
Flexible Broadband Terahertz
Modulation Based on Strain-Sensitive
MXene Material
Yangqi Liu, Xiang Li, Tingting Yang, Jingyu Liu, Bin Liu, Jingling Shen, Bo Zhang* and
Fuhe Wang*

Key Laboratory of Terahertz Optoelectronics, Ministry of Education, Advanced Innovation Center for Imaging Technology, Beijing
Key Laboratory for Terahertz Spectroscopy and Imaging, Beijing Key Laboratory of Metamaterials and Devices, Department of
Physics, Capital Normal University, Beijing, China

A flexible broadband terahertz modulator based on a strain-sensitive MXene material is
reported. MXene is shown to have high terahertz wave absorption through experimental
testing of various substrate samples. Results show that the THz signal transmission
increases with increasing stretching degree, which differs obviously from transmission
through pure PVAc substrates. Analysis of the terahertz time-domain spectrum and
electrical characterization indicate that the sample’s conductivity decreases with
increasing stretching degree. The trend and magnitude of the electrical conductivity
results are also very similar to those from the time-domain spectrum. MXene is shown
to be a simple, efficient terahertz broadband spectrum modulator with transmittance that
can be affected by applying external forces.
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INTRODUCTION

As a unique radiation wave type, terahertz waves have had a profound impact on fields including
molecular biology, medical imaging, security detection and future communication systems [1–5].
The terahertz wave modulator is the core component of terahertz wireless communications, high-
speed data transmission and high-resolution imaging systems. This modulator has characteristics
that include low energy requirements, low transients, broadband performance, high coherence and
strong perspective properties. In recent years, increasing numbers of different terahertz modulator
types have been proposed. The functions of terahertz devices (including modulators [6–11], filters
[12], polarizers [13, 14] and metamaterials [15–19]) are critical to the acceleration of spectral,
imaging and communications applications using terahertz technology. In recent years, various
methods for fabrication of high-efficiency THz modulators have been proposed, including
fabrication of an in-band transition using graphene-induced perturbation, phase changes using
vanadium dioxide (VO2), formation of composite metamaterials using split ring resonators and
silicon light excitation. Although considerable efforts have been made to design and optimize the
THz wave dynamic tuning materials, these efforts have been hindered by the low tuning efficiency of
these materials. Therefore, the efforts to develop new terahertz modulation materials with high
efficiency are of major significance. In recent years, flexible optoelectronic devices have attracted
widespread attention because they can operate under various mechanical deformation conditions to
meet the requirements of wearable or flexible applications [20–24]. For example, in 2018, Zhang et al.
reported an engineering three-dimensional integrated framework for grinding stretchable electronic
products by combining material design with advanced micromachining strategies [20]. At the same
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time, some research on flexible terahertz devices was proposed
[25–27], but most of the research focused on the integration of
device units with flexible substrates. For example, Suzuki et al.
designed terahertz metal cells that contained carbon nanotubes
(CNTs) to form a flexible terahertz scanner and demonstrated the
potential of this scanner in imaging of three-dimensional
curvature objects [26]. Cong et al. fabricated a THz
metamaterial quarter-wave plate composed of a metal wire
grid layer and an isotropic polyimide layer that can be bent to
cover a detector and used to explore the chirality of
biomacromolecules [27]. However, these functions are
essentially dependent on the nature of the device unit and
must be performed using metamaterials with complex
structures. In 2020, Shi et al. developed a flexible terahertz
modulation method based on conductive polymer composites
composed of thermoplastic polyurethane (TPU) and conductive
Ni particles. This flexible layer exhibits the resistivity change of
six to seven orders under tensile strain, which can be used to
control the THz transmission with a giant modulation depth as
high as 96%. Starting from the structural role of metamaterials,
THz radiation can be modulated flexibly using the properties of
materials [28]. Therefore, flexible material modulators with
simple structures and obvious effects are desirable.

Mxenes represent a new family of two-dimensional transition
metal carbides and nitrides with the general formula Mn+1XnTx
[where M is an early transition metal (Sc, Ti, Zr, Hf, V, Nb, T a,
Cr, Mo, etc.), X is carbon or nitrogen, and Tx represents surface
terminations, (e.g. hydroxyl, oxygen, or fluorine terminations)] [38,
39]. Mxenes have attracted major interest because of their interesting
and diverse mechanical, structural, physical and chemical properties.
Most importantly, MXenes exhibit ultra-high conductivity (1500 S/
cm) on hydrophilic surfaces [29]. Because of this unique characteristic,
MXenes have attracted extensive attention in fields such as energy
storage [30–32], selective ion screening [33, 34], intelligent materials
[35], electromagnetic interference shielding [36], and lasers [37].
Current research indicates that MXenes show excellent responses
to electromagnetic waves. Jhon reported that Ti3C2 has high
absorption and extinction coefficients in the terahertz range based
on a first principles study [38]. This type of material with its strong
absorption properties has drawn our interest strongly and we have
previously fabricated a flexible broadband terahertz modulator based
on a strain-sensitive MXene material.

In this work, the terahertz signal absorption of an MXene
[Ti3C2Tx(Tx � −OH, −O)]/PVAc(latex) sample is obviously
reduced under the application of external tension, and the
terahertz wave is thus modulated effectively to a large extent.
During the material stretching process, the conductivity of the
sample decreases as the degree of stretching increases, which
results in increased THz wave transmission. The THz modulator
introduced in this paper has advantages that include a simple
structure, simple implementation and an obvious effect.

EXPEROMENTAL DETAILS

The substrate was fixed on a clean quartz wafer, then a thin
MXene dispersion layer was spin coated on a clean emulsion

substrate (1.5 cm × 3 cm × 0.2 mm), and sintered at 100°C for
15 min. Subsequently, silver parallel electrodes(1 cm long ×
0.5 cm wide × 200 nm thick, with a distance between the
electrodes of 5 mm) are deposited on the MXene layer by
thermal evaporation in a vacuum chamber. Finally, a silver
glue layer is coated onto the silver electrode and sintered at
100°C for 15 min.The sample is then removed from the quartz
sheet and fixed onto a stretchable sample holder.

By performing scanning electron microscopy (SEM) surface
morphology tests, we obtained the surface morphologies of the
samples in the relaxed and flat state and the tensile state. The SEM
surface topography of the MXene[Ti3C2Tx(Tx � −OH, −O)]/
PVAc(latex) sample are shown in Figures 1B,C. Figure 1C shows
the morphology of the surface and section of MXene sample in
the non-tensile state (the small picture in the upper right corner is
a sectional view). Figure 1C shows the surface morphology of
mxene under tension. As shown in Figures 1B,C, when the
magnification is 35,000 times, we can see that the surface
under tension is less wrinkled and much smoother than that
in the relaxed state.

A GaAs photoconductive antenna was used to generate
terahertz pulses with bandwidths in the 0.2–1.2 THz range. To
detect the transmitted terahertz signals, a ZnTe crystal was used
with an electro-optical sampling technique. The electro-optic
effect is basically a nonlinear coupling effect between a low-
frequency electric field (the terahertz pulse) and an optical pulse
in the sensor crystal (ZnTe). The modulation of the polarization
ellipticity of an optical probe beam that passes through the ZnTe
crystal caused by modulation of the ZnTe crystal’s birefringence
by a terahertz pulse is analyzed to gain information on both the
amplitude and the phase of the terahertz wave. The tensile sample
holder with the sample is placed into a THz time-domain
spectroscopy (THz-TDS) system and the terahertz light spot is
aimed at the titanium carbide part of the holder between the
electrodes, as shown in Figure 1A. By adjusting the knob on the
left side of the sample holder to adjust the stretching degree of the
sample, the terahertz time-domain spectra of terahertz
transmission characteristics of different stretched samples are
obtained. The corresponding frequency spectrum can be obtained
by applying a Fourier transform, and the conductivities of the
samples with different tensile degrees can be calculated using the
method described in Formula 2. The reference value is taken
from the tensile data of an uncoated titanium carbide substrate.

The procedure is described as follows. First, connect the two
ends of the sample via the electrodes to the source meter, and take
the relaxed and flat state of the sample as the initial state; stretch
the sample by a stretching amount of 5.7%, which acts as the
change unit, and apply voltagesranging from 1V to −1V; collect
the current information at 10 points, obtain the current-voltage
(I-V) diagram for different stretching degrees, and then calculate
the resistance value and conductivity of the sample.

RESULTS AND DISCUSSION

The terahertz time domain spectra of PVAc samples with and
without MXene coatings are shown in Figure 2A. The sample
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FIGURE 1 | (A) Schematic of the experimental setup. (B) Surface morphology of the sample without tension. (C) Surface morphology of the sample under tension.

FIGURE 2 | (A) Terahertz time-domain spectra of samples with and without MXene coating on PVAc substrates. (B) Terahertz frequency-domain spectra of
samples with and without MXene coating on PVAc substrates. (C) Terahertz time-domain spectra of samples with and without MXene coating on sponge substrates. (D)
Terahertz frequency-domain spectra of samples with and without MXene coating on sponge substrate.
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that was coated with MXene reduced the transmission peak of the
THz wave by approximately 80%. As shown in Figure 2B, the
transmission frequency spectrum of the terahertz wave shows a
major transmission difference before and after spin coating of the
MXene material. This shows that the MXene has a very high
absorbing capacity. At the same time, a sponge material was also
used as a sample substrate in an additional experiment, with
results as shown in Figures 2C,D. The results obtained are similar
to those for the PVAc substrate.

The tensile results for the PVAc substrate are shown in
Figure 3A. These results show that the substrate self-
stretching has little effect on the THz transmission. Figure 3B
shows the terahertz transmission power spectrum of the PVAc
under tension. When the substrate is stretched, the THz signal
decreases slightly. The time-domain spectra of the MXene/
PVAc(latex) structure are studied under different tensile
degrees, with results as shown in Figure 3C. All the tensile
percentages in this paper are calculated by the ratio of the
length after stretching to the original length. When the degree
of stretching is 136%, the transmission amplitude of the time-
domain spectrum increases by more than 42%. When the tensile
strength is 147%, the transmission amplitude then increases by
more than 63%. When the tensile strength reaches 163%, the
transmission amplitude then increases by more than 98%.
Figure 3D shows the terahertz transmission power spectrum
of the MXene/PVAc(latex) structure under different degrees of
stretching. When the tensile strength increases, the transmission
of the THz intensity also increases obviously. When the tensile

strength reaches 163%, the modulation of the transmission
strength is approximately 281%.

To evaluate the modulation performance of the sample, the
modulation factor (MF) is introduced and is defined as the
change in the integrated terahertz power emission caused by
the light excitation intensity:

FIGURE 3 | (A) Terahertz time-domain spectra of samples without MXene coating on a PVAc substrate under tensile and non-tensile conditions. (B) Terahertz
time-domain spectra of samples coated with MXene on PVAc substrate under different tensile degrees. (C) Terahertz frequency-domain spectra of samples without
MXene coating on PVAc substrate under tensile and non-tensile conditions. (D) Terahertz frequency-domain spectra of samples coated with MXene on PVAc substrate
under different tensile degrees.

FIGURE 4 | Modulation factor (MF) of samples versus different tensile
strengths.
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MF � ∫Plax(ω)dω − Pstretch(ω)dω
∫Plax(ω)dω

. (1)

Plax(ω)dω and Pstretch(ω)dω are the powers of the terahertz
signal in the relaxed state and the stretched state, respectively.
Figure 4 shows the dependence of the MF on the tensile strength.
When the tensile strength was 136%,MF increased by 1.96.When
the tensile strength reaches 147%, MF increases to 2.12. When the
tensile strength reaches 163%, MF increases to 2.81. The change
range of MF also increases with the increase of tensile strength.
Due to the limitation of material properties, the limit of tensile
strength is about 170%. If the tensile degree exceeds this limit, the
damage to the substrate cannot be recovered.

To explain the modulation mechanism in further depth, the
variations in the conductivity of the samples with the tensile
degree have been calculated. From these calculations, we can
extract the transient frequency-dependent complex conductivity
from the time-domain data of the transmitted THz pulses,
denoted by Estrentch(ω) and Enon-strentch(ω). The transmission
ratio T(ω) of the Fourier transform of these two wave forms is
related to the complex conductivity as follows [39]:

T(ω) �
~Estretch(ω)

~Enon−stretch(ω) �
n + 1

n + 1 + Z0d~σ(ω), (2)

Where Z0 � 377Ω is the impedance of free space, n � 1.5 is the
refractive index of the non-stretch PVAc substrate within the THz
range, and d is the thickness of the MXene coating, which is
estimated to be 150 µm from the results in Figure 1B. Figures
5A,B show the real part σr(ω) and the imaginary part σ i(ω) of the

conductivity of Mxene coating under different tensile degrees,
respectively. Because the THz signal is strongly attenuated by the
modulators, the calculation results in the higher and lower frequency
ranges are not reliable, and thus we have only presented data
measured between 0.1 and 1.0 THz in Figures 5A,B. To make
the TDS calculations more scientifically accurate, the electrical
experiment was performed as a reference group, with results as
shown in Figure 5C. The relationship between the resistance and the
degree of stretching is derived from the I-V diagram using the
relationship among the current, the voltage and the resistance. The
black curve in Figure 5D shows the variation in the resistance of the
sample with the degree of drawing, while the blue curve shows the
variation in the conductivity of the sample with the degree of
drawing. The figure shows that the sample’s resistance increases
as the tensile strength increases and the sample’s conductivity
decreases as the tensile strength increases. The increase of the
tensile strength from 100 to 136% is also shown to have a
significant effect on the modulation of the tensile strength; at 147
and 163%, the stretching degree has little effect on the modulation.
This is consistent with the peak modulation and the MF of the
terahertz radiation time-domain spectrum.

CONCLUSION

A flexible broadband terahertz modulator based on a strain-sensitive
MXene/PVAc(latex) material is reported. It is found that the MXene
can absorb nearly 80% of the THz waves through testing of sponge
and latex substrate-based samples. The results obtained show that the
transmission rate of the THz signal increases with increases in the

FIGURE 5 | (A) Change in the real part of the conductivity of samples at different tensile degrees. (B) Change in the imaginary part of the conductivity of samples
excited by different tensile degrees. (C) I-V diagram for electrical characterization of samples at different tensile degrees. (D) Relationship between the resistance and
conductivity of the sample with respect to the tensile degree during electrical characterization.
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degree of stretching.When the stretching degree reaches 136, 147 and
163%, the terahertz time-domain spectrum signals are modulated by
42, 67 and 98%, respectively. The maximum modulation of the
terahertz projection power spectrum reaches 281%. Through an
analysis based on THz TDS and comparison of the electrical
properties of the samples, it is concluded that the conductivity of
each sample decreases with increasing tensile strength. In addition, the
trends for both properties are the same and the order of magnitude
remains consistent. The results show thatMXene is a type of terahertz
modulator that can modulate the terahertz transmission signal
intensity of a sample effectively by stretching that sample with a
strong force to change the conductivity of the sample.
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