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The investigation of quantum–classical correspondence may lead to gaining a deeper
understanding of the classical limit of quantum theory. I have developed a quantum
formalism on the basis of a linear invariant theorem, which gives an exact
quantum–classical correspondence for damped oscillatory systems perturbed by an
arbitrary force. Within my formalism, the quantum trajectory and expectation values
of quantum observables precisely coincide with their classical counterparts in the case
where the global quantum constant Z has been removed from their quantum results. In
particular, I have illustrated the correspondence of the quantum energy with the classical
one in detail.
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1 INTRODUCTION

A fundamental issue in physics is to elucidate how classical mechanics (or Newtonian mechanics)
emerges from a more general theory of physics, the so-called relativistic quantum mechanics. While
the appearing of classical mechanics as a low velocity limit of relativistic mechanics is well known, the
classical limit of quantum mechanics is a subtle problem yet. Planck’s Z→ 0 limit [1] and Bohr’s
n→∞ limit [2] are the oldest proposals for the formulation of the classical limit of quantum theory.
However, there has been controversy from the early epoch of quantum mechanics concerning this
limit through different ideas and thoughts [3–9]. Accordingly, the mechanism on how to interlace
the exact correspondence between the quantum and the classical theories has not yet been fully
understood. Man’ko and Man’ko argued that the picture of extracting classical mechanics with the
simple limitation Z→ 0 does not have universal applicability [4]. Some physicists believe that
quantummechanics is not concerned with a single particle problem but an ensemble of particles, and
its Z→ 0 limit is not classical mechanics but classical statistical mechanics instead (see Ref. [5] and
references therein). For more different opinions concerning the classical limit of quantum
mechanics, refer in particular to Refs. [7, 8].

The purpose of this research is to establish a theoretical formalism concerning the classical limit of
quantum mechanics for damped driven oscillatory systems, which reveals the quantum and classical
correspondence, without any approximation or assumption except for the fundamental limitation
Z→ 0. To deduce Newtonian mechanics from quantum one along this line, canonical quantum
mechanics with fundamental Hamiltonian dynamics will be used. My theory is based on an invariant
operator method [10–13] which is generally employed for mathematically treating quantum
mechanical systems. This method enables us to derive exact quantum mechanical solutions for
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time-varying Hamiltonian systems. I will interpret and discuss
the physical meanings of the consequences in order to derive
insight into the correspondence principle.

2 INVARIANT-BASED DYNAMICS AND
QUANTUM SOLUTIONS

To investigate quantum–classical correspondence, I consider a
damped driven harmonic oscillator of mass m and frequency ω0,
whose Hamiltonian is given by [13–16]

Ĥ � e−ct
p̂2

2m
+ 1
2
ectm[ω2

0q̂
2 − 2f(t)q̂], (1)

where c is a damping constant and f(t) is a time-dependent
driving force divided by m. From canonical Hamiltonian
dynamics, one can confirm that this Hamiltonian gives an
exact equation of motion for the damped driven harmonic
oscillator. In the case of f(t) � 0, this becomes the
conventional Caldirola–Kanai (CK) Hamiltonian [17, 18]
which has been widely used in a phenomenological approach
for the dissipation of the damped harmonic oscillator.

If I denote the classical solution of the system in configuration
space as Q(t), it can be written in the form Q(t) � Qh(t) + Qp(t)
where Qh(t) is a homogeneous solution and Qp(t) a particular
solution. From the basic algebra in classical dynamics, we
have [19]

Qh(t) � Q0e
−ct/2cos(ωt + φ), (2)

Qp(t) � ∫t

0
[ f(t′)/ω]e−c(t−t′)/2sin[ω(t − t′)]dt′, (3)

whereQ0 is the amplitude of the mechanical oscillation at t � 0, ω
is a modified frequency which is ω � (ω2

0 − c2/4)1/2, and φ is an
arbitrary phase. The canonical classical solution in the
momentum space can also be represented in a similar form:
P(t) � Ph(t) + Pp(t), where Ph(t) � m _Qh(t)ect and Pp(t) �
m _Qp(t)ect .

In order to describe quantum solutions of the system, it is
useful to introduce an invariant operator which is a powerful tool
in elucidating mechanical properties of dynamical systems that
are expressed by a time-dependent Hamiltonian like Eq. 1. A
linear invariant operator of the system can be derived bymeans of
the Liouville–von Neumann equation and it is given by (see
Appendix A)

Î � c[e−ct/2p̂p +m(c
2
− iω)e−ct/2q̂p]eiωt , (4)

where p̂p � p̂ − Pp(t), q̂p � q̂ − Qp(t) and c � (2Zmω)−1/2eiχ with
a real constant phase χ. The eigenvalue equation of this operator
can be expressed in the form

Î
∣∣∣∣ϕ〉 � λ

∣∣∣∣ϕ〉, (5)

where λ is the eigenvalue and
∣∣∣∣ϕ〉 is the eigenstate. I have

represented the formulae of λ and the eigenstate 〈q
∣∣∣∣ϕ〉 in the

configuration space in Appendix A, including detailed derivation
of them.

According to the Lewis–Riesenfeld theory [10, 20], the wave
function that satisfies the Schrödinger equation is closely related
to the eigenstate of the invariant operator. In fact, the wave
function of the system in the coherent state is represented in
terms of 〈q

∣∣∣∣ϕ〉 as [10]

〈q
∣∣∣∣ψ〉 � 〈q

∣∣∣∣ϕ〉eiθ(t), (6)

where θ(t) is a time-dependent phase. If we insert this equation
together with Eq. 1 into the Schrödinger equation, we have
θ(t) � −ωt/2. The wave function described here is necessary
for investigating quantum–classical correspondence through
the evolution of the system. It is notable that the probability
density

∣∣∣∣〈q∣∣∣∣ψ〉∣∣∣∣2 is Gaussian and such a Gaussianity is maintained
through the lapse of time as in the case of other Gaussian
waves [21, 22] proposed in the literature. The fact that
the wave function, Eq. 6, exactly satisfies the Schrödinger
equation may guarantee the validity of the research unfolded
in this work.

3 CORRESPONDENCE BETWEEN
QUANTUM AND CLASSICAL
TRAJECTORIES

Let us now see whether the expectation values of the position and
the momentum operators under this formalism agree with the
corresponding classical trajectories or not. Considering that the
position operator is represented in terms of Î as (see Appendix A)

q̂ � i
����������
Z/(2mωect)

√ [Îe−i(ωt+χ) − Î
†
ei(ωt+χ)] + Qp(t), (7)

and using Eq. 6, it can be easily verified that

〈q̂〉 � Q(t), (8)

where 〈 · 〉 � 〈ψ| · |ψ〉. Hence, the quantum expectation value of
the position operator is exactly the same as that of the classical
trajectory Q(t). In a similar way, the expectation value of the
canonical momentum is also derived such that 〈p̂〉 � m _Q(t)ect .
However, in general, the physical momentum in a damped system
is not equivalent to the canonical one. Because the physical
momentum operator is defined in the form p̂k � p̂e−ct [23] in
the present case, its expectation value is given by

〈p̂k〉 � m _Q(t)( ≡ Pk(t)), (9)

where Pk(t) is the classical physical momentum.We thus confirm
that the linear invariant operator theory admits quantum
expectation values of q̂ and p̂k in a simple manner, of which
results precisely coincide with the corresponding classical values.
We can regard this outcome as an initial step for verifying that the
invariant formalism of quantum mechanics reconciles with the
principle of quantum and classical correspondence.

The above consequence, however, does not mean that the
quantum particle (oscillator) follows the exact classical trajectory
that is uniquely defined. Quantum mechanics is basically
nonlocal and there are numerous possible paths allowed,
within the width of a wave packet, for a quantum particle that
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has a definite initial condition. It is impossible to indicate exactly
which path the quantum particle actually follows, but some
paths may be more likely than others, especially those close
to the classically predicted path. As a consequence of the
Ehrenfest’s theorem [24], the trajectory of the quantum
particle can be approximated to that of the classical one only
when the width of the quantum wave packet is sufficiently
narrow. Details of the Ehrenfest’s theorem for a particular case
of the system where the oscillator is driven by a sinusoidal force
are shown in Ref. [25].

4 QUANTUM ENERGY AND ITS CLASSICAL
LIMIT

As pointed out by Hen and Kalev [9] and some other authors
[26], obtaining a quantum–classical correspondence from a test
performed at the level concerned expectation values is the key for
achieving the genuine correspondence. Hence, it is necessary to
compare the expectation values of quantum observables with
their counterpart classical quantities. I will now analyze the
expectation value of the quantum energy which is one of the
most common observables in the system. Notice that quantum
energy E(t) for a nonconservative system is different from the
expectation value of the Hamiltonian and the expression of the
energy operator, in the present case, is [16, 27]

Ê � e−2ct p̂2/(2m) + (1/2)mω2
0q̂

2. (10)

After representing this operator in terms of Î and Î
†
, it is able to

evaluate the expectation value of Ê with the help of Eq. 6.
Through this procedure, I finally have (see Appendix B)

E(t) � 1
2
ZΩ + e−2ct

P2(t)
2m

+ 1
2
mω2

0Q
2(t), (11)

where Ω � (ω2
0/ω)e−ct . This is the main consequence of my

present research. The first term that contains Z is the zero-point
energy that does not vanish even when the displacement of the
oscillator is zero. Note that this term varies over time. Although q2

(p2) can be obtained by raising q (p) squared classically, the
quantum expectation value 〈q̂2〉 (〈p̂2〉) is different from 〈q̂〉2
(〈p̂〉2) because it involves a zero-point quantity. Such zero-point
quantities also act as the origin of the zero-point quantum
energy. When it comes to a measure of energy, great care must
be taken in order to distinguish its classicality from the quantum
nature. Fundamentally, the behavior of energy and its variance
are directly related to the uncertainty principle [28, 29]. The
(quantum) energy is, in general, not conserved over time in
dissipative systems like this, while it is possible to predict its
amount at any given instant in time.

For better understanding of the time behavior of Eq. 11, let
us consider a specific system which is the cantilever in the
tapping mode atomic force microscopy (TMAFM) [30]. This
system is widely used as a dynamic imaging technique. For a
mechanical description of TMAFM, see Appendix C. The
time evolutions of quantum energy for TMAFM are illustrated
in Figure 1 using Eq. 11 with comparison to its counterpart

classical one. This figure exhibits complete consistency
between the quantum energy (with Z→ 0) and the
corresponding classical one. I have also applied the present
theory to another system which is the familiar damped
harmonic oscillator driven by a periodic sawtooth force (see
Appendix D and Figure 2 for its mechanical description).
Sawtooth forces or signals are typically observed from atomic
force microscopy with biomolecules like proteins [31] and
from a modulation of current density in a nuclear-fusion
tokamak [32]. Figure 3 shows that the quantum description
of this system using my theory also coincides with the classical
one. We thus confirm that the formalism of quantum
mechanics based on the linear invariant yields exact
quantum–classical correspondence.

For further analysis, let us consider the case where the driving
force disappears (f(t)→ 0). We can then confirm using Eq. 2 that
Eq. 11 reduces to that of Ref. [33], which is of the form

E(t) � 1
2
ZΩ + E0e

−ct(1 + c

2ω0
cos[2(ωt + φ) − δ]), (12)

FIGURE 1 | Exact quantum energy (red line), quantum energy with Z→ 0
(blue line), and classical mechanical energy (circle) of the oscillating cantilever
in TMAFM as a function of t where k � 0.5, a0 � 0.3, D0 � 0.5, Z � 1,meff � 1,
Q0 � 3, c � 0.1, Fext � 0.3, and φ � 0. The values of (ω0 ,ωd) are (1, 0.3)
for (A) and (1.5, 0.6) for (B). All values are taken to be dimensionless for
convenience; this convention will also be used in subsequent figures.
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where E0 � mω2
0Q

2
0/2 and δ � tan−1(2ω/c). Except for the first

term which is a purely quantum one, this is the well-known
formula of the classical mechanical energy for the damped
harmonic oscillator. Of course, for the high displacement limit
Q0 ≫ Z/(mω), it is possible to neglect the quantum effect via
the use of the assumption Z ∼ 0 and, consequently, the
quantum energy can be successfully approximated to the
classical one. Though the quantum energy is considered
now as a model example in order to explain the
correspondence principle, one can easily check, using the
formalism developed here, that the analytical expectation
values of other observables are also in precise congruence
with their classical counterparts under the limit Z→ 0. For
other formulae of quantum energies and their interpretation
for this reduced system (f(t)→ 0), which were derived using
other methods such as the SU(1,1) Lie algebraic approach,
refer to Ref. [34].

5 UNCERTAINTY AND THE
CORRESPONDENCE PRINCIPLE

An important feature of quantum mechanics, which
distinguishes it from classical mechanics, is the appearance
of a minimum uncertainty product between the arbitrary two
noncommutative operators. One cannot simultaneously know
the values of position and momentum with an arbitrary
precision from a quantum measurement, while the classical
theory of measurement has nothing to do with such a
limitation.

The quantum variance of an observable Ô in the state
∣∣∣∣ψ〉

is given by ΔÔ � [〈Ô2〉 − 〈Ô〉2]1/2. From this identity and

the use of Eq. 6, the quantum uncertainty product for
position and momentum of the system can be directly
derived as

Δq̂Δp̂ � Zω0/(2ω). (13)

Because this consequence is independent of the particular
solutions, Qp(t) and Pp(t), the driving force does not affect
the uncertainty product. In other words, the uncertainty
product of the system is the same as that of the undriven
damped harmonic oscillator [12]. Due to the obvious
inequality ω0 ≥ω, the uncertainty principle holds in this case.
For the case c→ 0, this uncertainty product reduces to Z/2 which
is its minimal value allowed in quantum mechanics for the
harmonic oscillator. On the other hand, for Z→ 0, this
becomes zero, showing the classical prediction.

6 OTHER FORMALISMS AND
APPROACHES

There are several other quantum formalisms for describing the
damped harmonic oscillator, such as the Lindblad dynamics

FIGURE 2 | Sawtooth driving force f(t) with f0 � 1, m � 1, and τ � 1,
where the mathematical formula of f(t) with a period τ is defined in
Appendix D. n is the natural number (see Appendix D). I have considered n
up to three for the blue dashed line and up to 1,000 for the red solid line.
As n increases, the form of the obtained sawtooth driving force becomesmore
exact.

FIGURE 3 | Exact quantum energy (violet line), quantum energy with
Z→ 0 (green line), and classical mechanical energy (triangle) of the oscillator
driven by the sawtooth force as a function of t where m � 1, Z � 1, c � 0.1,
ω0 � 1, φ � 0, and n � 1000. The values of (Q0 ,ωd , f0) are (3, 0.3, 1) for
(A) and (1, 1.2,2) for (B).
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[35–38], non-Hermitian Hamiltonian dynamics [39–41], and
the Schwinger action method [15, 42]. Let’s look into the
relatively well-known Lindblad dynamics here. Whereas my
approach uses invariant operators Î and Î

†
as basic tools for

unfolding quantum theory, the approach based on the
Lindblad theory uses an annihilation operator and its
Hermitian adjoint operator (creation operator). The
definition of the annihilation operator in that theory is
given by â � ��������

mω/(2Z)√
q̂ + ip̂/

�����
2mωZ

√
, where p̂ is a

momentum which is defined in terms of the notation in this
work as (see Eq. 46 of Ref. [35])

p̂ � p̂k +m(c/2)q̂. (14)

Although the momentum given above seems similar to the
physical momentum, it is not exactly the same due to the
presence of the additional second term.
In particular, Korsch evaluated the expectation value of â†â
for the damped oscillator driven by a sinusoidal force of the
form

f(t) � fdcos(ωdt). (15)

If we denote the expectation value of an observable Ô in the
Lindblad theory as 〈Ô〉L, Korsch’s result for â†â with Z � 1 and
m � 1 is given by (see Eq. 98 of Ref. [35])

〈â†â〉L� 1
b(t) − 1 + |α(t)|2, (16)

where

b(t) � (μ − ])(1 − u0)ect
μu0 − ] + μ(1 − u0)ect , (17)

α(t) � α0e
−(iω+c/2)t − fd

2
���
2ω

√ (e−(iω+c/2)t − eiωdt

ω + ωd − ic/2
+ e−(iω+c/2)t − e−iωdt

ω − ωd − ic/2 ), (18)

while μ � c′ + c/2 and ] � c′ − c/2, c′ is a diffusion constant [38],
and u0 is a constant chosen within the range 0< u0 < 1.

Let us now compare the present result with Korsch’s together
with the classical one. The expectation value of â†â in my theory is
given by

〈â†â〉 � mω

2Z
〈q̂2〉 + 〈p̂2〉

2mωZ
− 1
2
e−ct . (19)

The expectation values 〈q̂2〉 and 〈p̂2〉 are provided in
Appendix E. On the other hand, a classical counterpart of the
expectation value of â†â can be defined as A*A, where

A �
��������
mω/(2Z)√

Q(t) + iP(t)/ �����
2mωZ

√
, (20)

with

P(t) � Pk(t) +mc

2
Q(t). (21)

Figures 4, 5 are the comparison of the time behavior
between 〈â†â〉, 〈â†â〉L, and A*A. The difference of Figure 5

compared with Figure 4 is the chosen amplitude α0, that is, α0
in Figure 5 is relatively smaller than that used in Figure 4.
Although the result in this work agrees well with the Korsch’s
one for the case of Figure 4, the two results in Figure 5
are somewhat different from each other. Especially,
the discrepancy between them is very large for the case
ωd <ω0 (see Figure 5B). By the way, my results in both
Figures 4, 5 agree with the classical ones. From a lengthy
calculation after substituting Equations E1 and E2 in Eq. 19,
it can also be verified that 〈â†â〉 is exactly the same as A*A
analytically.

There are lots of different approaches for the classical limit
of quantum mechanics with their own viewpoints. The
problem of quantum–classical transition has been
extensively investigated for the quartic oscillator by Oliveira
et al. [29, 43–45]. They argued that quantum–classical
correspondence can be achieved via the convergence of
three factors, which are large classical actions, the object-
environment interaction, and experimentally induced
limitations. It was reported by Zurek [46] that the
quantum–classical limit is governed by decoherence that
takes place through environmental perturbations.
As a quantum chaotic system is decohered, it restores
classical behavior as a consequence of the destruction of
quantum superpositions. Wiebe and Ballentine [47]

FIGURE4 | Time evolution of the expectation values (EV), 〈â† â〉 (Eq. 19),
〈â†â〉L (Eq. 16), and A*A, for several different choices of the sinusoidal driving
force characterized by fd and ωd. The chosen values of fd and ωd are
designated in each panel. I have used α0 � 5, u0 � 0.5, ω0 � 1, c � 0.1,
c’ � 0,m � 1, Z � 1, χ � 0, and φ � 0. The value ofQ0 is 7.21 for A, 4.54 for B,
and 7.85 for C.
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examined quantum–classical differences by computing the
chaotic tumbling of the satellite Hyperion from both
classical and quantum points of view regarding the
hypothesis of Zurek.

7 CONCLUSION

Classical limit of quantum mechanics for a driven damped
harmonic oscillator has been investigated based on the linear
invariant operator. The full wave function of the system was
represented in terms of the eigenstate of the linear invariant
operator according to the Lewis–Riesenfeld theory [10]. The
expectation values of observables, such as position,
momentum, and quantum energy, have been derived by
using the wave function, and I have compared them with
their classical counterparts. From this, it was shown that
Z→ 0 limit of quantum mechanics for the system coincides
with the counterpart classical mechanics within my
formulation. The quantum formalism adopted here may be
extended to other systems beyond the harmonic oscillator,
provided that a given system admits a linear invariant quantity
as a tool for its analysis.

The recent trend [48, 49] of the reimplementation of
classical mechanics in particle optics using quantum
particles is a clear testimony of the close relationship

between quantum and classical mechanics. Some essential
knowledge of quantum information theory is developed
on the basis of classical-like wave properties, while the
quantum nature of a physical system is unquestionable
especially when nonlocal entanglement is concerned [50].
It may be the very common opinion that every new physical
theory should not only precisely describe facts that cannot be
covered by existing theories but must also reproduce the
predictions of classical mechanics in an appropriate
classical limit.

Quantum systems exhibit various nonclassical properties
such as entanglement, superposition, nonlocality, and negative
Wigner distribution function. While such nonclassicalities
are important in the next-generation quantum information
science, the description of nonclassical properties is
valid and reliable only when the underlying quantum
formalism used in such descriptions is precise and
complete. A formalism of quantum theory may be
acceptable only when it gives classical results in the classical
limit (Z→ 0 limit). This is the reason why a complete
quantum formalism that obeys quantum–classical
correspondence is important. Such a formalism may admit
to explaining the various characteristics of dynamical systems
in a reasonable and consistent way from every possible angle.
The result for a correspondence principle that I have developed
in this research beyond simple static systems may provide a
deep insight into understanding how classical mechanics
emerges from quantum mechanics through a limiting
situation.

8 METHODS

I considered a time-dependent Hamiltonian, which is
composed of the basic CK Hamiltonian and an additional
term associated with a time-varying driving force. This
Hamiltonian corresponds to a damped driven harmonic
oscillator.

The linear invariant operator of the system is constructed
from the Liouville–von Neumann equation. The eigenvalue
and the eigenstate of the linear invariant operator are
derived by solving its eigenvalue equation through a
fundamental mathematical procedure. If a system is
described by a time-dependent Hamiltonian like the case
given here, the eigenstate of the (linear) invariant operator
is important because the full wave function of the system
is expressed in terms of such an eigenstate [10]. More
clearly speaking, the wave function in this case is
represented by the eigenstate and a phase factor (see Eq. 6
in the text). Because we now know the formula of the
eigenstate, the phase of the wave function can be easily
evaluated by means of the Schrödinger equation. In this
way, we can derive the full wave function eventually. This
wave function is necessary in order to investigate the Z→ 0
limit of quantum mechanics.

The quantum expectation values of observables, such
as position, momentum, and the energy operator, are

FIGURE 5 | Time evolution of 〈â† â〉, 〈â†â〉L, andA*A for the casewhere the
amplitude is relatively small (α0 � 1). The value of Q0 is 2.00 for A, 1.50 for B,
and 2.67 for C. Other unspecified values used here are the same as those of
Figure 4.
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derived using the wave function. By comparing such
expectation values with their classical counterparts, the
correspondence principle between quantum and classical
mechanics is analyzed.
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APPENDIX A: LINEAR INVARIANT
OPERATOR AND ITS EIGENSTATE

From a straightforward evaluation of the Liouville-von Neumann
equation,

dÎ/dt � zÎ/zt + [Î, Ĥ]/(i�h) � 0, (A1)

using the Hamiltonian given in Eq. 1 in the text, we can
easily derive the linear invariant operator Î that is given
in Eq. 4 in the text (see Ref. 13). Notice that the Hermitian
adjoint of this operator, Î

†
, is also an invariant operator.

From a combined evaluation of the two equations for Î
and Î

†
, it is possible to eliminate p̂ and, as a consequence,

the expression for q̂ which appeared in Eq. 7 in the text can
be obtained. From a similar method, we can also obtain the
expression for p̂. By solving the eigenvalue equation of the
invariant operator, Eq. 5, in the configuration space on
the basis of the technique adopted in Ref. 20, we obtain the
eigenvalue as

λ � βeiωt , (A2)

where β � −i ��������
mω/(2�h)√

Q0e−i(ωt+φ−χ), and the eigenstate of the
form

〈q
∣∣∣∣ϕ〉 �

���
mω

�hπ

√
exp [ect/2C1qp − C2q2p

�h
+ C3], (A3)

where qp � q − Qp(t) and
C1 �

�����
2�hmω

√
β, (A4)

C2 � 1
2
mect/2(ω + ic/2), (A5)

C3 � iPp(t)q
�h

+ ct
4
− β2

2
−
∣∣∣∣β∣∣∣∣2
2
. (A6)

APPENDIX B: EXPECTATION VALUE OF
THE ENERGY OPERATOR

I present how to evaluate the expectation value of the energy
operator. From a minor evaluation with the energy operator
using the expression of Î (and its Hermitian conjugate Î

†
), it is

possible to represent the energy operator in terms of Î and Î
†

such that

Ê � [�h
4
(2ω2

0

ω
(2Î† Î + 1)− εÎ

2− ε* Î
†2) +

��
�h
2

√ (ΘÎ + Θ* Î
†)]e−ct+ Ep,

(B1)

where ε � c[c/(2ω) + i]e−2i(ωt+χ) and

Θ � [ ��
ω

m

√
e−ct/2ηPp(t) + iect/2

��
m
ω

√
ω2
0Qp(t)]e−i(ωt+χ), (B2)

Ep � e−2ct
P2
p(t)
2m

+ 1
2
mω2

0Q
2
p(t), (B3)

with η � 1 − ic/(2ω). Here, I have used the relation
Î Î

† � Î
†
Î + 1, i.e., all Î Î

†
are replaced by Î

†
Î + 1: this

procedure of operator ordering is necessary when we
manage a coherent state (see, for example, Ref. 51). Now by
considering the fact that the eigenvalues of Î and Î

†
are λ and λ*

respectively, we can easily identify the expectation value of the
energy operator, 〈ψ

∣∣∣∣Ê∣∣∣∣ψ〉, which is given in Eq. 11 in the text.
Notice that the �hmust not be taken simplistically to zero at the
initial stage of the evaluation under the pretext of obtaining the
classical limit. We should keep it until we arrive at the final
representation, Eq. 11.

APPENDIX C: CANTILEVER SYSTEM

Description of the cantilever system appears in Ref. 30. If we
denote the effective mass of the cantilever as meff , the force acted
on the lever is represented in the form

f (t) � [Fext + k(D0 − a0sinωdt)]/meff , (C1)

where Fext is the tip-sample force, k(� meffω2
0) is the cantilever

spring constant, D0 is the resting position of the cantilever
base, a0 is the driving amplitude, and ωd is the drive
frequency [30].

APPENDIX D: DAMPED HARMONIC
OSCILLATOR WITH A SAWTOOTH FORCE

I regard the damped harmonic oscillator to which applied an
external sawtooth force with the period τ � 2π/ωd. The sawtooth
force can be represented as f (t) � f0t/(mτ) for a period
−τ/2< t < τ/2 (see Figure 2), where f0 is a constant that
represents the strength of the force. In this case, f (t) can be
rewritten in terms of an infinite series such that [52]

f (t) � [f0/(πm)]∑∞
n�1

(−1)n+1
n

sin(nωdt). (D1)

APPENDIX E: EXPECTATION VALUESOF q̂2

AND p̂2

The expectation values of q̂2 and p̂2 in the state
∣∣∣∣ψ〉, which are

necessary in the development of a consequence in Section 6, are
given by

〈q̂2 〉 � − �h
2mωect

[λ2e−2i(ωt+χ) + λ*2e2i(ωt+χ) − 2
∣∣∣∣∣λ 2 − 1]∣∣∣∣∣

+ iQp(t)
�����
2�h

mωect

√ [λe−i(ωt+χ) − λ*ei(ωt+χ)] + Q2
p(t), (E1)

〈p̂2〉 � mω�h
2

e−ct[λ2e−2i(ωt+χ) + λ*2e2i(ωt+χ) + 2
∣∣∣∣∣λ 2 + 1]∣∣∣∣∣

+Gp(t)
�����
2mω�h

√
e−ct/2[λe−i(ωt+χ) + λ*ei(ωt+χ)] + G2

p(t), (E2)

where Gp(t) � Pp(t)e−ct + cmQp(t)/2. The particular solutions
that correspond to the driving force of Eq. 15 are given by
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Qp(t) � fd���������������(ω2
0 − ω2

d)2 + c2ω2
d

√ cos(ωdt − δd), (E3)

Pp(t) � − mfdωd���������������(ω2
0 − ω2

d)2 + c2ω2
d

√ ectsin(ωdt − δd), (E4)

where

δd � atan(ω2
0 − ω2

d, cωd). (E5)

Here, ϑ ≡ atan(x, y) is a two-argument inverse function of
tan ϑ � y/x. This function is defined in the range 0≤ ϑ < 2π.
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