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We investigate the control landscapes of closed n-level quantum systems beyond

the dipole approximation by including a polarizability term in the Hamiltonian. The

latter term is quadratic in the control field. Theoretical analysis of singular controls

is presented, which are candidates for producing landscape traps. The results for

considering the presence of singular controls are compared to their counterparts in the

dipole approximation (i.e., without polarizability). A numerical analysis of the existence

of traps in control landscapes for generating unitary transformations beyond the dipole

approximation is made upon including the polarizability term. An extensive exploration

of these control landscapes is achieved by creating many random Hamiltonians which

include terms linear and quadratic in a single control field. The discovered singular

controls are all found not to be local optima. This result extends a great body of recent

work on typical landscapes of quantum systemswhere the dipole approximation is made.

We further investigate the relationship between the magnitude of the polarizability and

the fluence of the control resulting from optimization. It is also shown that including a

polarizability term in an otherwise uncontrollable dipole coupled system removes traps

from the corresponding control landscape by restoring controllability. We numerically

assess the effect of a polarizability term on a known example of a particular three-level

3-system with a second order trap in its control landscape. It is found that the addition

of the polarizability removes the trap from the landscape. The general practical control

implications of these simulations are discussed.

Keywords: quantum control, dipole approximation, polarizability, landscape topology, singular control

1. INTRODUCTION

There is extensive interest in quantum control, and in quantum control landscapes, which arises
from the fundamental desire to manipulate quantum systems for both basic scientific reasons
and for technological applications [1–13]. The field has been driven by many experimental and
theoretical advances. Experimental domains extend from atoms and molecules including the
control of chemical reactions [14, 15], out to manipulating biological systems [16]. One area of
application for quantum control which has attracted interest is quantum information science [17–
19] as optimal control offers the promise of discovering fields to implement quantum gates with
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high fidelity and to minimize errors introduced by decoherence
and environmental noise. Typical desiderata in quantum control
include driving a system to a desired density matrix ρ,
maximizing the expectation value of an observable 〈O〉, and
driving a unitary propagator U(t) to a desired goal gate
W ∈ SU(n) (i.e., typical in quantum information science). In
the latter case, one often seeks a minimum time control for
maximizing the fidelity of the desired physical transformation
W in order to better ensure that a gate is implemented with
minimal decoherence induced by the environment. In some
cases of minimum time optimal control, the associated control
landscapes are known to have singular critical points [11, 20]
resulting from singular controls. Accordingly, we focus on the
unitary transformation fidelity landscape with a fixed end time
T well above the minimal time.

In this work, we study the landscapes with numerical
simulations, illustrated for the control of the quantum propagator
of closed quantum systems having n levels with a single control
field, thereby extending existing studies by moving beyond
the typical dipole approximation through the inclusion of a
polarizability term in the Hamiltonian [21, 22]. This extension
is motivated by the fact that the polarizability term is inherently
present in many physically realistic conditions, including the case
of controlling molecules where the control field can result in
a redistribution of charge. We specifically assess the potential
for singular controls (i.e., see section 3 for basic definitions
and relevant aspects of singular controls) to introduce traps
into the landscapes of such systems in order to understand
when gradient based (or any local) optimization algorithms
should succeed in discovering high fidelity controls. Such
findings aid in determining which algorithms are appropriate
for use in simulations and in automated pulse discovery in
the laboratory [2].

Given a prescribed final time T ∈ R and the desire to evolve
the n-level quantum system to a specific goal gateW ∈ U(n) (i.e.,
the unitary Lie group), we specify the fidelity of evolution as:

J[U(T)] =
1

n2

∣∣∣Tr
[
W†U(T)

]∣∣∣
2
, (1)

whose maximum over all U ∈ U(n) is 1p. Supporting the
landscape analysis of J as a functional of the control field are
three assumptions (see section 2) whose satisfaction, at least in
the dipole approximation, enables a theoretical analysis of the
landscape topological features. The nature of such features are
essential to understand in deciding the best algorithms to use
for selecting an optimal control field, and even assessing if an
optimal control exists. We note that the form of Equation (1)
can be alternatively chosen as J̃(U(T)) = ℜ

(
Tr(W†U(T))

)
in

the case ofU(n), but it is not recommended to use the latter form
for SU(n) ( i.e., the special unitary group) as traps can arise in
the landscape; the fidelity in Equation (1) should form a trap free
landscape for SU(n).

The critical point topology of the function J is discussed
in detail in [23], where it is shown that it possess only global
maxima, global minima and saddle points when considered as a
function of U; that is, J possess no so-called kinematic landscape

traps.We study the control landscape of the cost function: F[E] =
J[VT[E]] where E is the control field, andVT is the end-pointmap
[see [11, 24] for a more detailed and general discussion of this
map in control theory]. Thus, this work will distinguish between
the kinematic landscape J and the dynamic analog F. VT is a
mapping from the space of controls to the corresponding final
time solution U(T) to the Schrödinger equation:

U̇(t) = −iH(t)U(t). (2)

Throughout this work h̄ will be set to 1. The type of Hamiltonian
we study has the following form:

H(t) = H0 + E(t)H1 + E2(t)H2, (3)

where iH0, iH1, iH2 ∈ u(n). This is the first step toward including
higher order terms beyond the dipole approximation (where only
the first power of E is included) from the expansion:

H(t) = H0 +

∞∑

k=1

Ek(t)Hk, (4)

wherein the sequence {Hk} generally reduce in matrix norm
with increasing k in keeping with diminishing higher order
polarization effects. The terms Hk have a clear physical
interpretation as the ability of the external field to redistribute
the charge within a system so that an induced dipole is created.
In a more physically complete model of a molecular system
interacting with an external vector field, the term Hk would
be replaced by a kth-order tensor. Some work on the control
under these conditions can be found in [25–27]. For a physical
discussion of this type of system and the interpretation of H3

(i.e., the hyper-polarizability) and the terms beyond this see [28].
While the control landscapes of quantum systems have been
studied intensively, landscape analysis of systems including the
effect of polarizability, even at the level of H2, has not yet been
performed. The present work provides numerical evidence on the
affect of H2 in the presence of the H1 term.

In this work we address the status of the assumptions
of quantum control landscape analysis applied to systems
which have a polarizability term H2 present. In particular,
we numerically investigate random quantum systems, with a
polarizability term, for traps in their control landscapes. For a
few dipole control system cases it has been shown that zero or
some constant control is singular critical, and thus a potential
trap.With a polarizability term present, we show numerically that
no traps are present for initial controls near to the zero field for a
specific example of such a system. We also assess the effect of the
addition of a polarizability term on the controllability of systems
which would not otherwise be controllable. In a large number of
additional cases with n = 4 and random tuples (H0,H1,H2,W)
we find no numerical evidence of traps being present.

2. THE THREE ASSUMPTIONS OF
LANDSCAPE ANALYSIS

Satisfaction of the following three assumptions imply a trap free
landscape in the caseH = H0 + E(t)H1. This scenario provides a
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backdrop to consider the roles of H2 later in the paper. The three
assumptions are:

1. The system is globally controllable. That is, beyond some
critical time T∗, all U ∈ U(n) are reachable using some
control, such that every unitary U(T) can be implemented
by some control E. Equivalently, the end-point map VT is
globally surjective.

2. The system is locally controllable. That is, VT is
locally surjective.

3. The controls are unconstrained, such that all control functions
can be implemented without restriction.

Various studies [7, 8] as well as mathematical analysis [29–31]
are consistent with the assumptions above ensuring that a given
quantum control landscape should be trap free. However, the
weakest sufficient conditions assuring a trap free landscape are
not known. Consideration of the assumptions above are relevant
to the paper, as we will numerically show that violation of either
assumptions (1) or (2) can be lifted by the presence of a randomly
chosen polarizability term H2.

In the context of quantum control (for systems without the
polarizability term), it has been shown [32] that assumption
(1) regarding global controllability, generically holds when
H0,H1 are chosen at random. More precisely, it is shown that
controllability fails only for a null set of pairs (iH0, iH1) ∈ u(n)×
u(n) [equivalent to full accessibility, such that every point on
U(n) can be reached using some control at some final time T].
A controllability analysis of systems which include polarizability
has been performed in [27] and controllability has been found to
be similarly generic, but this advance has yet to be folded into a
full landscape topology analysis (i.e., see remarks in section 5).

It has further been shown [6] that there exists a critical time
T∗ such that ∀T ≥ T∗ the system is fixed-time controllable
as long as it is controllable. If iH0, iH1 generate u(n) and the
final time T is large enough, one can always find a control E
such that U(T) = W for any goal operator W in U(n). In
all simulations in this work a sufficiently large time has been
chosen so that all systems are fully accessible whenever they are
controllable. It is thus guaranteed that the first assumption will
be satisfied for almost all systems with Hamiltonian terms H0

andH1 generated at random and controlled over sufficiently large
intervals, as the set for which this fails is null. This circumstance
does not imply that there are no uncontrollable systems in reality
or that they cannot be deliberately mathematically constructed.
Neither does it imply that the uncontrollable cases [6, 33], or
additional cases, for examples, with insufficient resources [13]
do not have interesting control landscape structure potentially
including traps.

Assumption (2) has been shown to be violated for some
specific systems [6] and potential effects on gradient based
searches for optimal controls has been discussed in [11, 30]. See
[31] for a refined discussion of assumption (2) in order to obtain
a weaker sufficient condition for a trap free landscape based on
the geometric notion of local transversality of the end point map
from the level sets of fidelity rather than local surjectivity of this
map [31]. It has been further shown that in two level systems,
singular controls never represent traps [34, 35] on the landscape

of ensemble average of observables. In randomly generated four
level systems, singular controls are generally saddles within
control space for the task of controlling the density matrix [11]
for systems in the dipole approximation. It has not, however, been
rigorously proven that all singular controls are always saddles to
some order (i.e., where order refers to second or higher order
derivatives of F[E]), despite mounting corroborating numerical
evidence that this is the case.

Assumption (3) concerns resources, and is satisfied if no
restriction is imposed on the control. Even in simulations
resources have limits due to computational considerations,
but this situation tends not to be a serious issue. However,
in laboratory practice, there are always restrictions on the
controls, although their influence is application specific. Control
restrictions include the local peak amplitude of the fields, the
total achievable field fluence, and also the ability to accurately
implement and vary the control field. Typical scenarios are
those of the control of molecules by electromagnetic fields.
Importantly, access to control resources continues to increase.
As such, this matter is a technological issue rather than a
fundamental one. Noise is also always present in reality, and if
the noise is weak it can be treated perturbatively; the present
work will not treat the impact of noise and only considers
closed systems.

In this work we will assess if systems violating assumptions
(1) or (2) and exhibiting traps on the landscape created by H0

and H1 remain to have traps upon including the polarizabillity
term. As it is known that the failure of either of these latter
assumptions can indicate traps [6, 11, 33], we follow [11]
attempting to understand the singular controls for systems
beyond the dipole approximation.

3. SINGULAR CONTROLS AND SINGULAR
CRITICAL POINTS

The work in [1] first discussed that singular controls could
in principle introduce saddle type critical points, or even true
local optima, into quantum control landscapes, but this was
conjectured to be rare in practice. This conjecture has since been
backed up with extensive simulations [11, 30]. Several studies
[4–6, 11, 30] have discussed the potential effect of the existence
of singular controls on the associated quantum landscapes and
the significance of some of these findings has been debated
[4, 5, 36, 37].

If the time-dependent Hamiltonian H(t) of a (finite
level) quantum system undergoes an arbitrary infinitesimal
transformation H(t) 7→ H(t) + δH(t) then the end-point map
VT[E] : = U(T) varies according to:

U†(T)δU(T) = i

∫ T

0
U(t)δH(t)U†(t)dt ∈ u(n). (5)

In the dipole approximation with a single control field, the
Hamiltonian takes the form: H(t) = H0 + E(t)H1 and
thus a variation δE(t) of the control induces a corresponding
variation δH(t) = δE(t)H1. The latter formula put into in
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Equation (5) yields:

U†(T)δU(T) = i

∫ T

0
δE(t)U†(t)H1U(t)dt. (6)

A control E is said to be singular if there exists at least one
B ∈ su(n) such that for all δE:

〈
U†(T)δU(T),B

〉
= 0, (7)

where 〈·, ·〉 is the trace inner product on su(n). Applying the
fundamental lemma of the calculus of variations [38] and then
differentiating Equation (7) twice with respect to t yields an
implicit formula for a singular E mathematically connecting
it with a so called singular trajectory U(t) in the case of a
system in the dipole approximation [11]. Unfortunately, an
explicit formula for the singular controls is not known and
appears impossible to obtain by any method known to the
authors. Intuitively, a singular control has the property that the
corresponding end point U(T) cannot be “steered” in at least one
particular direction on U(n) by applying a small (infinitesimal)
variation to the control field δE. It is noteworthy that, although a
specific inner product is invoked here, the singularity of any given
control does not depend on which inner product is chosen and
any choice yields the same set of singular controls. Singularity of
a given E is equivalent to the (Fréchet) derivative δVT/δE(t) being
rank deficient for the field E in control space. By substituting
Equation (6) into Equation (7) and applying the fundamental
lemma of the calculus of variations, one sees that a singular
control in the dipole approximation must satisfy:

〈iU†(t)H1U(t),B〉 = 0, ∀t ∈ [0,T]. (8)

In the case of Equation (3), where the Hamiltonian contains the
additional polarizability term E2(t)H2, the singular controls take
a novel form. Equation (7) in this case implies:

〈
i

∫ T

0
δE(t)U†(t)

[
H1 + 2E(t)H2

]
U(t)dt,B

〉
= 0. (9)

After again applying the fundamental lemma of calculus of
variations and rearranging (assuming 〈iU(t)†H2U(t),B〉 6= 0
∀t ∈ [0,T]), we have:

E(t) = −
1

2

〈iU†(t)H1U(t),B〉

〈iU†(t)H2U(t),B〉
, (10)

which is in contrast to the results on controlling the density
matrix in the dipole approximation found in [11]; in the latter
case a second derivative with respect to t of the formula analogous
to (8) was required to determine the corresponding form of the
singular controls. However, a similar formula can be found in the
case of controlling the propagator in the dipole approximation
and it requires an identical differentiation procedure, which
we do not include in this work. At points in time where the
denominator in Equation (10) satisfies 〈iUtH2U

†(t),B〉 = 0
further differentiation (with respect to t) and rearrangement

[i.e., analogous to the procedure found in [11] in a general
form] results in a suitable formula for singular controls with the
polarizability term present. The number of derivatives required
to find a singular control is known as the order of a singular
control and the quantity: n2−rank(δVT) is known as the co-rank
of a singular control. The co-rank corresponds to the number
of linearly independent dimensions of choices for B to which
the image of δVT is orthogonal. In contrast to the case without
the polarizability term found in [11], a differential equation is

now found as dE
dt

remains in the resulting equation. The full
significance of this difference in form merits investigation and is
left as a basis of further work.

A singular control may correspond to a singular critical point
of the map F. That is, a singular control (satisfying Equation 7) E
may have the property that:

〈U†(T)δU(T),U†(T)∇J
∣∣
U(T)

〉 = 0, ∀δE. (11)

These are candidates for traps (i.e., local optima) in the landscape
F as they are controls for which ∇F

∣∣
E
= 0. These controls are

critical points of F for which VT[E] = U(T) is not a critical point
of J.

The analysis of which singular critical controls, if any, are true
traps requires an assessment of the Hessian index of the end-
point map evaluated at a singular critical point; such a task is
computationally intensive. With or without polarizability, which
controls are singular does not depend on the function J being
optimized, but only on the form of the Hamiltonian. However,
which controls are singular critical points does depend on J
through ∇J. Insight into the issue can be gained by examining
the derivative of F by applying the chain rule:

δF

δE
=

dJ

dVT[E]
◦

δVT[E]

δE
. (12)

If a control E is singular then δVT [E]
δE fails to be full rank. One

sees that a control being singular can, but does not always,
introduce a critical point of F (i.e., a control E for which δF

δE = 0).
In particular, only when δU(T) cannot vary (when all δE are
considered) in the direction of increasing J (i.e., in the direction
of the gradient of ∇J) is there a critical point of F. However,
such singular points may still not be traps if a pathway up the
landscape is accessible via higher order derivatives in the Taylor
expansion of the end-point map. Thus, generically, we expect
that there is very little chance for a singular control to become
a local trap along the search for global optimal controls. The
remainder of the paper will expand upon this remark to consider
the impact of a polarizability term being present in various
scenarios, including the violation of assumptions (1) or (2).

4. NUMERICAL SIMULATIONS OF
QUANTUM CONTROL LANDSCAPES
INCLUDING POLARIZABILITY

In order to perform numerical optimization we approximate the
smooth control field E by piecewise constant functions with M
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pieces permitting significant freedom in E. This procedure is
in keeping with a well-known theorem about approximating a
general smooth function with a piecewise constant form [39].

The final time propagator, with the polarizability H2 term,
associated to the control E is

VT :E 7→ U(T) =

M∏

k=1

e−i(H0+EkH1+E2
k
H2)1T , (13)

where Ek is the amplitude of the kth piecewise-constant sub-pulse
and 1T = T/M. The sequence in the product of Equation (13)
is time ordered. The form in Equation (13) is used to optimize
E with the gradient ascent algorithm (often known as GRAPE or
gradient ascent pulse engineering in quantum control) [40].

In order to statistically assess for the existence of traps in the
landscape associated with a given Hamiltonian, the algorithm
must be repeated many times with different initial random fields
E. If the algorithm consistently reaches the optimum, regardless
of the starting point, this finding would indicate that the given
Hamiltonian’s landscape likely has no traps for generating a
desired unitary transformationW. All calculations are performed
with the system variables as dimensionless.

4.1. The Effect of Adding a Polarizability
Term to a Globally Uncontrollable System
With Traps
It is known that the landscapes of globally uncontrollable systems
can contain traps [33]. Here we investigate whether or not
including a polarizability term may eliminate the presence of
such a trap. The system we study possess drift and control terms,
respectively, given by:

H0 =




−2 0 0 0 0
0 −1 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 2



, (14)

H1 =




0 1 0 0 0
1 0 1.225 0 0
0 1.225 0 1.225 0
0 0 1.225 0 1
0 0 0 1 0



. (15)

The Lie algebra formed by H0 and H1 is rank deficient showing
that this system is not globally controllable [i.e., violation of
assumption (1) in section 2]. The target gate is chosen as W =

e−i π2 H1 . This globally uncontrollable system has traps [33], in
particular at J = 0.04. We note that this system can be viewed
as a controlled molecular rotor [33], but such character will not
be exploited here, particularly in consideration ofH1 andH2 both
driven by the same scalar field E(t) in keeping with the model in
Equation (3) used throughout the paper.

In order to assess the effect of adding a polarizability term, we
first identify a sub-optimal field [33] corresponding to the trap
J = 0.04. Then, we select the polarizability term H2 randomly
as a 5 × 5 complex Hermitian matrix with norm ‖H2‖ = λ,

FIGURE 1 | The optimization from an initial control field that traps the system

at J = 0.04 in the absence of polarizability (λ = 0). The presence of the

random polarizability term (see the text for further details) steers the

optimization away from the trap.

and the optimization is started from the preselected field with
λ = 0, 0.05, 0.1, 0.2, where λ = 0 corresponds to the case with
only the dipole interaction H1. It can be seen in Figure 1 that
the presence of polarizability steers the optimization away from
the trap and on to full fidelity. section 4.4 returns to the globally
uncontrollable Hamiltonian formed by Equations (14) and (15)
for an examination of the landscape with random choices for W
and H2.

4.2. The Effect of Adding a Polarizability
Term to a System With a Second-Order
Trap
In this section we assess the potential for the addition of
a polarizability term to remove a trap from the landscape
of a system known to possess one due to the loss of local
controllability [i.e., violation of assumption (2) in section 2]. This
example can be found in [6] [i.e., and in [30] where it is referred
to as “system E”]:

H0 =



1+ π

1000 0 0
0 1 0
0 0 2


 , H1 =



−5

√
2
3 −1 0

−1 −4 −1
0 −1 −1


 , (16)

W =



ei

2π
3 0 0

0 −iei
3π
4 0

0 0 −ieiφ


 exp (−iH0 · 1000) .

The field E = 0 is known to be a second order trap for this system.
We generated 1,000 random polarizability matricesH2 ∈ u(3)

( 1
10 of the norm of H1), and for each case a random initial field
was generated in the vicinity of the zero field. It was found that,
for initial fields arbitrarily close to the zero field, all gradient
ascent runs converged to full fidelity. As such, we can conclude
that the dipole trapping effect due to Equation (16) observed in
[30] can be counteracted by the addition of a polarizability term.
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4.3. Observed Properties of Generic
Systems With a Polarizability Term
In this section, we assess if the addition of a polarizability term
can introduce traps into the landscapes of systems known to have
none in practice without a polarizability term; that is, each of the
cases utilizes randomly chosenH0 andH1, which are known [31]
to almost always produce trap free landscapes forW. All the cases
here and in section 4.4 have n = 4 levels, unless otherwise stated.
We numerically analyze the landscape of general systems of the
form in Equation (3), which include polarizability. One thousand
random tuples (H0,H1,H2,W = eiA) were generated and their
landscapes similarly analyzed with 100 runs, each with a random
initial field E(t). The real and imaginary elements of the complex
Hermitian matrices H0, H1, H2, and A were drawn separately
from a uniform distribution over [−1, 1]. This procedure is used
in the other studies below. The initial fields E(t) were uniformly
and randomly generated to have E(t) ∈ [−1, 1] for all discretized
components for t ∈ [0,T], but the components were unrestricted
in magnitude during the optimization. The resultant landscapes
were found to be trap free, as all runs converged within practical
computational timescales to fidelity above 0.99.

The term H2 typically has a norm which is less than H1 in
physical applications. In situations where a control is exploiting
the effect of H2 to achieve the implementation of a desired
gate W, one might reasonably conjecture that a small size
polarizability H2 requires a very strong field or very high total
field fluence. The fidelity is plotted along with the field fluence
of E(t) in Figure 2 vs. algorithm iteration for three cases of
100 randomly generated tuples (H0,H1,H2,W). In all cases the
fidelity reached at least 0.99. The fluence of a field E is defined as:

‖E‖ =
1

T

∫ T

0
E2(t)dt.

All the simulations start from a small-fluence initial guess
of the control field, and the fluence increases with iteration.
When the polarization H2 is weak (compared with the norm of
H1, as in Figures 2A,B, the fluence significantly increases with
iteration, suggesting that the polarizability plays an important
role requiring sufficient fluence. When H1 and H2 have the
same norms (as in Figure 2C), the controls do not significantly
increase in fluence with iteration. This case suggests that the
effects of polarizability can be exploited for control without a
significant rise in field amplitude over iteration. Moreover, in
all cases and to some degree in Figure 1 the inflection points in
the fidelity vs. iteration curves likely indicate that the climbing
trajectories come near saddles, which are known to exist in the
case ofH = H0+E(t)H1 and are expected to be present whenH2

is included.

4.4. The Neighborhood of Singular Controls
In this section, we explore the neighborhood of singular controls
to check for trapping behavior in several types of systems. It is
not known generally what proportion of singular controls are
singular critical controls, and what proportion of singular critical
controls are traps. Here we assess if singular controls play a
significant role in determining the topology of critical points

on quantum control landscapes for systems with a polarizability
term present. Following the work in [11], one can numerically
solve the Schrödinger equation to obtain singular controls E(t).
This can be achieved by substituting Equation (10) into Equation
(3) and then substituting the resultingHamiltonian into Equation
(2) to obtain the initial value problem (i.e., in Equation 17) it is
understood that E(t) is given by Equation (10), thereby making
Equation (17) highly non-linear in U(t):

U̇(t) = −i
[
H0 + E(t)H1 + E2(t)H2

]
U(t), U(0) = I. (17)

A solutionU(t) to this system of equations is a singular trajectory
emanating from the group identity at t = 0. Equation (10)
shows that the set of all singular trajectories is parameterized
by B ∈ su(n). From a numerical solution of Equation (17), the
corresponding singular control can be obtained by substituting
the singular trajectory U(t) into Equation (10).

In order to test if any given singular control E is a trap, it is
possible to explore the neighborhood of E by evaluating F[E+δE]
formany small δE and assessing the sign of δF = F[E+δE]−F[E].
If two linearly independent δE can be found such that δF has
different signs (i.e., one positive and one negative) then the point
Emust be a saddle in control space rather than a trap. Two types
of systems were assessed in this respect.

In the first scenario 10,000 tuples (H0,H1,H2,B,W) were
uniformly and randomly generated, as previously described, and
the corresponding singular control was found numerically by
solving Equation (17) in order to obtain a singular trajectory and
thus, in turn generate a singular control from Equation (10). In all
cases, no traps were found, as an average of 3.23 variations δE of
the control were required to identify twowhich resulted in fidelity
variations of opposite sign. Furthermore, the highest number of
trial variations required for any singular control was 70. This
behavior indicates that all of the singular controls examined are
saddles on the control landscape.

The second class of Hamiltonians assessed were those in
Equations (14) and (15) with n = 5 forH0 andH1. Ten thousand
tuples (H2,B,W) were generated uniformly at random and the
corresponding singular control was found numerically by solving
Equation (17) in order to obtain a singular trajectory and thus
a singular control, as before. In all cases, no trapping behavior
was found, and the highest number of trial variations required for
assessing the nature of any singular control was 200. This again
indicates that all of the singular controls examined are saddles
on the control landscape, even when the landscape derived from
H = H0 + E(t)H1, which produces at least one trap (i.e., see the
discussion in section 4.1).

From these cases upon visual examination of many singular
controls, they can be seen to exhibit characteristic features. Most
notably, there are two distinct classes. The dominant first class
are all physically plausible fields as they are smooth and bounded.
Controls in the second class all possess at least one blow-up point
where the control becomes both unbounded and discontinuous
(i.e., they possess infinite jump discontinuities, similar to the
reciprocal function f (x) = 1

x at x = 0), as such, they are clearly
excluded from physical consideration. This behavior arises from
the denominator in Equation (10) passing through zero. The
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FIGURE 2 | Fidelity and fluence ‖E‖ plotted verses algorithm iteration in three cases from weak to strong randomly chosen polarizability: (A) ‖H2‖ ∼ 0.01‖H1‖, (B)

‖H2‖ ∼ 0.1‖H1‖, and (C) ‖H2‖ ∼ ‖H1‖.

comments below Equation (10) explain how to deal with this
behavior, but it was not explored in the simulations here.

For each matrix B ∈ su(4), there is a singular control
defined by Equations (17) and (10). Using randomized gradient
decent for B, we can produce singular critical controls, rather
than just singular ones. We thus optimize over B such that it
is co-linear to U†(T)∇J

∣∣
U(T)

(to a numerical tolerance of 0.001

radians). For all cases, U(T) was not found to be a kinematic
critical point of J(U(T)). In the case of su(4), this procedure
consists of minimization over the 15 parameters of su(4). One
parameter can be discarded as the formula for a singular control
in Equation (10) doesn’t depend on the norm of B due to the
linearity of the numerator and denominator in B. Thus, it is
possible to restrict the search to the unit norm of B.We found that
this search did not always succeed in finding a singular critical
control; only about 5% of searches succeeded. This suggests that
the set of singular critical controls is very small in the set of
singular controls.

In order to explore the latter prospect, we studied the structure
of the control landscape in systems with randomly generated
tuples (H0,H1,H2,B,W) as before. We analyzed the possibility
of whether a singular critical control E is a trap on the control
landscape of F by making many small variations E′ : = E +

δE around E. For each E′ a randomized gradient ascent was
initiated. If a singular critical E were a true trap, rather than
a saddle, this would be identified by at least some gradient
ascent runs returning back to E (or a control near to E of the
same fidelity) when initiated from E + δE. If full fidelity was
reached during the run, then E cannot be a trap. One hundred
tuples (H0,H1,H2,B,W) were generated and for each tuple 100
singular critical controls were created as described in the last

paragraph. For each singular critical control E, 200 points E
′

in the neighborhood of E were generated and an associated
gradient-ascent run was completed. The norm of δE was chosen
to be random within [0, 0.001] (which is typically very small
compared to the norm of E(t)) so as to ensure exploring close
to the candidate trap and the behavior around it. We found
that all runs converged to F[E] ⋍ 1.0 and displayed similar
convergence rates as those cases seen when initial controls were
chosen at random from the whole control space. Lastly, the
singular critical controls generally exhibited no clear visually
differentiating features when compared to the singular, non-
critical controls. As such, no example is shown; also see the
remarks earlier in this section regarding the denominator in
Equation (10).

5. CONCLUSIONS, OUTLOOK, AND
FURTHER STUDIES

We have shown that upon including a polarizability term in
the Hamiltonian, and thus moving beyond the standard dipole
approximation, a change in the character of quantum control
landscapes is seen in some relevant n = 3, 4, and 5 level cases.
We have also shown that there is a theoretical difference between
the nature for the singular controls in the cases with and without
the polarizability term.

There are two central conclusions from this work:

1. Including a polarizability term H2 does not introduce traps
into the landscape for typical tuples (H0,H1,H2,W).

2. Including a random polarizability term can remove traps from
the landscapes for a class of otherwise uncontrollable systems
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based upon H0 and H1, including the situation of a trap at
zero field.

It has been shown that almost all Hamiltonians based up on
H0 and H1 do not correspond to traps in quantum control
landscapes with the exceptions forming a null set of systems [31].
However, this result does not exclude exceptions to particularly
violating assumptions (1) or (2) of section 2. Concerning
satisfaction of global or local controllablity, this paper considered
a few known exceptions and showed that the addition of a
random H2 term returned the augmented system to normal
behavior [i.e., the original (H0,H1) driven traps were removed].

In this work for systems based on arbitrary (H0,H1,H2,B,W),
an algorithm was devised to search for singular critical controls
and analyze if they are traps by examining F in a neighborhood of
any discovered singular critical controls. Effectively, this process
is exploring the nature of the eigenvalues of the Hessian of
the end-point map (i.e., and possibly the impact of higher
order derivatives of F[E] playing a role) at the singular critical
points. In [11] no trapping singular controls were found in
the case of linear coupling H1 and the control of the density
matrix. Our work extends this finding in two respects. Firstly,
we study the control of the full quantum propagator U(t).
Secondly, we study the role of non-linear polarizability coupling
H2 along with H1. Future work should include repeating the
numerical analysis of [11] in the case of the control of the density
matrix and the observable maximization task for systems with
a polarizability term and even higher order coupling terms in
the Hamiltonian.

This work provides numerical evidence to bolster the claim
that trap free landscapes are ubiquitous in the practice of
quantum control. We conjecture that including more terms and
their tensor character in the expansion in Equation (4) will
have the general effect of removing traps from the landscape
by adding novel dynamical mechanisms induced by the controls
via couplings to an external field or fields (in the case of
tensor Hk). This conjecture simply states that nominal system
“complexity” aids in increasing the likelihood that assumptions

(1) and (2) will hold, naturally assuming that adequate resources
are available for this purpose [i.e., satisfaction of assumption
(3)]. An assessment of this conjecture should form the basis
for further analytical and numerical investigation. A possible
path to proving this conjecture may lie in combining the
proof of global controllability [27] with an extension of local
controllability [41]. Importantly, in the laboratory with atoms
andmolecules additional terms beyond the dipole approximation
will inherently be present, even if they are weak. In summary, this
work goes beyond the majority of theoretical studies in quantum
control and quantum control landscapes, which investigate
systems restricted to the dipole approximation. The tantalizing
numerical findings in the paper and the generic existence of
molecular polarization warrants an assessment of the physical
conjecture made above, which may be captured by the statement
that system complexity appears to be a friend for finding
favorable control landscape topology.
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