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Material decomposition in computed tomography is a method for differentiation and

quantification of materials in a sample and it utilizes the energy dependence of the linear

attenuation coefficient. In this study, a post-image reconstruction material decomposition

method is constructed for a low-energy micro-CT setup using a photon counting

x-ray detector. The low photon energy range (4–11 keV) allows for K-edge contrast

separation of naturally occurring materials in organic tissue without the need of additional

contrast agents. The decomposition method was verified using a phantom and its

capability to decompose biomedical samples was evaluated with paraffin embedded

human atherosclerotic plaques. Commonly, the necessary dual energy data for material

decomposition is obtained by manipulating the emitted x-ray spectrum from the source.

With the photon counting detector, this data was obtained by acquiring two energy

window images on each side of the K-edge of one material in the sample. The samples

were decomposed into three materials based on attenuation values in manually selected

regions. The method shows a successful decomposition of the verification phantom

and a distinct distribution of iron, calcium and paraffin in the atherosclerotic plaque

samples. Though the decompositions are affected by beam hardening and ring artifacts,

the method shows potential for spectral evaluation of biomedical samples.

Keywords: material decomposition, micro tomography, x-ray imaging, photon-counting detectors,

biomedical imaging

1. INTRODUCTION

In conventional x-ray imaging, contrast depends on material density. While e.g. soft tissue
gives good contrast against bone, materials with similar density are harder to distinguish. This
can be circumvented by exploiting the energy dependence of the linear attenuation coefficient
µE as proposed by [1]. In particular, the element specific absorption edges allow for material
decomposition, when energy bins can be selected in the vicinity of the edge. Acquiring images
with different x-ray energies will thus allow for separation of materials with similar density based
on their specific absorption edges [2, 3].

By applying material decomposition, additional information can be obtained from a sample.
It can be used to separate materials that are indistinguishable from another in conventional
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imaging as shown by [4]. Further, materials and theirs
concentrations in a sample can be assessed, providing
spectroscopic information. This approach can greatly simplify
segmentation of computed tomography (CT) scans and
allows to extract material quantities or concentrations in a
non-destructive way.

Typically, material decomposition is performed in dual energy
CT scanners. A common method with clinical CT scanners
is to manipulate the emitted spectrum of the x-ray source by
changing the acceleration voltage, commonly known as the dual-
kVmethod [1, 5, 6]. Utilizing the non-linearity of the attenuation
coefficients of different elements, materials can be separated.
However, this approach requires two consecutive acquisitions.
Alternatively, systems with two x-ray sources and detectors can
be used as demonstrated by [7] and [8]. A different approach
is to use a photon counting detector with multiple energy-
discriminating thresholds as shown by [9–11]. Such a detector
allows to create energy bins covering a certain energy range.
Each individual photon creates a signal proportional to its energy,
which is only counted if exceeding the threshold energy [see
[12]]. Photon counting detectors are showing great potential
for pre-clinical and clinical applications as outlined by [13–16].
An alternative approach is to measure the time-over-threshold
(ToT), where the duration of a signal, which is proportional to
its energy, is measured and then related to a specific energy as
implemented for the Timepix detector developed by [17].

In clinical settings, with x-ray energies well above 15 keV and
decimeter sized objects (such as patients), the elements available
of K-edge contrast are those with Z ≥ 37. However, most of
the elements relevant in organic tissue are in the periods 1–4 in
the periodic table (Z ≤ 36), and consequently a contrast agent
containing an element with an absorption edge in the high energy
range must be added to make use of this effect. Common x-ray
contrast agents contain iodine (Z = 53) or gadolinium (Z = 64)
with K-shell binding energies above 30 keV (EB = 33 and 50 keV,
respectively), and can be exploited in the clinical scenario [2].
In order to use the K-edge attenuation discontinuities of lighter
elements, such as iron (Z = 26) or zinc (Z = 30), naturally
occurring in the human body, an imaging setup sensitive to lower
energies is required. This is feasible for x-ray microscopy studies
of millimeter to centimeter sized samples.

Our setup, working in a low energy range (4–11 keV), allows
us to decompose elements with K-edges in this range (Cr, Mn, Fe,
Co, Ni, Cu, Zn, Ga). Further, Lanthanide elements (Z = 57–71),
e.g., gadolinium, can be used for materials decomposition due to
their L-edge discontinuities. However, L-edges are less dominant
in the attenuation spectrum and will be affected more by sample
thickness. Energy windows have to be selected as narrow as
possible in the vicinity of the absorption edges, to best exploit
the contrast difference. Potential limitations are beam hardening
effects and photon starvation in narrow energy windows.

In this study, micro-CT material decomposition with a dual-
threshold photon counting detector is evaluated in the energy
range 4–11 keV. The method is verified using a phantom
and applied to biomedical samples containing materials with
absorption edges in the given energy range. This method is
proposed for spectral evaluation of samples. When requiring

higher resolution, higher sensitivity and better energy resolution,
this method can be used for pre-scanning to guide sample and
region-of-interest (ROI) selection prior to experiments, e.g., x-
ray fluorescence or high resolution imaging, at a synchrotron or
other large scale facilities.With time and access being the limiting
factors at large facilities, this approach has the potential to use
allocated time more efficiently.

2. MATERIALS AND METHODS

2.1. Imaging System
The imaging system (see Figure 1) consists of an Eiger 2R
500 K photon counting detector from Dectris Ltd. (Baden,
Switzerland), a prototype solid anode micro-focus x-ray source
from Excillum AB (Stockholm, Sweden), and motorized stages
for sample alignment.

The x-ray source is equipped with a tungsten anode and
is operated at 70 kV acceleration voltage. A 10 µm spot is
calibrated and internally verified, the emission power is set
to 15 W. The sample is mounted on a rotation stage for
tomographic acquisitions, on top of two linear stages for vertical
and horizontal alignment. Sample tower and detector are rail-
mounted for optional translation along the optical axis of the
system. However, in the present experiment, the detector is kept
at 0.55 m from the source where the sensor is fully illuminated
by x-rays.

The detector has a pixel size of 75 µm an consists of
1,030 × 514 pixels in total resulting in an active area of 77.25
× 38.625 mm2. Each pixel contains two configurable energy
thresholds, with an energy resolution of 1.43 keV FWHM at 8
keV. The sensor material is 450 µm silicon, which has almost
100% quantum efficiency up to 10 keV and then drops to 35%
at 20 keV and 10% at 30 keV as measured by [18]. Stable
detector operation requires limitation of the usable threshold
range from 4 to 11 keV [see technical specifications from [19]].
Projections are acquired in difference mode, i.e., the detector
creates an image containing only energies between the two
configured thresholds.

To guide the energy window selection, multiple radiographies
with different threshold energies are acquired. From these
images, a variety of energy windows are created, by subtracting
the lower from the upper threshold retaining only energies
between both thresholds, and the transmission at different
thresholds is evaluated resulting in an optimal energy window
(see Figure 2), which retains the absorption difference while
maximizing the amount of photons. Also, the energy resolution
of the detector has to be considered, thus limiting the minimum
width of energy windows to around 1.5 keV. Selected energy
windows are then used during the CT acquisition, where the
detector is configured in difference mode directly providing
an image in a certain energy range, which is the difference
between two images acquired at two different thresholds. With
the current detector, two acquisitions per position are necessary
since only one energy window can be obtained at the same
time. A detector with four or more thresholds would avert
this limitation.
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FIGURE 1 | Sketch of the imaging setup consisting of an x-ray source, sample holder with three motorized degrees of freedom, and a photon counting detector. The

sample can be translated manually along beam direction. SO indicates the distance from the source to the object (sample) and SD is the distance from the source to

the detector, which is 0.55 m for all measurements.

FIGURE 2 | Transmission as function of photon energy to visualize the K-edges and used energy windows for (A) the verification sample and (B) the plaque samples.

The transmission is shown for 20 µm of copper and 100 µm of aluminum in (A) and 20 µm of iron and 100 µm of calcium in (B). The upper and lower energy

windows used for the verification sample and plaque 1 are shown on each side of the copper and iron K-edges, respectively. Simulated transmission data from [20].

TABLE 1 | Image acquisition parameters.

Sample Lower energy

window [keV]

Upper energy

window [keV]

Number of

projections

Number of

flat fields

Exposure time [s] Voxel size

Verification sample 7.5–9 9–10.5 720 5 100 (13.6 µm)3

Plaque 1 4–7 7.5–9 720 5 45 (13.6 µm)3

Plaque 2 5.5–7 7.5–9 720 10 200 (13.6 µm)3

All samples were acquired with the following x-ray tube parameters: 15 W emission power, 70 kV acceleration voltage, and 10 µm focal spot size.

2.2. Image Processing and Reconstruction
The raw images contain broken, under- and over-responsive
pixels, which have to be removed from the image to avoid
artifacts in the reconstruction. The detector contains masked
pixels, which can be easily identified. Depending on the energy
threshold, additional pixels have to be removed. Such pixels are

identified by lying above or below a certain amount of counts
or showing a large difference from the standard deviation of the
image. Identified pixels are filled with an average value based on
their surrounding pixels, which is obtained via a median filter.
The same correction is applied to the flat-field images before
dividing the images with their corresponding flat-field. Further,
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the corrected images are adjusted to a maximum pixel value of
1, to avoid outliers when calculating attenuation images applying
the negative natural logarithm.

Reconstruction is performed via the ASTRA toolbox
developed by [21, 22] inside a MATLAB (Mathworks)
environment. The toolbox uses a GPU implementation of
the filtered back-projection algorithm for cone beam geometry
developed by [23]. Further, center of rotation correction, tilt
correction, and ring filtering using an additive or wavelet filter as
implemented by [24] are applied.

2.3. Decomposition Algorithm
Post reconstruction material decomposition is used in this study,
as described by [4], [25], and [15]. It is executed on two different
energy ranges obtained with a polychromatic x-ray source.
The attenuation coefficient µE of each voxel is described as a
linear combination of the volume fraction fi multiplied with the
corresponding attenuation coefficients µi,E of different materials
i = 1, 2, 3. Thus, the attenuation coefficient of any voxel in a
given energy window can be determined by Equation (1). The
attenuation coefficient of anyµi,E corresponds to 100% of a given
material. Exact quantities can be obtained when using a reference
sample with known material compositions.

f1 · µ1,E + f2 · µ2,E + f3 · µ3,E = µE (1)

Individual attenuation coefficients are obtained from selected
regions using both energy windows as described by [26]. Since
Equation (1) contains three unknown fractions fi, a constraint is
added that fractions f1, f2, and f3 sum up to 1. Thus, an equation
system can be created to calculate three different material images
using two energy windows constructing Equation (2), which can
be solved for three unknown materials.
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Material images can be improved by adding a constraint that the
material fractions are non-negative and solving a non-negative
least squares problem with an iterative algorithm finding the best
fitting fractions within the given bounds. This approach has been
demonstrated by [25] and results in a noticeable improvement of
image quality compared to only using the matrix multiplication
from Equation (2). In this study, we utilized the approach
described by [25].

2.4. Samples
To verify the method, a phantom consisting of copper and
aluminum was constructed. The individual wires of a copper
cable were spread out and a rod of tightly folded aluminum
foil was fixated in the center of the cable. Energy windows were
selected around the K-edge of copper at 8.99 keV (see Figure 2A).
Seven hundred and twenty projections evenly spread out over 360
degrees were acquired with an exposure time of 100 s per image.
Data acquisition parameters can be found in Table 1.

To demonstrate the materials decomposition method on
biomedical samples, paraffin embedded human atherosclerotic
plaques were imaged. Samples were obtained from patients that
had undergone carotid endarterectomy after a stroke or transient
ischemic attack. All patients gave informed consent and the study
was approved by the local Swedish Ethical Review Authority
(registration number 472/2005). These samples contain large
calcified areas containing large concentrations of calcium. These
samples also have areas with hemorrhage and iron deposits. For
the decomposition, the K-edge of iron at 7.11 keV was used to
select suitable energy windows (see Figure 2B). In the material
decomposition, the samples were decomposed into iron rich
tissue, calcium rich tissue, and paraffin. Differentiation between
soft tissue and paraffin was not possible due to the absence of
absorption edges and very similar attenuation.

Reconstructed datasets [see [27]] and analysis code [see [28]]
are available online.

3. RESULTS

3.1. Verification Sample
The attenuation in selected regions in radiographies of the
verification sample (see Figure 3A) are shown as function of
the energy window in Figure 3B. The plot was created to assist
the selection of optimal energy windows. Attenuation plots were
created for all samples (see Supplementary Figures 1, 2). For the
verification sample energy windows between 7.5–9 and 9–10.5
keV were chosen, which are shown in Figures 3C,D.

Beam hardening, mainly seen as streaking artifacts in the
energy windows affect the material decomposition as seen in
Figure 4. Decomposed images are strongly affected by ring
artifacts, which are barely visible in the energy windows
(see Figures 3C,D). This can be seen particularly well in the
aluminum foil in Figure 4. In general, the decompositionmethod
works with the three material regions having a material fraction
of 1 or close to 1 of the respective material. Lower fractions of
both copper and air are measured within the aluminum foil.

3.2. Biomedical Samples
The reconstructed energy windows used for the plaque samples
decompositions are shown in Supplementary Figures 3–5. The
material decomposition of a slice in plaque 1 in Figure 5 shows
a distinct distribution of calcium within the calcification. All
plaque samples are decomposed based on the decomposition
attenuation values from plaque 1, enabling relative comparison
between the material fractions in the different slices. The
decomposition of a lower slice (257), shown in Figure 6, in
plaque 2 shows a similar distribution but with lower fractions
of iron and calcium. An upper slice (14) in plaque 2, shown in
Figure 7, barely contains any iron and only a low fraction of
calcium compared to the other slices. The higher fraction of iron
along the edges of the calcifications in all slices is most probably
an artifact caused by beam hardening.
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FIGURE 3 | (A) Two copper regions, two aluminum regions and one mixed region selected in the verification sample radiography for energy window selection. The

orange line represents the slice used for decomposition. (B) Measured attenuation in the regions plotted as function of energy windows. (C) Lower (7.5–9 keV) and

(D) upper (9–10.5 keV) energy window images used for the decomposition of the verification sample. Only a small difference in attenuation between the energy

windows are measured, resulting in the visually nearly identical energy window images. In the upper energy window, the regions used for material decomposition

values are shown.

4. DISCUSSION

The verification sample demonstrates that the implemented
decomposition method works, albeit the result is affected by
beam hardening and ring artifacts.

The attenuation plot in Figure 3B does not show the
theoretically expected decrease of the attenuation with increasing
energy. But the increase of the attenuation in the copper regions
after the copper K-edge at 8.99 keV is visible, enabling the
identification of copper in the sample.

For the verification sample, the selection of regions for
material decomposition attenuation values are straight forward
as the materials are well-separated. For the plaque sample, a
region representing iron was selected in an area with a high
increase of attenuation but not in the outermost edge of the

calcification where beam hardening is affecting the measured
attenuation. In similarity with the increase in attenuation
with energy of aluminum in Figure 3B, almost the whole
calcification increased in attenuation in the upper energy
window. Therefore, a region representing calcium was selected
within the calcification with only a slight increase in attenuation.
The selected regions are shown in Supplementary Figure 3.

The highest content of both iron and calcium was measured
in the slice in plaque 1. Slices 14 and 257 in plaque 2 are
from different calcifications in the plaque. Comparing the
decomposition of these slices, it is clear that there are differences
in the material content of calcifications within a plaque.

The implemented post-image reconstruction material
decomposition method decomposes the sample into three basic
materials. With the constraint that the material fractions should
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FIGURE 4 | Material decomposed images of (A) copper, (B) aluminum, and (C) air from the verification sample. The effect of ring and beam hardening artifacts on the

decomposition is prominent.

FIGURE 5 | Material decomposed images of (A) iron, (B) calcium, and (C) paraffin from a slice in plaque 1.

sum up to 1, a third material can be obtained from only two
images. Hence, the addition of more energy windows should in
theory enable the decomposition of more materials.

The method shows potential to be used as a pre-scanning
method to identify regions of interest for further investigation,
such as measurements at a synchrotron facility and histo-
chemical analysis.

While the low energy range limits the sample size, it also
allows for exploiting the K-edge attenuation discontinuity of
naturally occurring elements. In the application of x-ray micro-
tomography, the energy range applied here is compatible with
soft tissue samples extracted in clinical routines.

Material decomposition attenuation values are manually
selected in the reconstructed images. Therefore, a priori
knowledge about the sample is necessary for calibration and
the outcome of the decomposition is highly dependent on
the operator. In this paper, the three plaque slices have been
decomposed based on the same values from plaque 1 for
relative comparison between the slices. To be noted is that
a material fraction of 1 does not mean that the volume
contains only one solid material but that it has the same
content as the volume selected to represent 100% of the given
material. For future work, a calibration sample with known
concentrations of iron, calcium and paraffin could be constructed
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FIGURE 6 | Material decomposed images of (A) iron, (B) calcium, and (C) paraffin from a lower slice (257) in plaque 2. Decomposed with decomposition attenuation

values from plaque 1 allowing to compare the relative material fractions. The high iron signal around the calcification might be caused mostly by beam hardening.

FIGURE 7 | Material decomposed images of (A) iron, (B) calcium, and (C) paraffin from an upper slice (14) in plaque 2. Decomposed with decomposition attenuation

values from plaque 1 allowing to compare the relative material fractions. The iron image (A) shows almost no iron inside the sample, while the iron signal around the

sample might be mostly caused by beam hardening.

for quantitative data analysis. Decompositions performed with
decomposition attenuation values from the known material
concentrations would result in a material fraction corresponding
to a known concentration. Hence, a calibration sample would
enable quantification of the material concentrations, absolute
comparison between samples and eliminate the dependency on
the operator.
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