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Secondary batteries have been important across several aspects of daily life and

industrial manufacture. The electron and ion transport of electrodes significantly affects

the energy-storage performance of batteries. Among many fascinating materials,

transition metal oxides have been considered promising as candidate electrode materials

of high-performance batteries owing to their high theoretical capacity and good

stability. Herein, tin dioxide is chosen as a representative transition metal oxide to

show the specific electron and ion transport in some types of secondary batteries

including lithium-ion, lithium-sulfur, potassium-ion batteries, etc. The way to optimize

the structure and the strategies to enhance electron and ion transport have been

summarized. Recently, tin dioxide doping and the preparation of tin dioxide-based

composites have been reported. In addition, the main challenges and possible prospects

are also proposed, which provide important suggestions for researchers to develop

high-performance energy-storage materials and to explore new physical science.
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INTRODUCTION

Depending on the rapid development of modern society, the production of clean, renewable energy
has become an important direction [1–3] that is necessary to the development of energy storage
systems. Secondary batteries have been considered the best choice. In the past few decades, apart
from lithium-ion (Li-ion) batteries, some new types of batteries, such as lithium-sulfur (Li-S),
sodium (Na)-ion, and potassium (K)-ion batteries, have been developed [4–7]. The energy-storage
performance relies on the property of the electrode materials, and this is especially relevant when it
comes to large theoretical capacity and good stability.

As a transition metal oxide, tin oxide (SnO2) has a high theoretical capacity, good safety,
and a low cost of production, which has attracted much attention [8–11]. However, SnO2, as a
semiconductor, has poor conductivity and ion diffusivity, which highly restricts its electrochemical
performance [12, 13]. After many cycles, the electrode structure changes greatly, which results in
capacity decay [14, 15]. It is important to improve the electron and ion transport of the SnO2

electrodes, which is mainly achieved by constructing composites and doping [16–18]. In this

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2021.669736
http://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2021.669736&domain=pdf&date_stamp=2021-04-01
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:jyliu@ahnu.edu.cn
mailto:cqhu@ipe.ac.cn
https://doi.org/10.3389/fphy.2021.669736
https://www.frontiersin.org/articles/10.3389/fphy.2021.669736/full


Han et al. Electron and Ion Transport

review, we focus on the main strategies to improve the electron
transfer and ion diffusion of SnO2 in batteries, which will be
important for the broad researchers who are working on energy
storage and related physical sciences.

CHALLENGES FOR ELECTRON AND ION
TRANSPORT

Even though SnO2 has been widely studied for secondary
batteries, it has several disadvantages that restrict its
electrochemical performance and practical applications, such as
low electronic conductivity and the poor ability of ion transport.
For example, the conductivity of SnO2 at room temperature
reported by Park et al. was only 1.242 × 10−8 S cm−1 [12]. In
addition, Xie et al. reported that the Li-ion diffusion coefficient
of amorphous SnO2 thin film was 10−15-10−13 cm2 s−1 [13].
It greatly limits the overall capacity and rate-performance of
SnO2-based secondary batteries. Moreover, the SnO2 exhibits a
large volume change during the lithiation–delithiation, which
makes the electrode gradually pulverize, resulting in a rapid
capacity decay.

Recently, it was reported the physical properties of SnO2 can
be adjusted by controlling the morphology [2]. Many researchers
have selectively focused on the adjustment of the morphology
of nanostructured SnO2 in secondary battery systems. It was
reported the conductivity of a single SnO2 nanowire was 0.1–
0.9 S cm−1[19]. Park et al. employed SnO2 nanowires as anode
materials for Li-ion batteries and compared the electrochemical
performance with SnO2 powders. SnO2 nanowires showed a
high lithium-storage performance [20]. The improvement of the
electrochemical performance of SnO2 nanowires was ascribed to
the large surface area. Yin et al. indicated the electrochemical
performance of SnO2 nanosheets for Li-ion batteries was
improved because the nanostructure increased the surface area,
enhanced the structural stability, and shortened the diffusion
distance of ions and electrons [21].

Compared to some morphologies such as 1D nanowires [22,
23], nanorods [24, 25], nanotubes [26], and two-dimensional
(2D) nanosheets [27, 28], three-dimensional (3D) porous
structures provide sufficient voids to buffer volume expansion.
Since then, it has attracted great attention [29]. In 2017, Li et al.
prepared a dumbbell hollow porous SnO2 anode for a Li-ion
battery, and it exhibited a high capacity [10]. There were nano-
pores in the porous shell, which promoted electrolyte transport
and Li-ion diffusion; and the hollow porous structure provided
space for buffer volume expansion. Zhang et al. prepared uniform
multi-shell SnO2 hollow microspheres through a continuous
hard template method, which was used as the anode of the Li-ion
battery [30]. Each shell of the multi-shell hollow structure could
form parallel resistance to improve the conductivity.

Nanostructured SnO2 can not only improve the electronic
conductivity but also shorten the Li-ion diffusion pathway by
improving the electrode–electrolyte interface properties [3, 31].
However, the electrochemical performance of the nanostructured
SnO2 hinders the application in large-scale secondary batteries.
In some studies, it was found that surface coating and elemental

doping improved the performance [3, 9, 32]. Researchers have
developed several strategies to improve the electron and ion
transport of SnO2 to enhance the energy-storage performance,
and these have potential for large-scale application.

ELECTRON AND ION TRANSPORT OF
SnO2 COMPOSITES

SnO2@C Composites in Li-Ion Batteries
Carbonaceous materials have good electrical conductivity,
exhibiting a synergistic effect with SnO2 to improve the overall
electronic conductivity [33]. Guo et al. prepared porous carbon-
coated SnO2 nanoparticles (SnO2@PC) by using glucose as the
carbon source [34]. Porous carbon provided a fast electron/ion
transport pathway, which prevents the crushing and aggregation
of SnO2 nanoparticles and promotes the formation of stable solid
electrolyte interface (SEI) films. Moreover, the highly specific
surface area provided more active centers for Li storage and
promoted ion/electron transport. When the carbon content was
14.1%, the discharge capacity was 1130.1 mAh g−1 after 100
cycles at 0.2 A g−1.

Since graphene was discovered by Andre and Konstantin
Novoselov in 2004, it has attracted wide attention in many
fields. Owing to its excellent mechanical properties and electrical
conductivity, graphene has been used for energy storage [35].
Many studies have focused on combining graphene with a
transition metal oxide like SnO2. Chen et al. reported a
SnO2/graphene composite, which was beneficial to improve
the electrochemical performance [36]. The green approach to
prepare the SnO2/graphene composites directly anchored SnO2

nanoparticles on graphene nanosheets via Sn-O-C bonds. The
prepared SnO2/graphene composite exhibited a capacity of 1420
mAh g−1 at 0.1 A g−1 after 90 cycles and good cycling retention
of 97% at 1A g−1 after 230 cycles.

Some investigations have indicated that the composites of
SnO2 with carbon materials often suffered from material loss
during long-term cycles, which leads to the increase of resistance
and the rapid decay of electrochemical performance. Therefore,
researchers have prepared some multi-dimensional materials
with a topological structure. A double-carbon confinement
strategy was presented by Wu et al. to prepare double-
carbon to confine SnO2 hollow nanospheres (denoted as
G@C@SnO2), as shown in Figure 1 [33]. The G@C@SnO2

showed a highly reversible performance in Li-ion batteries. The
enhancement was ascribed to the following advantages: (i) a
3D structure based on graphene increased the conductivity,
avoided the aggregation of nanoparticles, and provided an open
framework for the transmission of electrons and ions; (ii)
hollow SnO2 nanospheres shortened ion diffusion distance and
buffered volume change; and (iii) a nitrogen-doped carbon shell
can further accommodate volume change, ensuring structural
integrity and improved conductivity.

SnO2@C Composites in Li-S Batteries
Li-S battery is considered an excellent candidate for energy-
storage systems because of its high energy density. However, the
sulfur cathode has the problem of low conductivity (5 × 10−30 S
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FIGURE 1 | Illustration of the reversible Li-ion storage in G@C@SnO2. Reproduced from Wu et al. [33].

cm−1) and the huge volume-change during cycling, resulting in
a rapid capacity decay [7, 37]. In addition, polysulfide is easily
soluble in electrolytes, leading to a shuttle effect [38]. Surface
modification of sulfur cathodes and coating with conductive
materials are common strategies to solve the problems [39]. Liu’s
group prepared a ternary composite of S/C@SnO2, which could
improve the conductivity of sulfur, adapt to the volume-change,
and adsorb polysulfide [40]. Porous carbon could improve the
conductivity, and the porous structure reserved space for the
volume change of sulfur. In addition, the SnO2 shell improved
the mechanical strength of the whole structure, displayed
strong adsorption toward polysulfide, and further reduced the
shuttle effect.

Moreover, SnO2/carbon composites, as functional interlayer
materials used in Li-S batteries, weaken the shuttle effect by
chemical adsorption. In the meantime, carbon materials in
SnO2/carbon composite can improve the overall conductivity of
the composite. Hu et al. prepared a SnO2/reduced graphene oxide
(rGO) composite as dual-function interlayer cathode material
for Li-S batteries [41]. The close interaction between rGO and
SnO2 nanoparticles not only reduced the resistance of the sulfur
cathode but also averted the deformation of the electrode.

SnO2@TMO Composites in Secondary
Batteries
Typical transition metal oxides (TMOs), including SnO2, TiO2,
MoO2, Co3O4, V2O5, NiO, CuO, ZnO, and Fe2O3, etc.,
commonly possess a high capacity compared to the graphite
anode in Li-ion batteries [42, 43]. Researchers found that
TMO composites are beneficial to the improvement of cycle
stability, and they are attributed to the synergistic effect [44–
46]. Recently, many studies have been conducted in developing
composites of SnO2 and TMOs. SnO2@TMO composites are
often used as anodes of Li-ion batteries, and they show good
electrochemical performances. For example, SnO2 is n-typed
semiconductor with a wide band gap (3.6 eV), while α-Fe2O3 is a
p-type semiconductor with a narrow band gap (2.2 eV). Electron
transfer from the conduction band of SnO2 to the conduction
band of α-Fe2O3, crosses the heterojunction interface, and finally
their Fermi levels reach an equilibrium. Figure 2 schematically
shows the energy band of lithium storage of a SnO2/α-Fe2O3

heterostructure. The synergistic effect of SnO2 and α-Fe2O3

effectively improved the conductivity, and the diffusion rate
of lithium ion thus improved the rate performance of the
battery [47].

SnO2@TMO has been used in many secondary batteries, such
as Li-ion and Li-S batteries, exhibiting good performance. Liu
et al. indicated that the low conductivity of pure sulfur and
shuttle effect seriously hindered the commercial development
of Li-S batteries [48]. The results showed the resistance of the
S@SnO2@MnO2 composite was 6.4 × 107 Ω , which was one
order of magnitude lower than pure sulfur (5.8 × 108 Ω).
According to the first-principal calculation, SnO2 and MnO2

had a compact band gap structure and a good density of states
(DOS), which are helpful to the reduction of the electron transfer
barrier. It was indicated that SnO2 and MnO2 improve the
electrical conductivity and accelerate the electron transfer of
S@SnO2@MnO2 composite. The capacity of the Li-S battery with
a S@SnO2@MnO2 composite as the cathode was 1,323 mAh
g−1 at 0.1 C, and the low capacity decay rate was 0.03% after
500 cycles, indicating great confinement of the shuttle effect. In
addition, the battery also showed good rate-performance.

ELECTRON TRANSFER AND ION
DIFFUSION OF DOPED-SnO2 FOR
ENERGY-STORAGE

Doping technology is an economical, simple, and effective
modification strategy that has been used broadly to improve
the electronic properties of SnO2 in secondary batteries. Several
materials have been chosen as dopants, including the group
IIIA element (Al, Ga, and In), the group VA elements Sb, and
so on [49, 50]. It has been reported that doping transition
metals can not only increase the conductivity of SnO2 but also
reduce the volume change in the process of circulation [51, 52].
Lübke et al. reported two categories of transition metal dopants
in SnO2 [53]. The first one are the elements without redox
activity, including Zr [53], Ti [54], Nb [55], W [56], and Pb [57].
The doping of these elements will not change the capacity of
SnO2, but it can significantly increase the cycling life and rate
performance [53]. Dominic et al. indicated that the improvement
of the performance of doped SnO2 depending on the increase
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FIGURE 2 | (A) Schematic diagram of the energy band structures for SnO2 and α-Fe2O3. (B) The energy band of SnO2@α-Fe2O3 heterostructures. EC, EF, and EV

stand for conduction band energy, Fermi energy, and valence band energy, respectively. Reproduced from Cui et al. [47].

of the electrical conductivity caused by the additional charge
percolation path. Belonging to the second group elements of
Cu [53], Mn [58], Fe [59], Co [60], Ni [61], Zn [62], Mo
[63], and Sb [64], which showed redox activity, can ensure
participation in the conversion reaction, leading to the increase
of theoretical capacity. Among them,Mo is an interesting dopant,
as it increased the concentration of free electrons in SnO2. Chen
et al. prepared ultrafine Mo-doped SnO2 in which Mo uniformly
distributed and banded to a SnO2 lattice in the form of Mo6+

[63]. The initial capacity was as high as 2751.4 mAh g−1. Even at
0.5 A g−1, the initial capacity was 1121.8 mAh g−1, and the high
capacity of 670.5 mAh g−1 can be maintained after 700 cycles.
Moreover, Sb-doped SnO2 has also been studied widely. Wang
et al. reported a Sb-doped SnO2 hollow nanosphere that showed
the capacity of 709 mAh g−1 at 0.1 A g−1 after 100 cycles [65].

In addition, doping and co-doping strategies by non-metallic
elements are also reported, such as F [66–68], N [69], P [70],
S/F [71], and Co/F [52]. It was reported that doping fluorine
atoms in SnO2 could increase the electrical conductivity to
about 5 × 103 S cm−1 [72]. In order to improve the Li-storage
performance, Luo et al. chose active fluorine and sulfur atoms
as dopants to prepare S and F co-doped SnO2@graphene oxide
binary composites [71]. On the one hand, fluorine atoms replaced
O2− in SnO2 to improve the electrical conductivity; on the
other hand, S-doping enhanced Li-ion diffusion efficiency in the
binary structure. The improvement of electronic conductivity can
also be verified through the impedance spectra. Furthermore,
the material can effectively reduce the volume expansion of
electrode materials, thus reducing the capacity loss in the cycling
process. It can be ascribed to the formation of the SnSx protective
layer and C–F bond on the surface of SnO2 and graphite oxide
[71]. In addition, Ma et al. demonstrated the effect of doping
ratio by comparing pure SnO2 and cobalt-doped SnO2 with the
content of 5, 10, and 15%, respectively [73]. They found the
size of the synthesized particles decreased with the increase in
dopant concentration. Electrochemical tests showed a doping

ratio of 10% (Sn0.9Co0.10O2) possessed the best stability among
the four samples.

ELECTRON AND ION TRANSPORT IN Na-
AND K-ION BATTERIES

SnO2 in Na-Ion Batteries
Because of the larger diameters of Na- and Li-ions than Li-ions
(K+

> Na+ > Li+, 1.38 Å>1.02 Å>0.76 Å), the problems
caused by volume change during the cycling are extremely
critical, resulting in rapid capacity decay. In order to solve
this problem, researchers have developed many strategies, such
as nanostructures, making composites with carbon, etc. For
example, Chen et al. used the synergistic-induced ultra-fine
SnO2/graphene nanocomposite as the cathode for a K/Na-ion
battery, which showed a highly reversible capacity [36]. Xu et al.
prepared a sandwich structure (MWNTs@SnO2@C) in which
MWNTs were coated with thick SnO2, SnO2, thin SnO2, and
the carbon layer [74]. After removing the thick and thin SnO2,
the larger internal space could alleviate the problems caused by
SnO2 volume transformation, and the 1D MWNTs and carbon
layer also improved the conductivity, which made the composite
material have a better performance.

Ma et al. demonstrated the failure mechanism of the SnO2

electrode inNa- andK-ion batteries and indicated that OVs could
manipulate the energy band structure and carrier migration, thus
adjusting the intrinsic properties of oxide semiconductors [75].
In addition,Wang et al. used layer-by-layer-assembled porphyrin
derivatives as an interface linker to uniformly attach SnO2

crystals to N and S co-doped graphene, achieving a high capacity
and optimizing the electrochemical performance effectively [76].

SnO2 in K-Ion Batteries
Owing to the significant advantages, such as fast interface
diffusion rate, low price, and wide distribution, K-ion batteries
have become a possible candidate to replace Li-ion batteries.
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Since 2015, research on K-ion batteries has become a hot spot.
Some studies indicated that the use of SnO2 in K-ion batteries
can significantly alleviate the large volume change and the
capacity decay.

Recently, Huang et al. reported the K-storage performance
of SnO2/carbon nanofibers [18]. Graphene was introduced
through the electrospinning process, and the synergistic effect
between SnO2, rGO, and carbon was generated to improve the
conductivity of the composites. Huang et al. doped SnO2/rGO/C
with phosphoric acid. The prepared composite showed an
improved diffusion of K+ ions after the modification by
H3PO4 and an increased conductivity by rGO, which further
improves the electrochemical performance [77]. Suo et al.
prepared SnS2/SnO2 heterostructures to enhance the K-storage
performance through a facile two-step hydrothermal method
to fix SnS2/SnO2 heterostructures onto stainless steel mesh
(SnS2/SnO2/SSM). The SnS2/SnO2/SSM anode displayed an
enhanced electrochemical performance [78]. Li et al. used
amorphous carbon to coat SnO2 nanosheets, which exhibited
good K-ion storage performance. The HCHS, as a stable
carrier skeleton for SnO2 nanosheets, is good at providing high
electrical conductivity. Amorphous carbon wrapping solved the
problems of volume expansion and provided surface-induced
capacitance [79].

CONCLUSION

In summary, the challenges for enhancing the electronic and
ionic properties of SnO2 electrodes reported recently have been
introduced. The conductivity and ion diffusion of SnO2 strongly
depends on the structure and composition. Moreover, we
indicated that the SnO2 exhibited great potential as the electrode

material with good volumetric and gravimetric capacities in
many secondary batteries, including Li-ion, Li-S, Na-ion, and
K-ion batteries, as displayed in Supplementary Tables 1–6.
However, electrons and ions transport both require significant
improvement. In order to address the issues and enable
the application of SnO2-based secondary batteries, some
approaches have been demonstrated. It is expected that possible
investigations in the future will be focused on the optimization of
the SnO2 structure, modifying this with some other functional
dopants to seek ideal SnO2-based composites through both
theoretical modeling and experimental preparation.
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