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We study the language of legal codes from different countries and legal traditions, using
concepts from physics, algorithmic complexity theory and information theory. We show
that vocabulary entropy, which measures the diversity of the author’s choice of words, in
combination with the compression factor, which is derived from a lossless compression
algorithm and measures the redundancy present in a text, is well suited for separating
different writing styles in different languages, in particular also legal language.We show that
different types of (legal) text, e.g. acts, regulations or literature, are located in distinct
regions of the complexity-entropy plane, spanned by the information and complexity
measure. This two-dimensional approach already gives new insights into the drafting style
and structure of statutory texts and complements other methods.
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1 INTRODUCTION

The complexity of the law has been the topic of both scholarly writing and scientific investigation, with the
main challenge being the proper definition of “complexity”. Historically, articles in law journals took a
conceptual and non-technical approach toward the “complexity of the law”, motivated by practical reasons,
such as the ever increasing amount of legislation produced every year and the resulting cost of knowledge
acquisition, e.g. [1, 2]. Although this approach is important, it remains technically vague and not accessible
to quantitative analysis andmeasurement. Over the past decade, with the increasing availability of digitized
(legal) data and the steady growth of computational power, a new type of literature has emerged within
legal theory, the authors of which use various mathematical notions that come from areas as diverse as
physics and information theory or graph theory, to analyze the complexity of the law, cf. e.g. [3–5]. The
complexity considered results mainly from the exogenous structure of the positive law, i.e. the tree-like
hierarchical organization of the legal texts in a forest consisting of codes (root nodes), chapters, sections,
etc., but also from the associated reference network.

According to the dichotomy introduced by [6]; one can distinguish between structure-based measures
and content-based measures of complexity, with the former pertaining to the field of knowledge
representation (knowledge engineering) and the latter relating to the complexity of the norms, which
includes, e.g. the (certainty of) legal commands, their efficiency and socio-economic impact.

In this article, we advance the measurement of legal complexity by focusing on the language using
a method originating in the physics literature, cf. [7]. So, we map legal documents from several major
legal systems into a two-dimensional complexity-entropy plane, spanned by the (normalized)
vocabulary entropy and the compression factor, cf. Section 2.1. Using an abstract and rigorous
measurement of the complexity of the law, should have significant practical benefits for policy, as
discussed previously by, e.g. [1, 2]. For example, it could potentially identify parts of the law that need
to be rewritten in order to remain manageable, thereby reducing the costs for citizens and firms who
are supposed to comply. Most notably, the French Constitutional Court has ruled that articles of
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unjustified “excessive-complexity” are unconstitutional1. However,
in order to render the notion of “excessive complexity” functional,
quantitative methods are needed such as those used by [5, 8]; and
which our version of the complexity-entropy plane ideally
complements.

2 COMPLEXITY AND ENTROPY

A non-trivial question that arises in several disciplines is how the
complexity of a hierarchical structure, i.e. of a multi-scale object,
can be measured. Different areas of human knowledge are coded
as written texts that are organized hierarchically, e.g. each book’s
Table of Contents reflects its inherent hierarchical organization as
a tree, and all books together form a forest. Furthermore, a tree-
like structure appears again at the sentence level in the form of the
syntax tree and its semantics as an additional degree of freedom.
Although various measures of complexity have been introduced
that are specially adapted to a particular class of problems, there is
still no unified theory. The first concept we consider is Shannon
entropy, [9]; which is a measure of information. It is an
observable on the space of probability distributions with values
in the non-negative real numbers. For a discrete probability
distribution P :� {p1, . . . , pN}, with pi > 0, for all i, and
∑N
i�1 pi � 1, the Shannon entropy H(P), is defined as:

H(P) :� −∑
N

i�1
pi log2(pi), (1)

with log2, the logarithm with base 2. The normalized Shannon
entropy Hn(P), is given by

Hn(P) :� H(P)
log2(N), (2)

i.e. by dividing H(P) by the entropy H(PN ) of the discrete
uniform distribution PN :� {1/N , . . . , 1/N}, for N different
outcomes. We shall use the normalized entropy in order to
measure the information content of the vocabulary of
individual legal texts, for details cf. Section 6.3. Word
entropies have previously been used by various authors. In
the legal domain [5], calculated the word entropy, after
removing stop words, for the individual Titles of the U.S.
Code. [10] used word entropies to gauge Shakespeare’s and
Jin Yong’s writing capacity, based on the 100 most frequent
words in each text.

The second concept we consider is related to Kolmogorov
complexity (cf. [11, 12] and references therein), which is the
prime example of algorithmic (computational) complexity.
Heuristically, the complexity of an object is defined as the
length of the shortest of all possible descriptions. Further
fundamental examples of algorithmic complexity include
Lempel-Ziv complexity C76, [13]; or Wolfram’s complexity

measure of a regular language, [14]. The latter is defined as
(logarithm of) the minimal number of nodes of a deterministic
finite automaton (DFA) that recognizes the language (Meyhill-
Nerode theorem). In order to facilitate the discussion, let us
propose a set of axioms for a complexity measure. This measure is
basically a general form of an outer measure.

Let X be (at least) a monoid (X,+, ε), with binary composition
+ : X × X→X, and identity element ε, and additionally, let ≥ be
a partial order on X.

A complexity measure C on X, is a functional C : X→R+,
such that for all a, b ∈ X, we have

pointed:

C(ε) � 0, (3)

monotone:

if a≤ b then C(a)≤C(b), (4)

sub-additive:

C(a+b)≤C(a) + C(b). (5)

Examples satisfying the above axioms include tree structures,
with the (simple) complexity measure given by the number of
levels, i.e. the depth from the baseline. Then the empty tree has
zero complexity, the partial order being given by being a sub-tree
and composition being given by grafting trees. Further, the
Lempel-Ziv complexity C76, and Wolfram’s complexity
measure for regular languages, if slightly differently defined via
recognizable series, satisfy the axioms. However, plain
Kolmogorov complexity does not satisfy, e.g. sub-additivity, cf.
the discussion by [12].

2.1 Compression Factor
A derived complexity measure is the compression factor, which
we consider next, and which is obtained from a lossless
compression algorithm, such as, [15, 16].

A lossless compression algorithm, i.e. a compressor γ,
reversibly transforms an input string s into a sequence c(s)
which is shorter than the original one, i.e.

∣∣∣∣c(s)|≤ |s∣∣∣∣, but
contains exactly the same information as s, cf. e.g. [17, 18].

For a string s, the compression factor r � r(s), is defined as

r(s) :� |s|∣∣∣∣c(s)∣∣∣∣. (6)

The inverse r−1, is called the compression ratio. These derived
complexity measures quantify the relative amount of redundancy
or structure present in a string, or more generally data.

The compression factor, as the entropy rate, is a relative
quantity which permits to directly compare individual data
items, independently of their size.

Let us illustrate this for the Lempel-Ziv complexity measure
C76, cf. [13]; and the following strings of length 20:

s1 :� 00000000000000000000,

s2 :� 01010101010101010101,

s3 :� 01001010100110101101.

1Conseil Constitutionnel, Décision n 2005–530 DC du 29 décembre 2005 (Loi de
Finances pour 2006) 77–89, available at https://www.conseil-constitutionnel.fr/
decision/2005/2005530DC.htm.
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Then we have C76(s1) � 2, C76(s2) � 3 and C76(s3) � 7, from
which one immediately obtains the respective compression
factors. [19]; showed that a generic string of length n has
complexity close to n, i.e. it is “random”, however the
meaningful strings for humans, i.e. representing text, images
etc., are not random and have a structure between the
completely uniform and the random string, cf. [18, 19]. [20]
introduced a quantity related to the compression factor, called the
“computable information density”, which is a measure of order
and correlation in (physical) systems in and out of equilibrium.
Compression factors (ratios) were previously used by [21]; who
measured the complexity of mulitple languages by compressing
texts and their shuffled versions tomeasure the inherent linguistic
order. [22]; additionally to a neural language model, utilized
compression ratios to measure the complexity of the language
used by the Supreme Courts of the U.S. (USSC) and Germany
(BGH). [23]; using the Lempel-Ziv complexity measure C76, took
into account not only the order inherent in a grammatically
correct sentence, but also the larger organization of a text
document, e.g. sections, by selectively shuffling the data
belonging to each level of the hierarchy.

3 SOME REMARKS ON COMPLEXITY,
ENTROPY AND LANGUAGE

[24] (pp. 10–11) intuitively describe the broad difference between
classical information theory and algorithmic complexity, which
we summarize next. Whereas information theory (entropy), as
conceived by Shannon, determines the minimal number of bits
needed to transmit a set of messages, it does not provide the
number of bits necessary to transmit a particular message from
the set. Kolmogorov complexity on the other hand, focuses on the
information content of an individual finite object, e.g. a play by
Shakespeare, accounting for the (empirical) fact that strings
which are meaningful to humans, are compressible, cf. [19]. In
order to relate entropy, Kolmogorov complexity or Ziv-Lempel
compression to one another, various mathematical assumptions
such as stationarity, ergodicity or infinity are required, cf. [11, 17,
25]. Also, the convergence of various quantities found in natural
languages, e.g. entropy estimates, [26]; are based on some of these
assumptions. Despite the fact that the different approximations
and assumptions proved valuable for language models, natural
language is not necessarily generated by a stationary ergodic
process, cf. [11]; as e.g., cf. [25]; the probability of upcoming
words can depend on words which are far away. But, as argued by
[27]; it is precisely due to the non-ergodic nature of natural
language that one can empirically distinguish different topics, e.g.
by determining the uneven distribution of keywords in texts, cf.
also [28]. [29] considered a model of a random languages and
showed how structure emerges as a result of the competition
between energy and entropy.

Finally, let us comment on the relation between relative
frequencies and probabilities in the context of entropy. Given
a standard n-simplex,Δn, i.e. (x0, . . . , xn) ∈ Rn+1,∑ n

i�0 xi � 1, and
xi ≥ 0, for i � 0, . . . , n, its points can either be interpreted as
discrete probability distributions on (n + 1) elements or as the set

of relative frequencies of (n + 1) elements. The distinction
between the two concepts is relevant as the Shannon entropy
H, provides in both cases a functional (observable) H : Δn →R+,
which, in our context, has two possible interpretations. Namely,
as a component of a coordinate system on (law) texts, which is the
interpretation in the present study, but also as an estimate of the
Shannon entropy of the language used if considered as a sample
from the space of all (law) texts of a certain type. In the latter case,
it is known that the “naive” estimation of the Shannon entropy
Eq. 1 from finite samples is biased. Therefore, several estimators
have been developed to solve this problem.We utilize the entropy
estimator introduced by [30]; in order to reexamine some of our
results in the light of a probabilistic interpretation, and find that it
has no qualitative effect on the outcome, cf. Supplementary
Material.

4 THE COMPLEXITY-ENTROPY PLANE

Complex systems, e.g. biological, physical or social ones, are
high-dimensional multi-scale objects. [31]; and [32] realized
that in order to describe them, entropy is not enough, and an
independent complexity measure is needed. Guided by the
insight that the intuitive notion of complexity for patterns,
when ordered by the degree of disorder, is at odds with its
algorithmic description, the notion of the physical complexity of
a system emerged, cf. [7, 31, 33]. The corresponding physical
complexity measure, pioneered by [33]; should not be a
monotone function of the disorder or the entropy, but
should attain its maximum between complete order (perfect
crystal) and total disorder (isolated ideal gas). [7]; introduced
the excess Shannon entropy as a statistical complexity measure
for physical systems, and later [34] introduced another physical
complexity measure, the product of a system’s entropy with
its disequilibriummeasure. [35]; introduced a novel approach to
handle the complexity of patterns on multiple scales using a
multi-level renormalization technique to quantify the
complexity of a (two- or three-dimensional) pattern by a
scalar quantity that should ultimately better fit the intuitive
notion of complexity.

[7]; paired both the entropy and the physical complexity
measure into what has become a complexity-entropy diagram,
in order to describe non-linear dynamical systems; for a review cf.
[36]. Remarkably, these low-dimensional coordinates are often
sufficient to characterize such systems (in analogy to principal
component analysis), since they capture the inherent
randomness, but also the degree of organization. Several
variants of entropy-complexity diagrams are now widely used,
even outside the original context. [37]; by combining the
normalized word entropy, cf. Eq. 7, with a version of a
statistical complexity measure, quantitatively study
Shakespeare and other English Renaissance authors. [23]; used
for the complexity-entropy plane the entropy rate and the
entropy density and studied the organization of literary texts
(Shakespeare, Abbott and Doyle) at different levels of the
hierarchy. In order to calculate the entropy rate and density,
which are asymptotic quantities, they used the Lempel-Ziv
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complexity C76. Strictly speaking this approach would require the
source to be stationary and ergodic, cf. [11].

We introduce a new variant Γ of the complexity-entropy plane,
spanned by the normalized word entropy and the compression
factor, in order to study text data. So, every text t, can be
represented by a point in Γ, via the map t1(Hn(t), r(t)), with
coordinates Hn, the normalized Shannon entropy of the
underlying vocabulary, and r, the compression factor. Let us
note, that Γ is naturally a metric space, e.g. with the Euclidean
metric, but other metrics may be more appropriate, depending on
the particular question at hand.

5 THE NORM HIERARCHY AND
BOUNDARIES OF NATURAL LANGUAGE

Let us now motivate some of our research questions from the
perspective of Legal Theory.

[38] and his school introduced and formalized the notion of
the “Stufenbau der Rechtsordnung”,2 which led to the concept of
the hierarchy of norms. The hierarchy starts with the
Constitution (often originating in a revolutionary charter
written by the “pouvoir constituant”), which governs the
creation of statutes or acts, which themselves govern the
creation (by delegation) of regulations, administrative actions,
and also the judiciary. At the national level these (abstract)
concepts are taken into account, e.g. Guide de légistique [39];
when drafting positive law. This is valid for, e.g. Austria, France,
Germany, Italy, Switzerland and the European Union, although
strictly speaking, it does not have a formal Constitution. Every
new piece of legislation has to fit the preexisting order, so at each
level, the content outlined at an upper level, has to be made more
precise, which leads to the supposed linguistic gradient of
abstraction. A new phenomenon can be observed for
regulations, namely that the legislature, or more precisely its
drafting agencies, is being forced to abandon the realm of natural
language and take an approach that is common to all scientific
writing, namely the inclusion of images, figures and formulae.
The purpose of figures, tables and formulae is not only the ability
to succinctly visualize or summarize large amounts of abstract
information, but most often it is the only mean to convey
complex scientific information at all. As regulations
increasingly leave the domain of jurisprudence, novel methods
should be adopted. For example [2], advocated the inclusion of
mathematical formulae in a statute if this statue contains a
computation that is based on this formula. Ultimately, a
natural scientific approach (including the writing style) to law
would be beneficial, however, this might be at odds with the idea
of law being intelligible to a wide audience.

Our hypothesis is that these functional differences between the
levels of the hierarchy of legal norms should manifest themselves
as differences in vocabulary entropy or in the compression factor.

6 MATERIALS AND METHODS

6.1 Data
Our analysis is based on the valid (in effect) and online available
national codes from Canada, Germany, France, Switzerland, the
United States, Great Britain and Shakespeare’s collected works, for
a summary statistics, cf. Table 1. We also included the online
available constitutions of Canada, Germany, and Switzerland in
the analysis, cf. Table 2. In addition, we use the online available
German EuroParl corpus from [40] and its aligned English and
French translations (proceedings of the European Parliament from
1996 to 2006) to measure language-specific effects for German,
English and French.

In detail, we use all Consolidated Canadian Acts and
Regulations in English and French (2020); all Federal German
acts (Gesetze) and Federal regulations (Verordnungen) in
German (2020); all French Codes (en vigueur) (2020); all
Swiss Internal Laws (Acts and Ordinances) which have been
translated into English, containing the following areas: 1 State -
People - Authorities; 2 Private law - Administration of civil justice
- Enforcement; Criminal law - Administration of criminal justice
- Execution of sentences; 4 Education - Science - Culture; 5
National defense; 6 Finance; 7 Public works - Energy - Transport;
8 Health - Employment - Social security; 9 Economy - Technical
cooperation (2020); the United Kingdom Public General Acts
(partial dataset 1801–1987 and complete dataset 1988–2020);
U.S. Code Titles 1–54 (Title 53 is reserved, including the
appendices) (2020); U.S. Code of Federal Regulations for
(2000) and (2019).

The collected works of Shakespeare are obtained from “The
Folger Shakespeare - Complete Set, June 2, 2020”, https://
shakespeare.folger.edu/download/

6.2 Pre-Processing
For our analysis we use Python 3.7. If available, we downloaded the
bulk data as XML-files, from which we extracted the legal content
(without any metadata), and saved it as a TXT-file, after removing
multiple white spaces or line breaks. If no XML-files were available,
we extracted the texts from the PDF versions, removed multiple
white spaces or line breaks, and saved it as TXT-files.

6.3 Measuring Vocabulary Entropy
For an individual text t, let V :� V(t) :� {v1, . . . , v|V |}, be the
underlying vocabulary, and |V| the size of V. Let fi be the
frequency (total number of occurrences) of a unique word
vi ∈ t, and let |t| be the total number of words in t (with
repetitions), i.e. |t| � ∑|V |

i�1 fi. The relative frequency is given by
p̂i :� fi/|t|, which can also be interpreted as the empirical
probability distribution p̂i. The word entropy H(t) of a text t
(but cf. Section 3), is then given by

H(t) :� −∑
|V |

i�1
p̂i log2(p̂i), (7)

and correspondingly, the normalized word entropy Hn(t), cf.
Eq. 2. Let us remark, that the word entropy is invariant under
permutation of the words in a sentence.

2This could be translated with “hierarchy of the legal order” or “hierarchy of
norms”.
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First we read the individual TXT-files, then filter the punctuation
or special characters out and then split the remaining text into a list of
items. In order to account for prefixes in French, the splitting
separates expressions which are written with an apostrophe into
separate entities. However, we do not lowercase letters, lemmatize or
stem the remaining text, nor do we consider any bi- or trigrams.
Keeping the original case-sensitivity, allows us to capture some
syntactic or semantic information. Then we determine the relative
frequencies (empirical probability values) of all unique items, from
which we calculate the normalized entropy values according to Eq. 2.
We truncate each text file at 150,000 characters, and discard files
which are smaller than the cutoff value. For the EuroParl corpus we
sampled 400 strings, consisting of 150 K characters each (with a gap
of 300 K characters between consecutive strings) from the English,
German and French texts, in order to calculate the corresponding
normalized vocabulary entropy.

6.4 Measuring Compression Factors Using
Gzip
In order to compute the compression factor as our derived
complexity measure, we use as lossless compressor gzip.3 After
reading the individual TXT-files as strings, we compress them

using Python’s gzip compression module, with the compression
level set to its maximum value (� 9). The individual compression
factors are calculated according to Eq. 6. After analyzing all of our
data, we choose 150,000 characters as the cutoff in order to minimize
the effects of the overhead generated by the compression algorithm
for very small text sizes. For the EuroParl corpora (English, French,
German), we calculated the compression factors based on 400
samples each, as described above. Note that in the future it might
make sense to also consider other (e.g. language specific) lossless
compression algorithms in order to deal with short strings.

7 RESULTS

Our first analysis, cf. Table 1, is a summary of the sizes of the different
corpora, the languages used, the number of individual items, the mean
text sizes and standard deviations. The analysis shows different
approaches to the organization of national law, namely either by
thousands of small texts of around 50 KB (Canada, Germany,
United Kingdom) or less than a hundred large codes, several MB
in size (France, United States), with the regulations significantly
exceeding the number of acts. Note that the French codes contain
both the law and the corresponding regulation in the same text. The
size of a corpus within the same category, i.e. act or regulation, differs
from country to country by an order of magnitude or even two, which
is noteworthy as broadly similar or even identical areas are regulated
within the law, e.g. banking, criminal, finance or tax law. This begs the
question of what an efficient codification should ideally look like. The
Swiss Federal codification is remarkably compact, despite the fact that
the English version does not contain all acts or regulations available in
German, French or Italian (which are the official languages);
nevertheless all important and recent ones are included, cf. Section 6.1.

7.1 Normalized Entropy and Compression
Factor
The normalized vocabulary entropies per corpus, cf. Table 3, have a
standard deviation of approximately 0.01, and average entropy values
that are distributed as follows: English in [0.73, 0.80], German in

TABLE 1 | Summary statistics on acts, regulations and English literature showing the language used and size (in MB) of the respective corpora, the number of items, the
mean size (in KB) and the standard deviation.

Corpus (language) Size [MB] # Texts Mean (size) [KB] Std (size)

CA acts (EN) 52.4 823 63.6 254.7
CA reg. (EN) 55.6 3,725 14.9 59.7
CA acts (FR) 56.9 833 64.6 264.5
CA reg. (FR) 62.4 3,718 15.9 64.5
F codes (FR) 127.6 74 1664.0 2275.8
D acts (DE) 53.6 1,306 40.3 108.3
D reg. (DE) 69.6 3,316 20.6 61.5
United Kingdom PGA (EN) 269.5 3,512 76.3 192.7
USC 1–54 (2020) (EN) 139.6 57 2442.6 3835.6
U.S. CFR (2000) (EN) 940.2 200 4701.9 8156.2
U.S. CFR (2019) (EN) 572.9 242 2360.9 1079.7
CH acts (EN) 7.0 103 343.2 286.6
CH reg. (EN) 6.3 118 53.4 58.3
Shakespeare (EN) 5.2 42 124.9 32.0

TABLE 2 |Summary statistics for the Constitutions of Canada (EN), Germany (DE),
Switzerland (DE,EN,FR), showing the language used, the original size (in KB),
the compression factor and the normalized vocabulary entropy (after cutoff at
150 K).

Corpus (language) Size [KB] Comp. Factor n-voc. Entropy

CH constitution (DE) 156 3.74 0.79
CH constitution (EN) 157 3.88 0.77
CH constitution (FR) 172 3.80 0.77
Ca constitution (EN) 215 3.67 0.75
D Grundgesetz (DE) 180 3.57 0.79

3Note that we do not consider quantities in the limit or issues like the convergence
of entropy estimates.
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[0.78, 0.81] and French in [0.74, 0.77]. The analysis of the mean
compression factors, based on the individual texts truncated at 150 K,
reveals three regions where the values accumulate, cf. Table 3. So,
Shakespeare’s works have a mean compression factor of 2.52 (std �
0.03), the EuroParl corpora in English, French andGerman of around
3.01 (std � 0.06 approximately), whereas the national codifications
are located in the interval [3.75, 5.23], with the standard deviations
being in the interval [0.14, 1.24]. On average, all national acts have a
lower compression factor and a lower standard deviation than the
corresponding national regulations. The (French), German, Swiss
and United States acts are in the sub-interval [3.75, 4.12], and the
respective regulations in [4.00, 4.28], but with a large standard
deviation (1.06), for Germany and the United States. Based on the
mean compression factor, the variance, the number of acts and the
total size of the corpus, the French and the US codes are most similar.
The acts of Canada (English and French) and of the United Kingdom
are located at the upper end of the interval, namely in [4.68, 5.0], as
are the Canadian regulations with 4.98 and 5.23, for French and
English, respectively. The values for the constitutions can be found in
the interval [3.57, 3.88] (compression factors), and [0.75, 0.79]
(normalized vocabulary entropy). The value of the compression
factor of the Canadian and German Constitution is smaller than
the corresponding mean value of the acts or regulations, but larger
than that of EuroParl (DE, EN, FR) or Shakespeare. In the case of the
Swiss Federal Constitution and its aligned translations into English,
French and German, the compression factor is significantly higher
than the corresponding EuroParl average values, but between the
mean of the acts (EN) and the mean of the regulations (EN), cf.
Tables 2, 3.

7.2 Complexity-Entropy Plane
The general picture of all texts analyzed in this study, cf. Figure 1,
reveals, that the literary works of Shakespeare occupy a region to
the left and are well separated from all the other data points. The
three points corresponding to the English, French and German
EuroParl samples are also well separated from the vast majority of
legal texts and Shakespeare’s collected works. This indicates that

legal texts are much more redundant than classic literary texts or
parliamentary speeches. The picture for the constitutions is
heterogeneous for the data considered.

The German (DE) and Canadian (EN) Constitution are
located on the left border of the region, which contains the
respective national acts and ordinances, while the Swiss
Federal Constitution lies between the averages of the acts and
ordinances, but is much closer to the mean of the acts.

The plot for U.S. Code (USC), Titles 1–54 for the year 2020,
and U.S. Code of Federal Regulations (CFR) for the years 2000
and 2019, cf. Figure 2, shows that the Federal acts occupy a
distinguishable region which is located below the domain
populated by the Federal regulations. This is in line with the
values from Table 3, as the mean vocabulary entropy for USC is
0.74, as compared to 0.77, for CFR 2000, and 0.78, for CFR 2019.
On the other hand, the distribution pattern of the regulations in
2000 and 2019 is similar (small changes in the region around the
means), but several points are more spread out in the 2019 data,
which is in line with the larger standard deviation of 1.06 in 2019
vs. 0.72 in 2000. However, the overall size of CFR 2000 is 940 MB,
vs. 572,9 MB, for CFR 2019, which is a quite substantial
difference.

We have already noted the similarity of the U.S. Titles and the
French Codes. As Figure 3 shows, the French Codes (in French),
German Federal acts (in German) and the U.S. Titles (in English)
are situated in the complexity-entropy plane, almost as vertical,
non-overlapping, translations of each other, with the German acts
being highest up. The order of the average normalized vocabulary
entropies appears to be language specific, although in this case we
are not considering (aligned) translations, cf. Section 7.3.

The picture for the aligned translations of the Canadian acts
and regulations into English and French, cf. Figure 4, reveals that
the acts are located, depending on the language, in separated
regions which are bounded by ellipses of the same size around the
respective means. For both English and French, the regulations
are more dispersed than the acts (in particular the French) and
the regulations in French are more widespread than those in

TABLE 3 | Summary statistics on acts, regulations (reg.) and English literature.#

Corpus # Texts Mean (cfc.) Std. (cfc.) Mean (nve.) Std. (nve.)

CA acts (EN) 75 5.00 0.94 0.73 0.01
CA reg. (EN) 54 5.23 1.18 0.73 0.02
CA acts (FR) 74 4.64 0.93 0.75 0.01
CA reg. (FR) 60 4.98 1.24 0.74 0.02
F codes 58 4.10 0.28 0.76 0.01
D acts 78 4.12 0.42 0.78 0.01
D reg. 69 4.28 1.06 0.79 0.01
United Kingdom PGA 431 4.68 0.44 0.74 0.01
U.S. Codes (2020) 49 4.11 0.29 0.74 0.01
U.S. CFR (2000) 200 4.04 0.72 0.77 0.02
U.S. CFR (2019) 241 4.16 1.06 0.78 0.02
CH fed. acts (EN) 4 3.75 0.14 0.76 0.00
CH fed. reg. (EN) 5 4.00 0.23 0.77 0.01
EuroParl (DE) — 2.95 0.05 0.81 0.00
EuroParl (EN) — 3.02 0.05 0.77 0.00
EuroParl (FR) — 3.06 0.06 0.77 0.00
Shakespeare 10 2.52 0.03 0.80 0.00

notes: cfac � compression factor; nve. � normalized vocabulary entropy; # texts � number of texts considered at 150 K.
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English. The mean normalized entropy of the regulations in
French is below the mean of the acts in French, but above the
mean of the acts and regulations in English. The slightly odd
position of the regulations in French could be due to the fact that

after being truncated at 150 K, 60 (FR) vs. 54 (EN) regulations
remain, while for the acts the number of texts remaining is the
same. As we are dealing with aligned translations, the observed
language specific pattern is quite meaningful, cf. Section 7.3. On

FIGURE 1 | Figure showing the mean compression factor and mean normalized vocabulary entropy for: 1 �Canadian acts (EN), 2 �Canadian regulations (EN), 3 �
Canadian regulations (FR), 4 � Canadian acts (FR), 5 � U.S. Code Titles 1–54, 6 � U.S. CFR 2019, 7 � United Kingdom acts, 8 � French acts (FR), 9 � German Federal
acts (DE), 10 � German Federal regulations (DE), 11 � Shakespeare’s collected works, 12 � Swiss Federal acts (EN), 13 � Swiss Federal regulations (EN) 14 � EuroParl
speeches (EN), 15 � EuroParl speeches (FR), 16 � EuroParl speeches (DE); and the compression factor and normalized vocabulary entropy (green marker) for: a �
Swiss Federal Constitution (DE), b � Swiss Federal Constitution (EN), c � Swiss Federal Constitution (FR), d � Canadian Constitution (EN), e � German Constitution
(Grundgesetz) (DE). The ellipses are centered around the mean values and have half-axes corresponding to σ/2 of the standard deviation of the compression factor and
the normalized vocabulary entropy, respectively. Colors of ellipses correspond to: red � speeches (EuroParl), green � literature (Shakespeare), light blue � acts, orange �
regulations; all texts truncated at 150 K.

FIGURE 2 | Figure showing the mean compression factor and mean normalized vocabulary entropy for: 1 � U.S. Code Titles 1–54, 2 � U.S. CFR 2019, 3 � U.S.
CFR 2000, 4 � Shakespeare’s collected works, 5 � EuroParl speeches (EN), 6 � EuroParl speeches (FR), 7 � EuroParl speeches (DE). The ellipses are centered around
the mean values and have axes corresponding to 1σ of the standard deviation of the compression factor and the normalized vocabulary entropy, respectively. Colors of
ellipses correspond to: green � U.S. Federal acts (2020), orange � U.S. Federal regulations (2019), light blue � U.S. Federal regulations (2000); all texts truncated at
150 K.

Frontiers in Physics | www.frontiersin.org June 2021 | Volume 9 | Article 6718827

Friedrich Complexity-Entropy in Legal Language

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


the other hand, Canadian acts and regulations in the same
language are not easily separable, i.e. they show a distribution
pattern that differs from the U.S. Titles and U.S. Federal
regulations, cf. Figure 2.

The German Federal acts and regulations accumulate in
nearby and overlapping areas of the plane, and cannot be

clearly separated from each other, with the laws being more
compactly grouped around the mean. The acts of Canada (EN),
the United States and the United Kingdom are close to each other,
but far below the German acts and regulations, cf. Figure 5.
Indeed, this seems to reflect language-specific characteristics
common to all genres.

FIGURE 3 | Figure showing the mean compression factor and mean normalized vocabulary entropy for: 1 � U.S. Code Titles 1–54, 2 � French Codes (FR), 3 �
German Federal acts (DE), 4 � Shakespeare’s collected works, 5 � EuroParl speeches (EN), 6 � EuroParl speeches (FR), 7 � EuroParl speeches (DE). The ellipses are
centered around the mean values and have axes corresponding to 1σ of the standard deviation of the compression factor and the normalized vocabulary entropy,
respectively. Colors of ellipses correspond to: light blue � U.S. Code (2020), orange � French Codes, green � German Federal acts; all texts truncated at 150 K.

FIGURE 4 | Figure showing the mean compression factor and mean normalized vocabulary entropy for: 1 �Canadian acts (EN), 2 �Canadian regulations (EN), 3 �
Canadian regulations (FR), 4 �Canadian acts (FR), 5 � Shakespeare’s collected works, 6 � EuroParl speeches (EN), 7 � EuroParl speeches (FR), 8 � EuroParl speeches
(DE). The ellipses are centered around the mean values and have axes corresponding to 1σ of the standard deviation of the compression factor and the normalized
vocabulary entropy, respectively. Colors of ellipses correspond to: light blue �Canadian acts (EN), orange �Canadian regulations (EN), green �Canadian acts (FR),
red � Canadian regulations (FR); all texts truncated at 150 K.
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The fact that the United States Code, unlike for Canada,
Germany and Switzerland, is fairly well separated in the plane
from its associated regulations could reflect differences in the way
laws and regulations are drafted in the United States as compared
to the countries mentioned above.

7.3 Distinguishing Different Languages
From the above discussion it can be seen that different languages
can be distinguished by the normalized vocabulary entropy if the
genre is kept constant. In order to further investigate the language
effect on the position of the corpora in the complexity-entropy

FIGURE 5 | Figure showing the mean compression factor and mean normalized vocabulary entropy for: 1 � Canadian acts (EN), 2 � U.S. Code, Titles 1–54 (USC),
3 � United Kingdom General Public Acts (PGA), 4 � German Federal acts (DE), 5 � German Federal regulations (DE), 6 � Shakespeare’s collected works, 7 � EuroParl
speeches (EN), 8 � EuroParl speeches (FR), 9 � EuroParl speeches (DE). The ellipses are centered around the mean values and have axes corresponding to 1σ of the
standard deviation of the compression factor and the normalized vocabulary entropy, respectively. Colors of ellipses correspond to: light blue �Canadian acts (EN),
orange � German Federal acts (DE), green � German Federal regulations (DE), red � United Kingdom PGA, purple � USC; all texts truncated at 150 K.

FIGURE 6 | Figure showing the mean compression factor and mean normalized vocabulary entropy for: 1 � Swiss Federal acts (EN), 2 � Swiss Federal acts (DE),
3 � Swiss Federal acts (FR), 4 � Shakespeare’s collected works (EN), 5 � EuroParl speeches (EN), 6 � EuroParl speeches (DE), 7 � EuroParl speeches (FR), and the
compression factor and normalized vocabulary entropy for: a � Swiss Federal Constitution (EN), b � Swiss Federal Constitution (DE), c � Swiss Federal Constitution (FR).
The ellipses are centered around the mean values, and have axes corresponding to 1σ of the standard deviation of the compression factor and the normalized
vocabulary entropy, respectively. Color code: red � EuroParl speeches, green � literature, light blue � acts; all texts truncated at 100 K.
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plane, we specifically considered aligned translations. So,
additionally to the Swiss Federal Constitution (English, French
and German), the German EuroParl corpus and its translation
into English and French, we processed the nine largest Swiss
Federal acts in English, French and German. However, in order to
have enough Swiss Federal acts, we had to lower the cutoff to
100K, and correspondingly had to recalculate the EuroParl values.
Additionally we added the collected works of Shakespeare (in
English), with a cutoff of 100 K. Further, we have the Canadian
acts and regulations, and their aligned translations into English
and French. The results imply that (aligned) translations of the
same collection of texts into different languages are primarily not
distinguished by the compression factor but rather by the
(normalized) vocabulary entropy, cf. Figure 6 and Figure 1.

8 CONCLUSION

We introduced a tool that is new to the legal field but has already
served other areas of scientific research well. Its main strength is the
ability to simultaneously capture and visualize independent and
fundamental information, namely entropy and complexity, of
large collections of data, and to track changes over time. By
devising a novel variant of the complexity-entropy plane, we were
not only able to show that legal texts of different types and languages
are located in distinguishable regions, but also to identify different
drafting approaches with regard to laws and regulations. In addition,
we have taken the first steps to follow the spatial evolution of the
legislation over time. Although we observe that constitutions tend to
have lower compression factors than acts and regulations, and
regulations on average have higher compression factors than acts,
which corresponds to the hierarchy of norms, we could not fully
capture the assumed abstraction gradient. This suggests that other
language-specific methods should also be used to investigate
(possible) differences. On the other hand, the high(er) redundancy
of the regulations reflects the increasing need to leave the realm of
natural language and to borrow tools from the natural sciences. The
analysis we perform can be modified in a number of ways to provide
even more specific information. So, one might include n-grams, or
perform additional pre-processing steps, or choose different
compression algorithms. Also, one might add a third coordinate
for even more visual information. In combination with other
quantitative methods such as citation networks or the
consideration of additional (internal) degrees of freedom such as
local entropy, new types of quantitative research questions could be

formulated, which may lead to more efficient and manageable
legislation. In summary, we expect a broad range of further
applications of complexity-entropy diagramswithin the legal domain.
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