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This study investigates the flow of heat and mass transport of an incompressible MHD Cross
fluid over a nonlinear curved stretching sheet. Heat transport incorporates viscous dissipation,
radiative flux, and surface heating, whereas the fluid concentration is distressed with the first-
order chemical reaction. A radially varying applied magnetic field is considered to examine the
effect of Lorentz force andOhmic heating. The rheology of the fluid is theoreticallymodeled and
constitute a novel work for the completeness of shear thinning and thickening fluids over
curved structure. Similarity method is utilized to reduce the governing system of PDE’s into
ODE’s. Numerical computation through Runge-Kutta fourth order with shooting technique is
implemented by the first initialized higher-order system into the first ODEs. The behaviors of the
flow quantities—velocity, temperature, and concentration—are graphically analyzed against
the parameters, including radius of curvature, fluid rheology, radiation, and rate of reactions.
The numerical results are validated in comparison with the published results. Studies of
Newtonian fluids on flat and curved surfaces are the special cases of this work. The results are
useful in material processing and polymer dynamics involving stretchable materials.
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INTRODUCTION

Fluid flow past a stretching sheet has been discussed extensively due to its practical applications in science and
engineering. The pioneering works of Sakiadis and Crane [1, 2] on the subjects of free stream velocity and
sheet stretching remain some of themost fundamental papers. However, literature on this subject is extensive,
particularly when it comes to the linear stretching of plane surface for Newtonian fluid. The tremendous
practical importance of stretching sheets in the chemical, polymer, and manufacturing industry, such as in
fiber spinning, casting and drawing of annealing wires, and glass fiber, and extrusion of polymer sheets
instigated linear stretching for viscous flow over a plane surface. Later on, other forms of stretching are
introduced and more meaningful in practice, but the mathematical concept in exploring the solution of
Navier-Stokes’s equations remains the prime task. The physical significance underlying this concept gives rise
to non-linear velocity for power-law, exponential, and quadratic stretching in the forms of axm, aex/l , and
ax + bx2, respectively [3–15]. Non-Newtonian fluids are classified based on natural fluids, industrial fluids,
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and biological fluids. The study of these fluids becomes imperative
without exception and due to the absence of a unifiedmodel that could
exhibit all the intrinsic properties of non-Newtonian fluids. This
observation encourages several rheological models to be developed
in order to accommodate the physical features of these fluids
through various distinctive complex constitutive equations. The
magnetohydrodynamics of non-Newtonian fluids in the phase of
uniform, variable, and radially varying magnetic fields has various
applications: in the production of plastic film,manufacturing of sensors
for aerospace engineering, metallurgy, purification of crude oil, nuclear
fuel slurries, hydroelectric power plants, cancer research, melt spinning
processes, nuclear reactor-power plant, etc.Malik et al. [16] investigated
the boundary-layer flow ofMHD Sisko fluid past a stretchable cylinder
with the dissipating effect of viscosity. Heat transfer ofMHD stagnation
pointflowof amelting Sisko liquid is presented byHayat et al. [17]. The
thermal analysis of an unsteady hydromagnetic nano-Erying Powell
fluid due to a convective heated stretching sheetwith viscous dissipation
and radiation is documented byMahanthesh et al. [18].Hayat et al. [19]
discussed the flow of hydromagnetic Jeffrey fluid past a nonlinear
radially stretching sheet. Khalil et al. [20] examined the numerical
solution of hydromagnetic Casson-nanofluid flow in a rigid rotating
disk withNavier’s slip effect. Formore relevant papers see [21–24]. The
needs for heat and mass transfer in engineering, manufacturing, and
geophysical applications cannot be over-exaggerated; examples include
solar collector, drying of porous solids, hydrometallurgy, underground
energy, transport, geothermal reservoirs, treatment of chemical vapor
deposition on a surface freezing of ice (icing), packed bed catalytic
reactors, thermal insulation, cooling of the skin of high-speed aero-
velocity and turbine blades, and polymer melts. Moreover, the
occurrence of chemical reactions in bulk fluid transport expedited
the interest of several investigators to analyze some crucial aspects of
fluid flow. Hammed et al. [25] used the Lie group to investigate the
effects of convective boundary conditions over the flow, heat, andmass
transfer. The hydromagnetic slip effect of MHD porous channel in the
presence of entropy generationwith the convective boundary condition
was studied by Guillermo Ibanez [26]. Akhil et al. [27] presented
micropolar ferrofluid in mixed convection flow subjected to convective
Joule heating boundary conditions with dissipation effect. Reddy et al.
[28] documented the flow of magnetohydrodynamic nanofluid with
convective heat and mass transfer past a vertical cone. Mair et al. [29]
studiedwith variable viscosity the nanofluid of theCassonmodel over a

convective stretchable surface with heat andmass diffusion. Some non-
Newtonian flow models are less descriptive and less generalized to
accommodate certain essential features of non-Newtonian fluids.
Power-law fluid is only credible for low shear rate; Ellis fluid can
predict the behavior of shear thinning to a realistic degree of shear rates;
Carreau fluid best fits for cases of low and high limiting; and Sisko fluid
behaves like a shear-thinning fluid by varying its parameters. Cross [30]
introduced a viscous rheologymodel that generalizes the power law and
Sisko and Bingham fluid models and predicts the drawbacks of these
fluids in which n and Γ are two curve fitting parameters. The Cross
viscousmodel tends to predict flowbehavior at very low and high shear
rates. The model can reduce to various viscosity models under certain
approximations. It yields a power-lawmodel if k̂

p
≪ k̂0 and k̂

p
≫ k̂∞,

Sisko model if k̂
p
≪ k̂0 and Bingham model if n � 1 with slight

parameter adjustment. This fluid consists of a time constant, which
makes it predominantly useful in carrying out industrial calculations. Its
importance includes changing to the Newtonian fluid in the limit for
both low and high shear rates. The appearance of a time constant in the
governing equation widens the range of its industrial solicitations. We
observe these features, and few papers have addressed the consideration
of Cross fluid on plane flows, which includes the numerical
investigations of heat transfer stagnation point flow of MHD Cross
fluid toward stretching sheet byHayat et al. [31]. Themixed convection
Cross fluid flow in the presence of thermal radiation with buoyancy
effects is studied by Manzur et al. [32]. Khan et al. [33] investigated
Cross fluid flow on axisymmetric past a radially stretching plate with
heat transfer phenomena. The point-stagnation flow of MHD Cross
fluid over the stretched plane surface with numerical simulation and
heat transfer is analyzed by Ijaz et al. [34]. The problem of stretching on
curved surfaces has attracted the attention of many researchers in the
last couple of years. However, few articles have appeared for curved
surfaces; nevertheless, curved structures are more realistic and can
correspond to a wide range of flow situations. Sajid et al. [35] initiated
viscous flow over a curved surface using the curvilinear coordinate to
model linear stretching of viscousfluid. They observed that the pressure
variations inside the boundary layer cannot be ignored compared to the
plane-stretching sheet. Sanni et al. [36] presented a nonlinear power
stretching of the curved surface, and unsteady flow of Micropolar fluid
past a stretching/shrinking curved surface in the presence of
permeability is examined by Saleh et al. [37]. Nadeem et al. [38]
studied the variable viscosity of magneto nanofluid over a stretching
curved surface with carbon nanotubes. Saba et al. [39] investigated the
effects of internal heat generation in nanofluid flow past a curved
stretching surface. The dual solutions of a hydromagnetic viscous fluid
with shrinking effects over a curved platewere analyzed byNaveed et al.
For further studies, readers can refer to [40–47]. In view of the above-
cited literature, no investigation has been made on the stretching
problem of non-Newtonian Cross fluid in curved geometry. The
objective of this investigation is to envisage the fluid velocity, heat
transport, and concentration developed in manufacturing and
engineering processes under desirable flow conditions. It analytically
explores another important way to control the velocity using curved
structures and widened the scope to foresee the most realistic
phenomenon. The curved mechanism has been extensively hailed in
surgical procedures where the blood flow requires to be controlled and
minimized. Results show that both velocity and temperature are
decreased for small curvature in the stretching problem and

FIGURE 1 | Physical geometry of the problem.
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nonlinear stretching power, whereas the velocity increases for large
Lorentz force and fluid rheology parameter. On the other hand, the
fluid concentration shows the opposite effects.

GOVERNING EQUATIONS

The steady state of mass with linear momentum of an
incompressible fluid flow is given by

∇.V � 0, (1)

ρ(V .∇)V � −∇p + ∇.Π + F. (2)

In whichV is the velocity, ρ is the density of the fluid, p represents
the pressure, and F the body force. In this study, the modified
Cross fluid viscous model (see reference [30]) is expressed as

Π � k∞ + (k0 − k∞)[ 1

1 + (Γ _c)n]A1, (3)

where k0, k∞, Γ, n, and _c are the low and high limit of shear rates,
Cross material time constant, dimensionless Cross fluid index,
and symmetry deformation rate ( _c � ��������(Δ : Δ)/2√ ) taken as a
function of second invariant strain rate tensor, respectively. A1 �
∇V + (∇V)T is the first Rivlin-Erickson tensor.

PROBLEM MODELING

Consider the 2D flow of an incompressible MHD Cross-fluid past a
boundary driven curved sheet of radius R. We introduce a curvilinear
coordinate (r, x, 0) in which r− axis is normal to the flow (x − axis)
and d � 1/R as the curvature for λ � 1/(1 + dr). A radially varying
applied magnetic B(r) � λB0êr is acting transversely to the flow. The
Lorentz force generated due to an electrically conducting Cross fluid is
defined by F � J × B, where the current density expresses as
J � σ(V × B). In the absence of the electrical field, E ≈ 0, the
Lorentz force can now be described as

F � (σλ2B2
0u, 0, 0), (4)

such that σ is the fluid conductivity, B0 is the magnetic field strength,
and v and u are the velocity components in radial and axial directions,
respectively. The physical flow geometry is given in Figure 1.

V � [v(r, x, 0), u(r, x, 0), 0] denotes the velocity vector field,
∇ � êr zzr + λêx z

zx, with êr and êx being the unit vector in radial and
axial direction, respectively. The governing equations for the
continuity andmomentum from Eqs. 1–4 are obtained as follows:

R−1λv + λ
zu
zx

+ zv
zr

� 0, (5)

v
zu
zr

+ λu
zu
zx

+ R−1λuv � − λ

ρ

zp
zx

− Γnk0n
2ρ
( _c)n−22 ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2Srr
z

zr
( 1

1 + (Γ _c)n)
+λSxr z

zx
( 1

1 + (Γ _c)n)
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ k0
ρ
[1 − Γn( _c)n2]⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ R−1λ

z

zr
( Sxr
R−1λ

)
+λ zSxx

zx
+ R−1λSxr

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
− σλ2B2

0u
ρ

.

(6)

v
zv
zr

+ λu
zv
zx

− R−1λu2 � − 1
ρ

zp
zr

− Γnk0n
2ρ
( _c)n−22 ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Srx
z

zr
( 1

1 + (Γ _c)n)
+2λSxx z

zx
( 1

1 + (Γ _c)n)
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ k0
ρ
[1 − Γn( _c)n2]⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ R−1λ

z

zr
( Srr
R−1λ

)
+λ zSrx

zx
− R−1λSxx

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,
(7)

where the various stress components can be expressed as

TABLE 1 | Comparison of the f ′(0) and −Θ′(0) values for limiting case with the published results.

k M M We N Cortel [4] Ijaz et al. [34] Khan et al. [33] Hamad and Ferdows [8] Present results

∞ 1 0 0 0 1.0000 1.0000 1.0000 1.0043 1.0018
− − 0.2 0.5 2 − − − − −1.8324
− 1.5 − − − − − − − −1.7066
− 2.0 − − − − − − − −1.4508
− 2.5 − − − − − − − −1.3797

k � ∞, n � 0, Rn � 0, M � 0, w � 0, Ec � 0, We � 0, m � 1, and Θw � 1.

Pr Hamad [3] Wang [5] Ijaz et al. [34] Gorla and Sidawi [13] Khan et. al. [33] Present results

0.07 0.065600 0.065600 0.130816 0.065600 0.035526 0.130799
0.2 0.139100 0.169100 0.196550 0.139100 0.164037 0.196502
0.7 0.453900 0.453900 0.454446 0.453900 0.418299 0.454369
20 3.353900 3.353900 3.359500 3.353900 3.256030 3.353900
70 6.462200 6.462200 6.462290 6.462200 6.366620 6.462200
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Srr � zv
zr
, Sxr � Srx � zu

zr
+ λ

zv
zx

− R−1λu, and, Sxx � λ
zu
zx

+ R−1λv.

(8)

Boundary conditions relevant for the velocity are

u|r�0 � b0x
m, v|r�0 � 0, u|r→∞ � 0,

zu
zr

∣∣∣∣∣∣∣r→∞
� 0, (9)

such that b0(1/l(m−1)t)> 0 is constant and l is the characteristic
length. Consider the dimensionless variables given below.

x � x
l
, r � r

δ
, R � R

δ
, p � p

ρU2
∞

, u � u
U∞

, v � vL
U∞

,

A � k0
ρ

U2n
∞

δ2n
. (10)

Using Eq. 10 and dropping the bars, the boundary layer equations
from Eqs. 5, 8 take the form

R−1λu2 � zp
zr
, (11)

v
zu
zr

+ λu
zu
zx

+ R−1λuv � − λ
ρ

zp
zx

−nΓnA(zu
zr

− R−1λu)n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
(n + 1) z

2u
zr2

−(n − 1)R−1λ
zu
zr

+(n − 1)R−2λ2u

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦+
k̂0
ρ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
z2u
zr2

+R−1λ
zu
zr

− R−2λ2u

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ − σ∈̂2B2
0u

ρ
. (12)

It is worth mentioning that the existing model of a Newtonian
fluid can be recovered by setting the Cross fluid parameter, Γ � 0
from Eq. 12. For similarity investigation, the following variables
are given:

η � r

�������
b0x(m−1)

]

√
, Re

1
2
x �

�������
b0x(m+1)

]

√
,

v � −b0λ
������
]x(m−1)

b0

√ [(m + 1
2
)f (η) + η(m − 1

2
)f ′(η)], (13)

p � u2
wp(η), k � �������

b0x(m−1)

]

√
~R, M �

�������
σB2

ob
2
0/μ√

, u � b0x
mf ′(η),

(14)

in which f (η) represents the flow stream function. Using Eqs. 13,
14 in Eqs. 5, 11, 12, one can get

(f ′)2
k + η

� p′(η), (15)

k
k + η

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣ 2mp(η)
+η(m − 1

2
)p′(η) ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ � f ‴ + 1

k + η
f ʺ − 1(k + η)2 f ′ + k

k + η

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ (m + 1
2
)ff ″

−m(f ′)2
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ k(k + η)2 ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ (m + 1
2
)ff ′

+η(m − 1
2
)(f ′)2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
− [We(f ″ − 1

k + η
f ′)]n⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(n + 1)f ‴ − (n − 1) 1
k + η

f ″

+(n − 1) 1(k + η)2 f ′
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

− M2k2(k + η)2 f ′. (16)

Equation 5 remains identically satisfied and primes symbolize
derivatives with respect to η. The Weissenberg number,
We � Γb20Res, gives dimensionless Cross-fluid parameter and
M2 � σB2

ob
2
0/μ represents the Hartmann number. The limiting

case (k→∞ and p � 0) confirms the correctness of the present
model, thus Eq. 16 reduces to flow problem over a flat
stretching sheet. The second tier induces the linear
stretching (m � 1),

f ‴ + ff ″ − (f ′)2 � [We(f ″)]n(n + 1)f ‴ −M2f ′. (17)

The solution of Eq. 17 has been numerically given [31–34].
Moreover, the model governing power stretching for m> 1
gives

f ‴ + (m + 1
2
)ff ″ −m(f ′)2 � [We(f ″)]n(n + 1)f ‴ −M2f ′. (18)

Here, numerical results of Eq. 18 for a large value of the
dimensionless radius of curvature k are provided (see
Table 1).

Utilizing Eq. 15 in Eq. 16, the pressure term is eliminated and
one can get

f ′
v + 2

k + η
f ‴ − 1(k + η)2 f ″ + 1(k + η)3 f ′ + k

k + η

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
(m + 1

2
)ff ‴

−(3m − 1
2

)f ′f ″
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ k(k + η)2 ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ (m + 1
2
)ff ″

− (3m − 1
2

)(f ′)2
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ − k(k + η)3 (m + 1

2
)ff ′

� (We)n

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(f ″ − 1

k + η
f ′)n⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(n + 1)f ′v + 1
k + η

f ‴

+ n − 1(k + η)2f ″ − n − 1(k + η)3f ′
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ n
⎛⎜⎜⎜⎜⎜⎜⎜⎝ f ″

− 1
k + η

f ′
⎞⎟⎟⎟⎟⎟⎟⎟⎠n−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(n + 1)(f ‴)2 − 2n
k + η

f ″f ‴

+ 2n(k + η)2f ′f ‴ + n − 1(k + η)2(f ″)2
− 2n − 2(k + η)3f ′f ″ + n − 1(k + η)4(f ′)2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
+ M2k2(k + η)2 (f ″ − 1

k + η
f ′).

(19)
There exist corresponding boundary conditions to Eqs 9, 10 in

the dimensionless form.

f (η)∣∣∣∣η�0 � 0, f ′(η)∣∣∣∣η�0 � 1, f ′(η)∣∣∣∣η→∞ � 0, f ″(η)∣∣∣∣η→∞ � 0.

(20)
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HEAT AND MASS TRANSFER

The thermodynamics and Fick’s law for heat transport and
concentration diffusion are given:

ρCp(V .∇)T � ∇(K0∇T) + τ.A1 + ∇.~q0 +
1
σ
(J.J), (21)

τ.A1 � Π

A1
[2(Srr )2 + 2(Srx)2 + 2(Sxx)2], (22)

(V .∇)C � Dm(∇2C) + kc(C − C∞). (23)

in which τ.A1 and ~q0 denote viscous dissipation term and
radiative heat flux, respectively. K0 is the thermal conductivity,
Cp the specific heat capacity at constant pressure, C the fluid
concentration, Dm the coefficient of chemical diffusion, kc the
reaction rate of the first order, and the last term of Eq. 22
represents the Ohmic heating. After using Eqs. 3, 22, 23 in Eq.
21, we get

v
zT
zr

+ λu
zT
zx

� 1
ρCp

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
K0(z2T

zr2
+ R−1λ

zT
zr
)+

k0(zuzr − R−1λu)2
1 + [Γ(zuzr − R−1λu)]n − z~q0

zr
+ σλ2B2

0u

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭,

(24)

v
zC
zr

+ λu
zC
zx

� Dm(z2C
zr2

+ R−1λ
zC
zr
) + kc(C − C∞), (25)

subjected to the boundary conditions;

−K0zrT|r�0 � hf(Tw − T), − DmzrC|r�0 � Dc(Cw − C), (26)

T|r→∞ →T∞, C|r→∞ →C∞, (27)

Tw is the surface temperature, T∞ the ambient temperature,
and hf and Dc are convective heat and mass transport,
respectively.

FIGURE 2 | Effect of k, M, m, and We on the stream function.
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By virtue of Rosseland approximation, the radiative heat flux
can be written in the form

~q0 � − 4σp

3kp
zT4

zr
0 − 16σSB

3aR
T3zT

zr
, (28)

such that σp is Stefan-Boltzmann constant and kp the mean
spectral absorption coefficient.

Using Eq. 28 in Eq. 24, we obtain

v
zT
zr

+ λu
zT
zx

� α(1 + RnT3) z2T
zr2

+ 3αRnT2(zT
zr
)2

+ K0R−1λ
ρCp

zT
zr

+ k0(zuzr − R−1λu)2
ρCp{1 + [Γ(zuzr − R−1λu)]n} + σλ2B2

0

ρCp
u2

� 0, (29)

α � K0/ρCp yields the thermal diffusivity and Rn � 16σSB/3aRK0

is the radiation parameter. If dimensionless similarity for the
temperature and concentration take form

Θ(η) � T − T∞

Tw − T∞
andΦ(η) � C − C∞

Cw − C∞
. (30)

we can express T � [1 + (Θw − 1)Θ(η)]. Utilizing this
expression and Eq. 30 together with Eqs. 13, 14, the
dimensionless form of Eqs. 25, 29 give the following:{1 + Rn[1 + (Θw − 1)Θ]3}

Pr
Θ″

+ 3Rn(Θw − 1)[1 + (Θw − 1)Θ]2
Pr

(Θ′)2 + Θ′

Pr(k + η)
+ k(m + 1)fΘ′

2(k + η) +
Ec(f ʺ − 1

k+η f
′)2

1 + [We(f ″ − 1
k+η f

′)]n + k2w(f ′)2
Pr(k + η)3

� 0, (31)

Φ″ + Φ′

k + η
+ Sc

k(m + 1)
2(k + η) fΦ′ − βPeΦ � 0. (32)

In these equations, Θw � Tw/T∞ is the temperature parameter,
Ec � (U2

∞/Cp(Tw − T∞)) the Eckert number, Pr � (k0/ρα) the
Prandtl number, β � (k0kc/ρu2) the chemical reaction
parameter, Pe � Sc*Re the Peclet number, Sc � k0/ρDm the
Schmidt number, and w � (σB2

0U
2
∞b20/K0(Tw − T∞)) an

Ohmic heating parameter. The linear radiation can be

FIGURE 3 | Effect of k, M, m, and We on the velocity.
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verified if Θw � 1, whereas Θw > 1 corresponds to the
nonlinear part.

Equations 26, 27 yield

Θ′(η)∣∣∣∣η�0 � −Bt(1 − Θ(0)), Φ′(η)∣∣∣∣η�0 � −Bc(1 −Φ(0)), (33)

Θ(η)∣∣∣∣η→∞ � 0, Φ(η)∣∣∣∣η→∞ � 0, (34)

where Bt � hf
K0

������
k0

ρb0x(m−1)

√
and Bc � kc

Db

������
k0

ρb0x(m−1)

√
are the thermal and

concentration Biot number, respectively.

Quantities like surface drag force, heat, and mass transfer
rate are influential in fluid flow control and thermal
regulation from an engineering and practical point of
view. These physical quantities for the Cross fluid are
calculated as follows:

Cf �
τ�rx
∣∣∣∣∣r�0

1
2 ρbox

2m
, Nu � x~q0

K0(T − Tw), Sh � xΠx

k*(C − Cs)
, (35)

where

FIGURE 4 | Effect of k, M, m, We, Θw, and Bt on temperature.
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τrx|r�0 �
k0(zuzr − R−1λu)

1 + [Γ(zuzr − R−1λu)]n
r�0
, ~q0 � −K0

zT
zr

∣∣∣∣∣∣∣r�0 and
Πx � −Dm

zC
zr

∣∣∣∣∣∣∣r�0. (36)

After incorporating Eqs. 13, 14, 36 into Eq. 35, we arrive at

− 1
2
Re

1
2
xCf � f ″(0) − 1

k

1 + [We(f ″(0) − 1
k f

′)]n , (37)

NuRe−
1
2

x � −Θ′(0). (38)

ShRe−
1
2

x � −Φ′(0), (39)

NUMERICAL SOLUTION

The transformed system of nonlinear ODEs gotten in Eqs. 19, 31,
32 together with the conditions given in Eqs. 20, 33, 34 are
numerically solved using the Runge-Kutta (RK) fourth order with
shooting technique. The higher-order ODEs (BVPs) are
discretized into a system of initial value problems (IVPs) by
swapping the characterized variables:

f � y1, f
′ � y2, f

″ � y3, f
‴ � y4, Θ � y5, Θ′ � y6, Φ � y7,

Φ′ � y8. (40)

Invoking Eq. 40 in the required equations, a linearized first order
is presented in block:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y1′
y2′
y’3
y4′
y5′
y6′
y7′
y8′

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y2

y3

y4

−
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
2εy4 − ε2y3 + ε3y2 + kε(m + 1

2
)y1y4 − kε(3m − 1

2
)y2y3

+kε2(m + 1
2
)y1y3 − kε2(3m − 1

2
)y22 − kε3(m + 1

2
)y1y2−

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎧⎨⎩ [We(y3 − εy2)]nB1

+n(We)n(y3 − εy2)n−1B2

⎫⎬⎭
y6

− 1
1 + RnN2

1

B3

y8

− [εx8 + Sckε(m + 1
2
)y1y8 − βPey7]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

(41)

for

FIGURE 5 | Effect of Pr, Ec, Rn, and w on temperature.
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⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y1(0)
y2(0)
y3(0)
y4(0)
y5(0)
y6(0)
y7(0)
y8(0)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
z1
z2

−Bt(1 − y5(0))
z3

−Bc(1 − y7(0))
z4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (42)

where z1, z2, z3, and z4 are unknown conditions initially at
infinity. These conditions are treated using Taylor’s series for
f ″(0), f ‴(0),Θ(0), andΦ(0) about∞whileN1 � 1 + (Θw − 1)Θ
and ε � 1/(k + η). The shooting technique assumed guesses for z1
to z4 and numerically integrate Eq. 40 to a given endpoint. The

accuracy of these guesses is checked in comparison with the value
of the dependent variable at that end point, and guesses are
updated if differences exist via loops and the process is repeated
until accurate guesses are obtained and then terminated. The
algorithm is implemented through ode45 built-in MATLAB
command with the step size of (δη � 10−2) and tolerance error
of 10−8 to obtain the numerical results.

RESULTS AND DISCUSSION

The responses of the curvature k, Lorentz force M, power law
stretching index m, and Cross fluid parameter We on the stream
function f (η) are presented in Figure 2. Figure 2A shows that the

FIGURE 6 | Effect of k, m, Pe, Sc, β, and Bc on concentration profile.
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stream function f (η), decreases steadily with increasing radius of
curvature k (as the surface becomes flat). Figure 2B confirms the
reduction of the flow lines due to the applied magnetic field M, which
produces the opposing Lorentz force. The flow trajectories are reduced
by the stretching indexm as shown in Figure 2C. From these figures,
we conclude that the flow trajectories can be controlled/regulated with
the geometry parameter (radius of curvature), body force (magnetic
field), and induced stretching index. This observation will aid the
flow control system in polymer dynamics, manufacturing, and
engineering industry. Figure 2D explains the rheology effect of
We (Weissenberg number) on flow lines. It is observed that the
stream lines increase for increasing We. Physically, the shear
thinning (low viscosity) of the Cross fluid having less resistance
increases the flow lines and enlarges the momentum boundary
layer. The flow velocity accompanied by the boundary layer thickness
that is developed on the curved surface can be portrayed in Figure 3.
An increase in the flow parameters results in decreasing the velocity,
f ′(η), which in turn decreases the momentum boundary layer
thickness. We recall that the velocity decreases with the radius of
curvature, magnetic field, and power law index. Accordingly, the
momentum boundary layer thickness will be controlled by these
parameters (most revered phenomena in fluid dynamics). These

observations are presented in Figures 3A–C. The rheology effect
of We is presented in Figure 3D. That is, increasing the Weissenberg
number (We) increases the velocity as well as momentum boundary
layer thickness. In other words, this affirms that the flow field can be
optimized for a higher shear-thinning parameter for the Cross fluid.
The heat transport is investigated under the influence of non-linear
(Θw > 1) Stefan-Boltzmann radiations against linear (Θw � 1)
scenario. From Figure 4A, we observe that a large radius of
curvature k reduces the temperature Φ(η) and the thermal
boundary layer region. In other words, heat kinematics can be
minimized inside the boundary layer region by virtue of
increasing/decreasing k. The influence of the Lorentz force on the
temperature is given in Figure 4B. The graph reveals an increasing
trend in thermal profile with increasing magnetic field parameter, M.
An important conclusion of the heat transfer analysis is that additional
heat is generated by the application of Lorentz force and nonlinear
radiation, which are the two additional features included in this study.
Figures 4C,D present the effect of stretching velocity power index m
and Cross fluid parameter We on the temperature field. In these
graphs, both the temperature and thermal boundary layer region
diminish for increasing m and We, respectively. This observation
shows that the temperature and associated thermal boundary layer can

FIGURE 7 | Variation of Surface drag force on curvature parameter k against m, M, and We.
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be controlled by means of any of these parameters. Figures 4E,F
illustrate the impacts of temperature parameters and thermal Biot
number, Bt, on the temperature profile. In these plots, increasing,
Θw/Bt, enhances the temperature and widens the thermal boundary
region. Thus, both the parameters play a substantial improvement to
the heat flow and vital to this study. With much emphasis on the
temperature difference to harness the linear and nonlinear radiative
impact, a comparative illustration is given in Figure 5. However, the
usual interpretations of the various physical parameters, Pr, Ec, Rn,
and w, involved in this study are present with a striking difference
between linear and non-linear radiation. Figure 5A shows a decaying
temperature profile for large Pr. This observation is due to an increase
in fluid conductivity. Figures 5B–D displayed an increasing
temperature profile together with an accompanying thermal
boundary layer. The reason being this is that the viscosity bond
dissociates as the Eckert number increases (see Figure 5B). Moreover,
the response of the nonlinear term (Θw � 1.5) is obviously intense in
comparison with linear radiation (Θw � 1). The effect of radiation on
temperature profile is presented in Figure 5C. As radiation is a
habitual source of heat, increasing Rn increases the thermal boundary
layer thickness and temperature profile. The effect of Ohmic heating
on the temperature field experienced by the surface is shown in

Figure 5D. In this figure, the thermal profile increases slightly for
increasingw owing to the additional heat generated at the surface and
flows to the fluid. However, the nonlinear difference, Θw, slightly
optimizes the temperature and thermal boundary layer thickness. The
influence of radius of curvature k, stretching powerm, Peclet number
Pe, Schmidt number Sc, reaction parameter β, and concentration Biot
number Bc on concentration profile Φ(η) are sketched in Figure 6.
Figure 6A explains the impact of increasing k on Φ(η). We observe
that the concentration profile increases as the surface curvature
reduces. Figures 6B–E present consequences of m, Pe, Sc, and β
on Φ(η). Increasing stretching power-index decreases fluid
concentration (see Figure 6B). Figures 6C,D elucidate reducing
concentrations due to high Pe (low diffusivity) and Sc (low mass
diffusion). Further, the effect of the rate of chemical reaction onΦ(η)
is shown Figure 6E. This implies the higher the chemical reaction in
the flow field, the lesser the fluid concentration. In fact, these
observations are important in regulating the concentration profile
and will be helpful in the chemical industry. Figure 6F lightens the
influence of concentration Biot number on Φ(η). It is seen that
increase in Bc boosts the concentration profile inferring a remarkable
consequence of depressing mass diffusivity. The variation in the
physical quantities, surface drag force (f ′(0)), heat transfer rate

FIGURE 8 | Variation of heat transfer on curvature parameter k against m, M, We, and Bt.
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(−Θ′(0)), and mass transfer rate (−Φ′(0)) are presented in Figures
7–9. Figure 7 presents the variation of the skin drag force for different
k against stretching index, Lorenz force, and fluid rheology
parameters, respectively. In Figure 8, variation in heat transfer
against parameters examined in Figure 7 is presented in addition
to the thermal Biot number. Figure 9 gives the variation of the mass

transfer rate for different values of k against the stretching power-
index, Peclet number, Schmidt number, reaction rate, and
concentration Biot number. The upper part of Table 1 shows dual
numerical results of the surface drag force in agreement with the
published work and for the special case of Eq. 18. The rate of heat
transfer computed shows a good agreement with the previous work

FIGURE 9 | Variation of rate of mass transfer on curvature parameter k against m, Pe, Sc, β, and Bc.
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(see the lower part of the table). Table 2 gives the present results in
comparison with the existing literature on curved surfaces. These two
tables show an excellent agreement and confirm the results in the
literature as special cases of this present study. Appendix Table A1
presents the surface drag force and rate of heat andmass transfer of the
present problem.

CONCLUSION

This study investigated the nonlinear radiative heat and mass
transport of MHD fluid developed by non-linear stretching (power
law index) of the curved surface. A non-Newtonian Cross fluid with a
radially varying magnetic field is examined. The flow fields, velocity,
temperature, and concentration are explained under the effect of
viscous dissipation, Ohmic heating, and chemical reaction,
respectively. The thermal and concentration appearances are good
empirical proof, and the emerging parameters of theflowproblemand
main findings of this study are highlighted below.

• The velocity and associated momentum boundary layer
decreases for small curvature (large radius of curvature),
high Lorentz force, and nonlinear stretching power (m)
whereas it increases for the high fluid rheology parameter
(We). Thus, the flow field can be controlled/regulated
through these parameters as a requirement of industrial,
bio-mechanical, and engineering processes.

• The temperature profile decreases for an increase in the
following: radius of curvature, k, stretching power-index,m,
and the fluid rheology parameter, We. On the other hand,
the heat flow region is enhanced by way of the impacts of
the magnetic field M, nonlinear radiative temperature
difference, Θw, and thermal Biot number, Bt.

• The temperature profile is significantly improved for
optimizing Eckert number, radiation, and Ohmic
heating parameters (due to quantum heat produced
by Lorentz force). The effect is substantial for the
nonlinear radiation. A lower temperature profile is
experienced for a higher Prandtl number. These
observations have been widely discussed and accepted
in their consequences.

• The concentration profile is increased for; small curvature
(large radius of curvature) parameter, increasing the
stretching power parameter, high Peclet and Schmidt
numbers, and high rate of reaction. However, the opposite
behavior is observed as the temperature profile enhances for
an increasing concentration of the Biot number.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be
directed to the corresponding author.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct, and intellectual
contribution to the work and approved it for publication.

FUNDING

This work was supported by the National Natural Science
Foundation of China (Grant No. 61673169).

REFERENCES

1. Sakiadis BC. Boundary-layer Behavior on Continuous Solid Surfaces: I.
Boundary-Layer Equations for Two-Dimensional and Axisymmetric Flow.
Aiche J (1961) 7:26–8. doi:10.1002/aic.690070108

2. Crane LJ. Flow Past a Stretching Plate. J Appl Math Phys (Zamp) (1970) 21:
645–7. doi:10.1007/BF01587695

3. Hamad MAA. Analytical Solution of Natural Convection Flow of a Nanofluid
over a Linearly Stretching Sheet in the Presence of Magnetic Field. Int
Commun Heat Mass Transfer (2011) 38(4):487–92. doi:10.1016/
j.icheatmasstransfer.2010.12.042

4. Cortell R. Viscous Flow andHeat Transfer over a Nonlinearly Stretching Sheet.
Appl Math Comput (2007) 184(2):864–73. doi:10.1016/j.amc.2006.06.077

5. Wang CY. Free Convection on a Vertical Stretching Surface. Z Angew Math
Mech (1989) 69:418–20. doi:10.1002/zamm.19890691115

6. Andersson HI, Bech KH, Dandapat BS. Magnetohydrodynamics Flow of a
Power-Law Fluid over a Stretching Sheet. Int J Nonlinear Mech (2016) 27(6):
929–36. doi:10.1016/0020-7462(92)90045-9

7. Jalil M, Asghar S. Flow of Power-Law Fluid over a Stretching Surface: A Lie
Group Analysis. Int J Non-Linear Mech (2013) 48:65–71. doi:10.1016/
j.ijnonlinmec.2012.07.004

8. Hamad MAA, Ferdows M. Similarity Solutions to Viscous Flow and Heat
Transfer of Nanofluid over Nonlinearly Stretching Sheet. Appl Math Mech.-
Engl Ed (2012) 33(7):923–30. doi:10.1007/s10483-012-1595-7

9. MaboodKhan FWA, Khan WA, Ismail AIM. MHD Flow over Exponential
Radiating Stretching Sheet Using Homotopy Analysis Method. J King Saud
Univ - Eng Sci (2017) 29(1):68–74. doi:10.1016/j.jksues.2014.06.001

10. Mustafa M, Khan JA, Hayat T, Alsaedi A. Simulations for Maxwell Fluid Flow
Past a Convectively Heated Exponentially Stretching Sheet with Nanoparticles.
AIP Adv (2015) 5(3):037133. doi:10.1063/1.4916364

11. Kumaran V, Ramanaiah G. A Note on the Flow over a Stretching Sheet. Acta
Mechanica (1996) 116:229–33. doi:10.1007/BF01171433

12. Kumar SK, Sanjayanand E. Viscoelastic Boundary Layer MHD Flow through a
Porous Medium over a Porous Quadratic Stretching Sheet. Arch Mech (2004)
56(3):191–204. am.ippt.pan.pl/index.php/am/article/view/158.

13. Gorla RSR, Sidawi RI. Free Convection on a Vertical Stretching Surface with
Suction and Blowing. Appl Sci Res (1994) 52:247–57. doi:10.1007/BF00853952

TABLE 2 | Comparison of the f ′(0) and −Θ′(0) values for limiting case with the
published results.

K Abbas et al. [44] Sanni et al. [42] Present results

f9(0) −Θ9(0) f9(0) −Θ9(0) f9(0) −Θ9(0)

5 1.22881 0.43268 1.20372 0.42418 1.20370 0.42420
10 1.12311 0.41896 1.10709 0.41132 1.10704 0.41130
20 1.07541 0.41094 1.06389 0.40365 1.06385 0.40362
200 1.03553 0.40298 1.02788 0.39604 1.02785 0.39600
1,000 1.03212 0.40224 1.02480 0.39533 1.02480 0.39530

Frontiers in Physics | www.frontiersin.org June 2021 | Volume 9 | Article 67093013

Sanni et al. Nonlinear Radiative MHD Fluid Treatment

https://doi.org/10.1002/aic.690070108
https://doi.org/10.1007/BF01587695
https://doi.org/10.1016/j.icheatmasstransfer.2010.12.042
https://doi.org/10.1016/j.icheatmasstransfer.2010.12.042
https://doi.org/10.1016/j.amc.2006.06.077
https://doi.org/10.1002/zamm.19890691115
https://doi.org/10.1016/0020-7462(92)90045-9
https://doi.org/10.1016/j.ijnonlinmec.2012.07.004
https://doi.org/10.1016/j.ijnonlinmec.2012.07.004
https://doi.org/10.1007/s10483-012-1595-7
https://doi.org/10.1016/j.jksues.2014.06.001
https://doi.org/10.1063/1.4916364
https://doi.org/10.1007/BF01171433
https://doi.org/10.1007/BF00853952
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


14. Cortell R. Further Results on Nonlinearly Stretching Permeable Sheets:
Analytic Solution for MHD Flow and Mass Transfer. Math Probl Eng
(2012) 2012:1–18. doi:10.1155/2012/743130

15. Shafiq A, Hammouch Z, Oztop HF. Radiative MHD Flow of Third-Grade
Fluid towards a Stretched cylinder. In: International Conference on Comput.
Math. Eng Sci. Springer Cham (2019). p. 166–85.

16. Ghalib MM, Zafar AA, Riaz MB, Hammouch Z, Shabbir K. Analytical
Approach for the Steady MHD Conjugate Viscous Fluid Flow in a Porous
Medium with Nonsingular Fractional Derivative. Physica A: Stat Mech its Appl
(2020) 554:123941. doi:10.1016/j.physa.2019.123941

17. Shafiq A, Hammouch Z, Turab A. Impact of Radiation in a Stagnation point
Flow of Walters’ B Fluid towards a Riga Plate. Therm Sci Eng Prog (2018) 6:
27–33. doi:10.1016/j.tsep.2017.11.005

18. MahantheshGireesha BBJ, Gireesha BJ, Gorla RSR. Unsteady Three-
Dimensional MHD Flow of a Nano Eyring-Powell Fluid Past a
Convectively Heated Stretching Sheet in the Presence of thermal Radiation,
Viscous Dissipation and Joule Heating. J Assoc Arab Universities Basic Appl Sci
(2017) 23:75–84. doi:10.1016/j.jaubas.2016.05.004

19. Hayat T, Bashir G, Waqas M, Alsaedi A. MHD Flow of Jeffrey Liquid Due to a
Nonlinear Radially Stretched Sheet in Presence of Newtonian Heating. Results
Phys (2016) 6:817–23. doi:10.1016/j.rinp.2016.10.001

20. Khalil R, Malik MY, Zahri M, Tahir M. Numerical Analysis of MHD Casson
Navier’s Slip Nanofluid Flow Yield by Rigid Rotating Disk. Results Phys (2018)
8:744–51. doi:10.1016/j.rinp.2018.01.017

21. Ellahi R, Riaz A. Analytical Solutions for MHD Flow in a Third-Grade Fluid
with Variable Viscosity. Math Comp Model (2010) 52:1783–93. doi:10.1016/
j.mcm.2010.07.005

22. Azam M, Khan M, Alshomrani AS. Effects of Magnetic Field and Partial Slip
on Unsteady Axisymmetric Flow of Carreau Nanofluid over a Radially
Stretching Surface. Results Phys (2017) 7:2671–82. doi:10.1016/
j.rinp.2017.07.025

23. Zeeshan A, Majeed A. Heat Transfer Analysis of Jeffery Fluid Flow over a
Stretching Sheet with Suction/injection and Magnetic Dipole Effect.
Alexandria Eng J (2016) 55:2171–81. doi:10.1016/j.aej.2016.06.014

24. Soid SK, Ishak A, Pop I. MHD Stagnation-point Flow over a Stretching/
shrinking Sheet in a Micropolar Fluid with a Slip Boundary. Jsm (2018) 47(11):
2907–16. core.ac.uk/download/pdf/188194323.pdf. doi:10.17576/jsm-2018-
4711-34

25. Hamad MAA, Uddin MJ, Ismail AIM. Investigation of Combined Heat and
Mass Transfer by Lie Group Analysis with Variable Diffusivity Taking into
Account Hydrodynamic Slip and thermal Convective Boundary Conditions.
Int J Heat Mass Transfer (2012) 55:1355–62. doi:10.1016/
j.ijheatmasstransfer.2011.08.043

26. Ibáñez G. Entropy Generation in MHD Porous Channel with Hydrodynamic
Slip and Convective Boundary Conditions. Int J Heat Mass Transfer (2015) 80:
274–80. doi:10.1016/j.ijheatmasstransfer.2014.09.025

27. Akhil SM, Harshad RP, Rakesh RD. Mixed Convective Micropolar Ferrofluid
Flow with Viscous Dissipation, Joule Heating and Convective Boundary
Conditions. Int Commun Heat Mass (2019) 108:104320. doi:10.1016/
j.icheatmasstransfer.2019.104320

28. Reddy PS, Sreedevi P, Chamkha AJ. Magnetohydrodynamic (MHD) Boundary
Layer Heat and Mass Transfer Characteristics of Nanofluid over a Vertical
Cone under Convective Boundary Condition. Propulsion Power Res (2018)
7(4):308–19. doi:10.1016/j.jppr.2018.11.004

29. Mair K, Amna S, Salahuddin T, Malik MY, Mushtaq M. Heat and Mass
Diffusion for Casson Nanofluid Flow over a Stretching Surface with Variable
Viscosity and Convective Boundary Conditions. J Braz Soc Mech Sci Eng
(2018) 40(533):3–10. doi:10.1007/s40430-018-1415-y

30. Cross MM. Rheology of Non-newtonian Fluids: a New Flow Equation for
Pseudoplastic Systems. J Colloid Sci (1965) 20(5):417–37. doi:10.1016/0095-
8522(65)90022-X

31. Hayat T, Khan MI, Tamoor M, Waqas M, Alsaedi A. Numerical Simulation of Heat
Transfer in MHD Stagnation point Flow of Cross Fluid Model towards a Stretched
Surface. Results Phys (2017) 7:1824–7. doi:10.1016/j.rinp.2017.05.022

32. Manzur M, Khan M, Rahman Mu. Mixed Convection Heat Transfer to Cross
Fluid with thermal Radiation: Effects of BuoyancyAssisting andOpposing Flows.
Int J Mech Sci (2018) 138-139:515–23. doi:10.1016/j.ijmecsci.2018.02.010

33. KhanM,Manzur M, ur RahmanM. On Axisymmetric Flow and Heat Transfer
of Cross Fluid over a Radially Stretching Sheet. Results Phys (2017) 7:3767–72.
doi:10.1016/j.rinp.2017.08.039

34. Ijaz MK, Waqas W, Hayat T, Alsaedi A. Magneto-hydrodynamical Numerical
Simulation of Heat Transfer in MHD Stagnation point Flow of Cross Fluid
Model towards a Stretched Surface. Phys Chem Liq (2017) 56(5):584–95.
doi:10.1016/j.rinp.2017.05.022

35. Sajid M, Ali N, Javed T, Abbas Z. Stretching a Curved Surface in a Viscous Fluid.
Chin Phys Lett (2010) 27:024703. doi:10.1088/0256-307X/27/2/024703/meta

36. Sanni KM, Asghar S, Jalil M, Okechi NF. Flow of Viscous Fluid along a
Nonlinearly Stretching Curved Surface. Results Phys (2017) 7:1–4. doi:10.1016/
j.rinp.2016.11.058

37. Saleh SHM, Arifin NM, Nazar R, Pop I. Unsteady Micropolar Fluid over a
Permeable Curved Stretching Shrinking Surface.Math Probl Eng (2017) 2017:
1–13. doi:10.1155/2017/3085249

38. Nadeem S, Ahmed Z, Saleem S. Carbon Nanotubes Effects in Magneto
Nanofluid Flow over a Curved Stretching Surface with Variable Viscosity.
Microsyst Technol (2018) 25:2881–8. doi:10.1007/s00542-018-4232-4

39. Saba F, Ahmed N, Hussain S, Khan U, Mohyud-Din S, Darus M. Thermal
Analysis of Nanofluid Flow over a Curved Stretching Surface Suspended by
Carbon Nanotubes with Internal Heat Generation. Appl Sci (2018) 8:395.
doi:10.3390/app8030395

40. Naveed M, Abbas Z, Sajid M, Hasnain J. Dual Solutions in Hydromagnetic
Viscous Fluid Flow Past a Shrinking Curved Surface. Arab J Sci Eng (2018) 43:
1189–94. doi:10.1007/s13369-017-2772-z

41. Hayat T, Sajjad R, Ellahi R, Alsaedi A,MuhammadT.Homogeneous-heterogeneous
Reactions in MHD Flow of Micropolar Fluid by a Curved Stretching Surface. J Mol
Liquids (2017) 240:209–220. doi:10.1016/j.molliq.2017.05.054

42. Sanni K. M., Hussain Q., Asghar S. Heat Transfer Analysis for Non-
linear Boundary Driven Flow over a Curved Stretching Sheet with a
Variable Magnetic Field. Front Phys (2020) 8:113. doi:10.3389/
fphy.2020.00113

43. Sanni KM, Hussain Q, Asghar S. Thermal Analysis of a Hydromagnetic
Viscoelastic Fluid Flow over a Continuous Curved Stretching Surface in the
Presence of Radiative Heat Flux. Arab J Sci Eng (2020) 46:631–44. doi:10.1007/
s13369-020-04671-8

44. Abbas Z, NaveedM, SajidM. Heat Transfer Analysis for Stretching Flow over a
Curved Surface with Magnetic Field. J Engin Thermophys (2013) 22:337–45.
doi:10.1134/S1810232813040061

45. Xia Y, Lin J, Ku X. Flow-induced Rotation of Circular cylinder in Poiseuille
Flow of Power-Law Fluids. J Non-Newtonian Fluid Mech (2018) 260:120–32.
doi:10.1016/j.jnnfm.2018.07.003

46. Malik MY, Hussain A, Salahuddin T, Awais M. Effects of Viscous Dissipation
on MHD Boundary Layer Flow of Sisko Fluid over a Stretching cylinder. AIP
Adv (2016) 6:035009. doi:10.1063/1.4944347

47. Hayat T, Ullah I, Alsaedi A, Asghar S. Magnetohydrodynamics
Stagnation-Point Flow of Sisko Liquid with Melting Heat Transfer
and Heat Generation/Absorption. J Therm Sci Eng Appl (2018) 10:
1–8. doi:10.1115/1.4040032

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Sanni, Asghar, Rashid and Chu. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Physics | www.frontiersin.org June 2021 | Volume 9 | Article 67093014

Sanni et al. Nonlinear Radiative MHD Fluid Treatment

https://doi.org/10.1155/2012/743130
https://doi.org/10.1016/j.physa.2019.123941
https://doi.org/10.1016/j.tsep.2017.11.005
https://doi.org/10.1016/j.jaubas.2016.05.004
https://doi.org/10.1016/j.rinp.2016.10.001
https://doi.org/10.1016/j.rinp.2018.01.017
https://doi.org/10.1016/j.mcm.2010.07.005
https://doi.org/10.1016/j.mcm.2010.07.005
https://doi.org/10.1016/j.rinp.2017.07.025
https://doi.org/10.1016/j.rinp.2017.07.025
https://doi.org/10.1016/j.aej.2016.06.014
https://doi.org/10.17576/jsm-2018-4711-34
https://doi.org/10.17576/jsm-2018-4711-34
https://doi.org/10.1016/j.ijheatmasstransfer.2011.08.043
https://doi.org/10.1016/j.ijheatmasstransfer.2011.08.043
https://doi.org/10.1016/j.ijheatmasstransfer.2014.09.025
https://doi.org/10.1016/j.icheatmasstransfer.2019.104320
https://doi.org/10.1016/j.icheatmasstransfer.2019.104320
https://doi.org/10.1016/j.jppr.2018.11.004
https://doi.org/10.1007/s40430-018-1415-y
https://doi.org/10.1016/0095-8522(65)90022-X
https://doi.org/10.1016/0095-8522(65)90022-X
https://doi.org/10.1016/j.rinp.2017.05.022
https://doi.org/10.1016/j.ijmecsci.2018.02.010
https://doi.org/10.1016/j.rinp.2017.08.039
https://doi.org/10.1016/j.rinp.2017.05.022
https://doi.org/10.1088/0256-307X/27/2/024703/meta
https://doi.org/10.1016/j.rinp.2016.11.058
https://doi.org/10.1016/j.rinp.2016.11.058
https://doi.org/10.1155/2017/3085249
https://doi.org/10.1007/s00542-018-4232-4
https://doi.org/10.3390/app8030395
https://doi.org/10.1007/s13369-017-2772-z
https://doi.org/10.1016/j.molliq.2017.05.054
https://doi.org/10.3389/fphy.2020.00113
https://doi.org/10.3389/fphy.2020.00113
https://doi.org/10.1007/s13369-020-04671-8
https://doi.org/10.1007/s13369-020-04671-8
https://doi.org/10.1134/S1810232813040061
https://doi.org/10.1016/j.jnnfm.2018.07.003
https://doi.org/10.1063/1.4944347
https://doi.org/10.1115/1.4040032
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


APPENDIX

The expressions for Bi (i � 1(1)3) are given below:

B1 � [ (n + 1)x4′ + εx4 + (n − 1)ε2x3
−(n − 1)ε3x2 ] (A1)

B2 � ⎡⎢⎢⎢⎢⎢⎢⎣ (n + 1)x24 − 2nεx3x4 + 2nε2x2x4
+(n − 1)ε2x23 − (2n − 2)ε3x2x3

+(n − 1)ε4x22 −M2k2ε2(x3 − εx2)
⎤⎥⎥⎥⎥⎥⎥⎦ (A2)

B3 �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Prkε(m + 1

2
)x1x6 + 3Rn(Θw − 1)N2

1x
2
6

+εx6 + PrEc(x3 − εx2)2
1 + [We(x3 − εx2)]n + wk2ε2x22

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (A3)

TABLE A1 | Numerical values of f ′(0), −Φ′(0), and −Φ′(0) when for n � 2, m � 2, Pr � 2, and Θw � 1.5.

k M Ec Rn We W Bt Bc Pe Sc β f9(0) −Θ9(0) −Φ9(0)

5 0.1 0.1 0.2 0.5 0.2 0.4 0.4 0.2 0.2 0.2 -0.75791 -0.24172 0.21494
− − 0.2 − − − − − − − − − −0.35695 −
− − 0.4 − − − − − − − − − −0.53997 −
7 − 0.4 0.2 0.5 0.1 − − − − − − −0.13736 −
− − − − 1.0 − − − − − − −0.40112 0.13426 0.21241
− − − − 1.5 0.1 − − − − − −0.31929 0.23770 0.21789
− − − − − 0.2 0.1 − − − − − −0.07680 −
− − − − − 0.5 0.1 − − − − − −0.45489 −
10 − − − − − 0.4 0.1 − − − −0.45636 −0.26205 0.08118
− − − − − − − 0.5 − − − − − 0.23155
− − − − − − − 0.4 0.1 − − − − 0.19889
− − − − − − − − 0.5 − − − 0.22569
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