H, which showed very weak weights, except for Hα.

Each line region showed great similarity with different k values.
Figure 7 shows the differences of intensity between different line
regions. For the CN band region, the difference of six samples was
not obvious, except for talcum powder. For talcum powder the lines
ofMg 382.97 nm andMg 383.57 nm contributedmost of intensity in
CN band region, the main component of which is magnesium
silicate (Mg3 [Si4O10](OH)2). For the Potassium line of K 766.49 nm,
flour had the strongest intensity, which may be attributed to
nutritional needs. In addition, the K line region was composed of
twomajor lines, including K 766.69 nm and K 769.89 nm. Given the
low resolution of our spectrometer and Stark broadening, the high
weight of lines calculated using ReliefF consisted of center and
nearby lines. Therefore, most of the spectral lines with high weight
values were composed of the central lines of Na, K, and H and their
nearby lines. We selected six line regions that could be easily
identified from the top 100 weights and calculated the areas
under the line regions. Figure 8 shows the area calculation of
CN band region based on the weight threshold (>0.05). We
selected the boundary of each line region on the basis of the
feature line of elements and calculated the area of region
subtracted by the base line. Table 6 shows the selected line
regions and their boundaries. All six areas used min–max
normalization to construct the SVM model to classify the six
samples. Similarly, a model called SVM4 was constructed, and
the test set was used to assess the discrimination ability of the
model.Table 7 shows the CCR of the model constructed using areas
of selected line regions. The CCR of the model reached 100%.

In summary, an unsatisfactory result was obtained using the full
spectra to classify the six samples. Although we further reduced the
number of selected lines to construct themodel, the CCRof themodel
reached 99.44% but was no longer raised. Excellent classification
results could be obtained using the ReliefF algorithm to calculate the
areas of six line regions instead of the full spectra of a model. In order
to construct a classification model with the fewest input variables, we

TABLE 6 | Line regions and their boundaries used to calculate areas.

Feature line Left boundary Left boundary
weight

Right boundary Right boundary
weight

Fe region 358.12 357.55 0.07158 358.13 0.07345
CN band 373.18 0.06416 387.68 0.09276
Na region 588.89 588.09 0.07958 589.51 0.1274
Hα region 655.28 653.99 0.06252 658.48 0.06521
K I region 766.49 766.03 0.1377 766.82 0.1083
K II region 769.89 769.45 0.09741 770.24 0.07338

TABLE 7 | CCR of SVM4 model using the areas of six line regions.

Samples CL-20 HMX RDX Flour Talcum powder PTFE Total CCR

CL-20 100% 0 0 0 0 0 100%
HMX 0 100% 0 0 0 0 100%
RDX 0 0 100% 0 0 0 100%
Flour 0 0 0 100% 0 0 100%
Talcum powder 0 0 0 0 100% 0 100%
PTFE 0 0 0 0 0 100% 100%
Average CCR 100%
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selected six line regions that could be easily identified from the top 100
arranged weights of lines by using the ReliefF algorithm. The
boundary of each line region was determined on the basis of the
top 100 arranged weights to calculate the area for constructing the
classification model. The CCR of the model reached 100%. Most
importantly, the line regions selected used to construct a classification
model were easy to detect and identify. The few spectral lines selected
to construct the model reduced the calculation time and increased the
classification efficiency. These advantages promote the potential of the
proposed LIBS–SVM model for the accurate and rapid classification
of explosives.

CONCLUSION

Three explosives and three possible interferents were discriminated
using the ReliefF algorithm and SVM under laboratory conditions.
First, we constructed an SVM model by using the full spectra of the
six samples. The CCR of the model reached 93.34%. Second, to
construct a model with few input variables for the best classification,
we selected 13 lines on the basis of the elemental composition of the
organic compounds and the ease of identification to construct the
SVM models. The CCR of the models reached 99.44%. Third, we
used the ReliefF algorithm to calculate the weight values of each line
and then selected 100 lines from the arranged weight values to
construct the SVMmodels. The CCR of the model reached 98.34%.
Finally, six line regions selected by using the ReliefF algorithm to
construct the SVM classification model. The CCR of the model
reached 100%.

This study was performed under atmospheric conditions. O, H, N,
andC in the atmosphere could influence the LIBS spectrumof samples.
In this study, we acquired the LIBS spectra of pure, not mixed,
explosives. Thus, the LIBS spectra of the mixed explosives on the

organic substrates were expected to be more complex than those of
pure explosives on simple substrates. Further studies on the effects of
external factors on the performance of SVM are currently underway.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

All the authors have their individual contributions for this
manuscript. Conceptualization, YZ and QW; methodology,
YZ; software, XC; validation, GT, KW, and HL; formal
analysis, XC; investigation, YZ; resources, GT; data curation,
KW; writing—original draft preparation, YZ; writing—review
and editing, YZ; visualization, XC. All authors have read and
agreed to the published version of the manuscript.

FUNDING

This research was funded by the National Natural Science
Foundation (grant number: 61775017) and the Beijing Natural
Science Foundation (grant number: 4132063).

ACKNOWLEDGMENTS

The authors gratefully acknowledge support from the Institute of
Chemical Defense–China.

REFERENCES

1. Sharma SP, and Lahiri SC. Characterization and Identification of Explosives
and Explosive Residues Using GC-MS, an FTIR Microscope, and HPTLC.
J Energetic Mater (2005) 23:239–64. doi:10.1080/07370650591006795

2. Leahy-Hoppa MR., Fitch MJ, and Osiander R. Terahertz Spectroscopy
Techniques for Explosives Detection. Anal Bioanal Chem (2009) 395:
247–57. doi:10.1007/s00216-009-2803-z

3. Carter JC, Angel SM, Lawrence-Snyder M, Scaffidi J, Whipple RE, and
Reynolds JG Standoff Detection of High Explosive Materials at 50 Meters
in Ambient Light Conditions Using a Small Raman Instrument. Appl Spectrosc
(2005) 59:769–75. doi:10.1366/0003702054280612

4. Gulati KK, Gulia S, Gambhir T, Kumar N, Gambhir V, and Reedy MN
Standoff Detection and Identification of Explosives and Hazardous Chemicals
in Simulated Real Field Scenario Using Time Gated Raman Spectroscopy. Def
Sc Jl (2019) 69:342–47. doi:10.14429/dsj.69.13234

5. Videira-Quintela D, Zapata F, and García-Ruiz C. Detection of Microscopic
Traces of Explosive Residues on Textile Fabrics by Raman Spectroscopy.
J Raman Spectrosc (2018) 49:1668–77. doi:10.1002/jrs.5455

6. Lazic V, Palucci A, DeDominicis L, NuvoliM, PistilliM,Menicucci I, et al. Integrated
Laser Sensor (ILS) for Remote Surface Analysis: Application for Detecting Explosives
in Fingerprints. Sensors (2019) 19:4269. doi:10.3390/s19194269

7. El-Sharkawy YH, and Elbasuney S. Novel Laser Induced Photoacoustic
Spectroscopy for Instantaneous Trace Detection of Explosive Materials.
Forensic Sci Int (2017) 277:215–22. doi:10.1016/j.forsciint.2017.06.005

8. Winefordner JD, Gornushkin IB, Correll T, Gibb E, Smith BW, and
Omenetto N. Comparing Several Atomic Spectrometric Methods to the
Super Stars: Special Emphasis on Laser Induced Breakdown Spectrometry,
LIBS, A Future Super Star. J Anal Spectrom (2004) 19:1061–83. doi:10.
1039/B400355C

9. Lucena P, Doña A, Tobaria LM, and Laserna JJ. New Challenges and Insights
in the Detection and Spectral Identification of Organic Explosives by Laser
Induced Breakdown Spectroscopy. Spectrochimica Acta B: At Spectrosc (2011)
66:12–20. doi:10.1016/j.sab.2010.11.012

10. Gottfried JL, De Lucia FC, Jr., Munson CA, and Miziolek AW. Laser-induced
Breakdown Spectroscopy for Detection of Explosives Residues: A Review of
Recent Advances, Challenges, and Future Prospects. Anal Bioanal Chem
(2009) 395:283–300. doi:10.1007/s00216-009-2802-0

11. Moros J, and Laserna J. Laser-Induced Breakdown Spectroscopy (LIBS) of
Organic Compounds: A Review. Appl Spectrosc (2019) 73:963–1011. doi:10.
1177/0003702819853252

12. De Lucia FC, Jr., Gottfried JL, and Miziolek AW. Evaluation of Femtosecond
Laser-Induced Breakdown Spectroscopy for Explosive Residue Detection. Opt
Express (2009) 17:419–25. doi:10.1364/OE.17.000419

13. De Lucia, Jr. FC, Jr, Gottfried JL, Munson CA, and Miziolek AW. Multivariate
Analysis of Standoff Laser-Induced Breakdown Spectroscopy Spectra for
Classification of Explosive-Containing Residues. Appl Opt (2008) 47:
G112–21. doi:10.1364/AO.47.00G112

14. Gottfried JL, De Lucia, Jr FC, Jr., Munson CA, and Miziolek AW. Strategies for
Residue Explosives Detection Using Laser-Induced Breakdown Spectroscopy.
J Anal Spectrom (2008) 23:205–16. doi:10.1039/b703891g

Frontiers in Physics | www.frontiersin.org May 2021 | Volume 9 | Article 6751358

Zhao et al. LIBS Discriminate Explosives ReliefF SVM

https://doi.org/10.1080/07370650591006795
https://doi.org/10.1007/s00216-009-2803-z
https://doi.org/10.1366/0003702054280612
https://doi.org/10.14429/dsj.69.13234
https://doi.org/10.1002/jrs.5455
https://doi.org/10.3390/s19194269
https://doi.org/10.1016/j.forsciint.2017.06.005
https://doi.org/10.1039/B400355C
https://doi.org/10.1039/B400355C
https://doi.org/10.1016/j.sab.2010.11.012
https://doi.org/10.1007/s00216-009-2802-0
https://doi.org/10.1177/0003702819853252
https://doi.org/10.1177/0003702819853252
https://doi.org/10.1364/OE.17.000419
https://doi.org/10.1364/AO.47.00G112
https://doi.org/10.1039/b703891g
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


15. De Lucia FC, Jr., Gottfried JL, Munson CA, and Miziolek AW. Double Pulse
Laser-Induced Breakdown Spectroscopy of Explosives: Initial Study Towards
Improved Discrimination. Spectrochimica Acta Part B: At Spectrosc (2007) 62:
1399–404. doi:10.1016/j.sab.2007.10.036

16. Fernandez-Bravo A, Lucena P, and Laserna JJ. Selective Sampling and Laser-
Induced Breakdown Spectroscopy (LIBS) Analysis of Organic Explosive
Residues on Polymer Surfaces. Appl Spectrosc (2012) 66:1197–203. doi:10.
1366/12-06697

17. Mäkinen M, Nousiainen M, and Sillanpää M. Ion Spectrometric Detection
Technologies for Ultra-traces of Explosives: A Review. Mass Spectrom Rev
(2011) 30:940–73. doi:10.1002/mas.20308

18. Kim S, Lee D, Liu X, Van Neste C, Jeon S, and Thundat T. Molecular Recognition
Using Receptor-free Nanomechanical Infrared Spectroscopy Based on a Quantum
Cascade Laser. Sci Rep (2013) 3:1111. doi:10.1038/srep01111

19. AbdelhamidM, Fortes FJ, HarithMA, and Laserna JJ. Analysis of Explosive Residues
in Human Fingerprints Using Optical Catapulting-Laser-Induced Breakdown
Spectroscopy. J Anal Spectrom (2011) 26:1445–50. doi:10.1039/c0ja00188k

20. DeLucia FC, Samuels AC, Harmon RS, Walters RA, McNesby KL, LaPointe A,
et al. Laser-induced Breakdown Spectroscopy (LIBS): A Promising Versatile
Chemical Sensor Technology for HazardousMaterial Detection. IEEE Sensors J
(2005) 5:681–89. doi:10.1109/JSEN.2005.848151

21. González R, Lucena P, Tobaria LM, and Laserna JJ. Standoff LIBS Detection of
Explosive Residues behind a Barrier. J Anal Spectrom (2009) 24:1123–6. doi:10.
1039/b821566a

22. Moros J, Lorenzo JA, Lucena P, Miguel Tobaria L, and Laserna JJ. Simultaneous
Raman Spectroscopy−Laser-Induced Breakdown Spectroscopy for Instant
Standoff Analysis of Explosives Using a Mobile Integrated Sensor Platform.
Anal Chem (2010) 82:1389–400. doi:10.1021/ac902470v

23. De Lucia, Jr. FC, Jr., Gottfried JL, Munson CA, and Miziolek AW. Multivariate
Analysis of Standoff Laser-Induced Breakdown Spectroscopy Spectra for
Classification of Explosive-Containing Residues. Appl Opt (2008) 47:
G112–22. doi:10.1364/AO.47.00G112

24. Lazic V, Palucci A, Jovicevic S, and Carpanese M. Detection of Explosives in
Traces by Laser Induced Breakdown Spectroscopy: Differences from Organic
Interferents and Conditions for a Correct Classification. Spectrochimica Acta
Part B: At Spectrosc (2011) 66:644–55. doi:10.1016/j.sab.2011.07.003

25. LazicV, PalucciA, Jovicevic S, PoggiC, andBuonoE.Analysis of Explosive andOther
Organic Residues by Laser Induced Breakdown Spectroscopy. Spectrochimica Acta
Part B: At Spectrosc (2009) 64:1028–39. doi:10.1016/j.sab.2009.07.035

26. De Lucia FC, and Gottfried JL. Classification of Explosive Residues on Organic
Substrates Using Laser Induced Breakdown Spectroscopy. Appl Opt (2012) 51:
B83–92. doi:10.1364/AO.51.000B83

27. Gottfried JL, De Lucia FC, Munson CA, andMiziolek AW. Standoff Detection of
Chemical and Biological Threats Using Laser-Induced Breakdown Spectroscopy.
Appl Spectrosc (2008) 62:353–63. doi:10.1366/000370208784046759

28. Fabre C. Advances in Laser-Induced Breakdown Spectroscopy Analysis for
Geology: A Critical Review. Spectrochimica Acta Part B: At Spectrosc (2020)
166:105799. doi:10.1016/j.sab.2020.105799

29. Diedrich J, Rehse SJ, and Palchaudhuri S. Escherichia Coliidentification and
Strain Discrimination Using Nanosecond Laser-Induced Breakdown
Spectroscopy. Appl Phys. Lett (2007) 90:163901. doi:10.1063/1.2723659

30. Harmon RS, DeLucia FC, LaPointe A, Winkel RJ, and Miziolek AW. LIBS for
Landmine Detection and Discrimination. Anal Bioanal Chem (2006) 385:
1140–8. doi:10.1007/s00216-006-0513-3

31. Junjuri R, and Gundawar MK. Femtosecond Laser-Induced Breakdown
Spectroscopy Studies for the Identification of Plastics. J Anal Spectrom
(2019) 34:1683–92. doi:10.1039/c9ja00102f

32. Sezer B, Durna S, Bilge G, Berkkan A, Yetisemiyen A, and Boyaci IH.
Identification of Milk Fraud Using Laser-Induced Breakdown Spectroscopy
(LIBS). Int Dairy J (2018) 81:1–7. doi:10.1016/j.idairyj.2017.12.005

33. Schade W, Bohling C, Hohmann K, and Scheel D. Laser-induced Plasma
Spectroscopy forMine Detection and Verification. Laser Part Beams (2006) 24:
241–7. doi:10.1017/S0263034606060356

34. Ahmadi SH, Keshavarz MH, and Hafizi Atabak HR. Introducing Laser
Induced Breakdown Spectroscopy (LIBS) as a Novel, Cheap and Non-
destructive Method to Study the Changes of Mechanical Properties of
Plastic Bonded Explosives (PBX). Z Anorg Allg Chem (2018) 644:1667–73.
doi:10.1002/zaac.201800415

35. Sreedhar S, Gundawar MK, and Venugopal Rao S. Laser Induced Breakdown
Spectroscopy for Classification of High Energy Materials Using Elemental
Intensity Ratios. Dsj (2014) 64(4):332–8. doi:10.14429/dsj.64.4741

36. Rezaei AH, Keshavarz MH, Tehrani MK, and Darbani MR. Assessment of
Detonation Performance and Characteristics of 2,4,6-Trinitrotoluene Based Melt
Cast Explosives ContainingAluminumby Laser Induced Breakdown Spectroscopy.
Cent Eur J Energ Mater (2019) 16:3–20. doi:10.22211/cejem/104383

37. Gottfried JL, Harmon RS, De Lucia FC, and Miziolek AW. Multivariate
Analysis of Laser-Induced Breakdown Spectroscopy Chemical Signatures
for Geomaterial Classification. Spectrochimica Acta Part B: At Spectrosc
(2009) 64:1009–19. doi:10.1016/j.sab.2009.07.005

38. Liu K, Wang QQ, Zhao H, and Xiao YL. Differentiation of Plastic with Laser
Induced Breakdown Spectroscopy. Spectrosc Spectr Anal (2011) 31:1171–4.
doi:10.3964/j.issn.1000-0593(2011)05-1171-04

39. Shaik AK, Epuru NR, Syed H, Byram C, and Soma VR. Femtosecond Laser
Induced Breakdown Spectroscopy Based Standoff Detection of Explosives and
Discrimination Using Principal Component Analysis. Opt Express (2018)
26(7):8069–83. doi:10.1364/OE.26.008069

40. Shaik AK, and Soma VR. Standoff Discrimination and Trace Detection of
Explosive Molecules Using Femtosecond Filament Induced Breakdown
Spectroscopy Combined with Silver Nanoparticles. OSA Continuum (2019)
2(3):554–62. doi:10.1364/OSAC.2.000554

41. Soma VR, and Shaik AK. Femtosecond Filaments for Standoff Detection of
Explosives. Def Sc Jl (2020) 70(4):359–65. doi:10.14429/dsj.70.14962

42. Gottfried JL, De Lucia FC, Munson CA, and Miziolek AW. Double-pulse
Standoff Laser-Induced Breakdown Spectroscopy for Versatile Hazardous
Materials Detection. Spectrochimica Acta Part B: At Spectrosc (2007) 62:
1405–11. doi:10.1016/j.sab.2007.10.039

43. DeLucia FC, andGottfried JL. Influence ofVariable Selection onPartial Least Squares
Discriminant Analysis Models for Explosive Residue Classification. Spectrochimica
Acta Part B: At Spectrosc (2011) 66:122–8. doi:10.1016/j.sab.2010.12.007

44. Gottfried JL, De Lucia Jr. FC, Jr., and Miziolek AW. Discrimination of Explosive
Residues on Organic and Inorganic Substrates Using Laser-Induced Breakdown
Spectroscopy. J Anal Spectrom (2009) 24:288–96. doi:10.1039/b818481j

45. Pinkham DW, Bonick JR, and Woodka MD. Feature Optimization in
Chemometric Algorithms for Explosives Detection. SPIE-IntSoc Opt Eng
(2012) 8357:K1–7. doi:10.1117/12.923387

46. Sirven J-B, Sallé B, Mauchien P, Lacour J-L, Maurice S, and Manhès G.
Feasibility Study of Rock Identification at the Surface of Mars by Remote
Laser-Induced Breakdown Spectroscopy and Three Chemometric Methods.
J Anal Spectrom (2007) 22:1471–80. doi:10.1039/b704868h

47. Rao EN, Mathi P, Kalam SA, Sreedhar S, Singh AK, Jagatap BN, et al.
Femtosecond and Nanosecond LIBS Studies of Nitroimidazoles: Correlation
Between Molecular Structure and LIBS Data. J Anal Spectrom (2016) 31(3):
737–50. doi:10.1039/C5JA00445D

48. Kalam SA, Murthy NL, Mathi P, Kommu N, Singh AK, and Rao SV.
Correlation of Molecular, Atomic Emissions with Detonation Parameters in
Femtosecond and Nanosecond LIBS Plasma of High Energy Materials. J Anal
Spectrom (2017) 32(8):1535–46. doi:10.1039/C7JA00136C

49. Vance T, Reljin N, Lazarevic A, Pokrajac D, Kecman V, Melikechi N, et al.
Classification of LIBS Protein Spectra Using Support Vector Machines and
Adaptive Local Hyperplanes. In: The 2010 International Joint Conference on
Neural Networks (IJCNN); 18–23 July, 2010; Barcelona, Spain. IEEE (2010). p. 978.

50. KiraK, andRendell LA.APracticalApproach toFeature Selection.Proc 9th IntWork-shop
Machine Learn (1992) 1992:249–56. doi:10.1016/B978-1-55860-247-2.50037-1
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