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Since the experimental discovery of neutrino oscillations, the search for the neutrinoless

double beta (0νββ) decay has intensified greatly, as this particular decay mode, if

experimentally discovered, could offer a testing ground for Beyond Standard Model

(BSM) theories related to the yet hidden fundamental properties of neutrinos and the

possibility of violating of some fundamental symmetries. In this work we make a brief

review of the nuclear matrix elements and phase space factors calculations performed

mainly by our group. Next, using these calculations and the most recent experimental

half-life limits, we revise the constraints on the BSM parameters violating the lepton

number corresponding to four mechanisms that could contribute to 0νββ decay. Finally,

using the values obtained for the BSM parameters from one of the most sensitive

double-beta decay experiments, we provide a comparison with the sensitivities of

other experiments.

Keywords: double beta decay, nuclearmatrix elements, phase-space factors, shell model, beyond standardmodel,

neutrino

1. INTRODUCTION

Two decades ago, the successful experimental measurement of neutrino oscillations [1, 2]
established that neutrinos have amass different from zero. Although this discovery was a significant
one, many of the neutrino properties still remain unknown to this day. Because in neutrino
oscillation experiments only squared mass differences can be measured, we still have unanswered
questions regarding their absolute masses, the mass hierarchy, the underlying mechanism that
gives neutrinos mass, and even the very nature of the neutrinos (whether they are Dirac or
Majorana particles). While there are many experimental and theoretical endeavors to bring clear
answers to some of these questions, like high-precision calculations, measurements of different
single-β decays, cosmological observations, the double-beta decay (DBD) and particularly the
0νββ decay mode are still considered the most appealing approaches to study the yet unknown
properties of neutrinos. However, even if one 0νββ transition event would be experimentally
observed, not all of the desired information about neutrinos would be immediately revealed.
Recording such an event would demonstrate that the lepton number conservation is violated
by two units, but cannot indicate the mechanism that dominates this process. Many large-
scale experiments dedicated to the discovery of this lepton number violating (LNV) decay are
already collecting data, with up-dates and new ones planned for the future, but so far there is
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no experimental proof of 0νββ transitions, only reports of
lower limits for the corresponding half-lives. Experimentally,
DBD of the isotopes 76Ge and 136Xe are currently the most
accurately measured, but others like 48Ca, 82Se, and 130Te are also
investigated, with 124Sn being considered for the future. There are
advantages and disadvantages to studying each of these isotopes
(costs, purity, Q-value, background signals, etc.), but the fact
that different ones are being investigated is of great importance
if an experimental confirmation is obtained for any of them.
Theoretical studies of 0νββ involve the computation of nuclear
matrix elements (NME) and phase space factors (PSF) appearing
in the half-life expressions, whose precise calculation is essential
for predicting the neutrino properties and interpretation of the
DBD experimental data. Particularly, the NME computation is
the subject of the largest uncertainties, so much effort is devoted
to their accurate estimation. The most commonly used nuclear
structure approaches for the NME calculation are proton-
neutron Quasi Random Phase Approximation (pnQRPA) [3–
11], Interacting Shell Model (ISM) [12–30], Interacting Boson
Model (IBM-2) [31–35], Projected Hartree Fock Bogoliubov
method (PHFB) [36], Energy Density Functional method
(EDF) [37], and the Relativistic Energy Density Functional
method (REDF) [38]. Each of these methods presents various
advantages and disadvantages when compared to each other,
especially when dealing with the nuclear structure of particular
isotopes. Once experimentally confirmed, it is also important
to establish the underlying mechanism(s) that may contribute
to the 0νββ decay, as to properly extend the Standard Model.
For the longest time, studies only addressed the so called “mass
mechanism” that involves the exchange of light left-handed
(LH) Majorana neutrinos. Presently, more scenarios are being
considered and their investigation consists of calculating of the
NME associated to each mechanism and the corresponding PSF.
For example, possible contributions to 0νββ decay may come
via the exchange of the right-handed (RH) heavy neutrinos [39].
Other contributions from possible RH components of the weak
currents, through the so-called “λ” and “η” mechanisms could
also be taken into account [40]. One of the most popular model
that includes these mechanisms is the left-right symmetric model
(LRSMM) [41–45]. In this work we consider several of these
scenarios for 0νββ decay, following the prescriptions of [46].
We present and discuss the NME and PSF calculations that
were recently published by our group. For the nuclear structure
calculations our group and collaborators use Shell Model (ShM)
techniques and codes [19–29]. For the PSF calculations we use
our results from [47, 48] for the light neutrino and the heavy
neutrino exchange mechanisms, and results from [49] for the
other mechanisms. Using the latest experimental limits for the
half-lives reported in literature, we up-date the constraints on
the LNV parameters corresponding to each mechanism. Finally,
we use the calculated values of the LNV parameters deduced
with the half-life limits taken from the 76Ge experiment [50],
to evaluate the half-lives of the other four isotopes that should
be achieved by their experiments to reach the sensitivity of the
Ge experiment.

2. BRIEF FORMALISM OF THE 0νββ DECAY

For a long time, most of the 0νββ decay literature has focused
its interest mainly on the mass mechanism, that assumes
that this decay mode occurs via the exchange of light LH
Majorana neutrinos between two nucleons inside the nucleus.
The inclusion of contributions coming from RH components of
the weak currents has also been discussed (for example in [40,
51]), but very few papers presented theoretical results considering
these contributions. However, any mechanism/scenario that
violates with two units the lepton number conservation may,
in principle, contribute to the decay rate. Considering several
mechanisms, the 0νββ decay half-life can be written in a
factorized compact form, as a sum of products of PSF, NME,
and the BSM parameters, corresponding to eachmechanism [52],
as follows:

[
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from the exchange of heavy RH neutrinos, with me being the
electron mass and mp the proton mass. MWL and MWR denote
the masses of the LH and the RH W bosons, respectively. We
assume that the neutrino mass eigenstates are separated as light,
mk(mk ≪ 1 eV), and heavy, Mk(Mk ≫ 1 GeV). Uek and Vek are
electron neutrino mixing matrices for the light LH and heavy
RH neutrino, respectively [14, 44]. Following [4–6, 39, 46], M2

i
are factors expressed in a standardized form as combinations of
NME described in Equation (2) and integrated PSF denoted with
G01 − G09. Values for the PSF used in this paper can be seen in
Table 1, together with our ShM values for the individual NME
Mα (with α = GTq, Fq, Tq, GTω, Fω, P, R, MGTN , MFN , and
MTN). Assuming that only one mechanism dominates the 0νββ
transition, we can perform a so called "on-axis" analysis where the
interference terms EiEjMij are no longer taken into account.

M
2
0ν = G01

[

MGT −

(

gV

gA

)2

MF +MT

]2

, (2a)

M
2
0N = G01

[

MGTN −

(

gV

gA

)2

MFN +MTN

]2

, (2b)

M
2
λ = G02M

2
2+−

2

9
G03M1−M2++

1

9
G04M

2
1−

− G07MPMR + G08M
2
P + G09M

2
R, (2c)

Frontiers in Physics | www.frontiersin.org 2 May 2021 | Volume 9 | Article 666591

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Neacsu et al. Neutrinoless Double-Beta Brief Review

TABLE 1 | In the upper part we present the Qββ values and the calculated PSF (G01 − G09) in years−1 for all five isotopes currently under investigation.

48Ca 76Ge 82Se 130Te 136Xe

Qββ [MeV] 4.272/4.271 2.039/2.041 2.995/3.005 2.527/2.533 2.458/2.481

G01 · 10
14 2.46/2.61 0.24/0.26 1.01/1.15 1.42/1.82 1.45/1.94

G02 · 10
14 16.2/17.1 0.39/0.43 3.53/4.04 3.76/4.84 3.68/4.99

G03 · 10
15 18.9/19.8 1.30/1.44 6.91/7.82 8.97/11.4 9.05/11.9

G04 · 10
15 5.33/5.55 0.47/0.51 2.14/2.39 3.02/3.72 3.10/3.96

G05 · 10
13 3.01/3.81 0.57/0.76 2.00/2.76 3.79/5.81 4.02/6.36

G06 · 10
12 3.98/4.18 0.53/0.59 1.73/1.96 2.23/2.82 2.28/2.98

G07 · 10
10 2.63/3, 35 0.27/0.36 1.16/1.59 1.76/2.69 1.81/2.88

G08 · 10
11 1.11/1.64 0.15/0.24 0.71/1.17 1.55/2.85 1.66/3.16

G09 · 10
10 16.2/17.1 1.22/1.35 4.78/5.41 4.97/6.33 4.96/6.56

MGT 0.807 3.206 3.005 1.662 1.505

MF −0.233 −0.674 −0.632 −0.438 −0.400

MT 0.080 0.011 0.012 −0.007 −0.008

MGTq 0.709 3.228 3.034 1.587 1.440

MFq −0.121 −0.383 −0.362 −0.249 −0.230

MTq −0.173 −0.059 −0.058 −0.013 −0.012

MGTω 0.930 3.501 3.287 1.855 1.682

MFω −0.232 −0.659 −0.618 −0.427 −0.391

MP 0.395 −2.466 −2.332 −1.729 −1.617

MR 1.014 3.284 3.127 2.562 2.341

MGTN 58.5 162.3 150.1 107.6 96.6

MFN −22.9 −62.6 −58.1 −41.0 −36.9

MTN 9.42 −0.8 0.4 −2.1 1.4

The s-wave electron PSF (G01) are from [48] and the p-wave electron PSF (G02 − G09) are from [49] are on the left side of each column, while the older, less rigorous values with the

point-like formalism of [40] are on the right side for comparison. The lower part shows the Mα NME calculated by our group.
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Detailed equations of individual NME Mα can be found in
the Appendix of [46], where they have been expressed in a
consistent form. The expressions for the PSF can be found in
[47, 49]. We note that Equations (2a, 2b) contain combinations
of NME and PSF coming from contributions of only s-wave
electron wave functions, while Equations (2c, 2d) present
combinations of NME and PSF with contributions only from
p-wave electron wavefunctions.

To use the expressions in Equation (2), we need accurate
calculations of both the PSF that embed the distortion of the
motion of outgoing electrons by the electric field of the daughter
nucleus, and of the NME that depend on the nuclear structure
of the parent and the daughter nuclei. Thus, the theoretical
investigation of 0νββ transitions is a complex task that involves
knowledge of physics at the atomic level for the PSF, nuclear level
when calculating the NME, and at the fundamental particle level
dealing with the LNV couplings.

2.1. Phase Space Factors
For a long time, PSF that enter the ββ half-life equations were
considered to be calculated accurately enough [40, 53]. However,
more recent reevaluations of their values using methods that
use improved Fermi functions and more accurate integration
routines have shown relevant differences in several cases, when
compared to the previous results. Within these new methods of
PSF calculation, the Fermi functions are constructed with "exact"
electron wave functions (w.f.) obtained by solving the Dirac
equation and consider finite nuclear size (FNS) and screening
effects [47–49, 54]. In addition, in [47, 48] a Coulomb potential
built from a realistic proton distribution in the daughter nucleus
is used and the most recent Q-values [55] are taken into account.

In the upper part of Table 1, we present our choice of values
for the nine PSF that enter Equation (2) for the five nuclei
of interest. The PSF values obtained with s-electron w.f. (G01)
are taken from [48], while the PSF values obtained with the p-
electron w.f. (G02 − G09) are from [49]. Both references provide
consistently very similar values for the PSF needed in this study.
Also, these current PSF values are compared to the previous
calculations of [40] that relied on older Qββ values and where
the proton distribution in the daughter nucleus, FNS, or electron
screening effects were not considered. This comparison is meant
to emphasize the need to use the results of newer calculations for
more reliable analyzes.
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TABLE 2 | The first line shows the experimental lower half-life limits T1/2 in years.

48Ca 76Ge 82Se 130Te 136Xe

T1/2 2.0 · 1022 [61] 1.8 · 1026 [50] 2.5 · 1023 [62] 4.0 · 1024 [63] 1.07 · 1026 [64]

M2
0ν · 10

14 2.62 3.13 11.8 5.29 4.43

M2
λ · 10

13 1.14 0.44 3.74 1.29 1.04

M2
η · 10

9 1.57 1.55 5.56 4.09 3.45

M2
0N · 1010 1.79 0.96 3.53 2.44 1.99

E0ν 2.71 · 10−5 2.61 · 10−7 3.61 · 10−6 1.35 · 10−6 2.85 · 10−7

Eλ 1.3 · 10−5 2.21 · 10−7 2.03 · 10−6 8.62 · 10−7 1.86 · 10−7

Eη 1.11 · 10−7 1.18 · 10−9 1.66 · 10−8 4.85 · 10−9 1.02 · 10−9

E0N 3.28 · 10−7 4.71 · 10−9 6.6 · 10−8 1.99 · 10−8 4.24 · 10−9

〈m0ν 〉 13.85 0.133 1.845 0.69 0.146

T
E0ν
1/2 · 10−26 2.15 1.80 0.48 1.07 1.27

T
Eλ

1/2 · 10
−26 0.69 1.80 0.21 0.61 0.75

T
Eη

1/2 · 10
−26 1.78 1.80 0.50 0.68 0.81

T
E0N
1/2 · 10−26 0.97 1.80 0.49 0.71 0.87

In the upper part, we present the M
2
i factors of Equation (2) using the NME and PSF from Table 1. Displayed in the middle section are the values of the LNV parameters Eα that can

be extracted and the corresponding light left-handed Majorana neutrino mass m0ν in units of eV. In the lower part, we estimate the 0νββ that are expected for all the 5 isotopes when

the LNV parameters of 76Ge are used in Equation (1).

2.2. Nuclear Matrix Elements
We choose our NME values from [46]. These were calculated
using ShM techniques in the closure approximation with
optimal closure energies 〈E〉 taken from [21, 23, 26]. These
values were found to reproduce the NME results obtained
in non-closure calculations. The Hamiltonians specific for
each model space are chosen such that good agrements with
experimental spectroscopic observables is achieved. The testing
of these Hamiltonians can be found in [27, 28], where we
performed calculations of 2νββ NME, the energy spectra for
the first

[

0+ − 6+
]

states, B(E2) ↑ transition probabilities,
occupation probabilities and the Gamow-Teller strengths, which
were compared to the experimental data available. For 48Ca
in the pf model space (0f7/2, 1p3/2, 0f5/2, 1p1/2) we use the
GXPF1A [56] effective Hamiltonian and 〈E〉 0.5 MeV, for 76Ge
and 82Se in the jj44 model space (0f5/2, 1p3/2, 1p1/2, 0g9/2)
we choose the JUN45 [57] effective Hamiltonian and 〈E〉 3.4
MeV, and for 130Te and 136Xe in the jj55 model space
(0g7/2, 1d5/2, 1d3/2, 1s1/2, 0h11/2) we use the SVD [58] effective
Hamiltonian and 〈E〉 3.5 MeV. For the calculation of our two-
body NME, we use finite size effects and higher order corrections
of the nucleon current (with the vector and axial-vector form
factors 3V = 850 MeV and 3A = 1086 MeV, respectively),
and we include short-range correlations by multiplying the
harmonic oscillator wave functions ψnl(lr) and the Jastrow
correlation function ψnl(r) →

[

1+ f (r)
]

ψnl(r) with the CD-

Bonn parametrization (f (r) = −c · e−ar2
(

1− br2
)

, with a =

1.59, b = 1.45, and c = 0.46) [19, 27–29].
The lower part of Table 1 shows the ShM individual NME that

enter Equation (2) which were calculated by our group using the
effective Hamiltonians and ingredients listed above. In the values
presented, the sign convention is that the Gamow-Teller NME
MGT is taken positive, with the other contributions having their
sign listed as relative to that ofMGT .

3. DISCUSSIONS

This brief review summarizes our recent calculations of the

PSF and NME involved in 0νββ decay for four possible decay
mechanisms, namely the light LH neutrino exchange, heavy RH

neutrino exchange, λ−mechanism involving RH leptonic and

RH hadronic currents, and the η−mechanism involving RH
leptonic and LH hadronic currents. The PSF are calculated with
Fermi functions built with exact electron w.f. solutions of the

Dirac equation with a Coulomb-type potential obtained from a

realistic distribution of protons in the daughter nucleus. FNS and
screening effects were taken into account, as well.G01 that include

s-w.f. are taken from [48], while G(02−09) that include p-w.f. are

taken from [49]. Between the newer and the older PSF values,
one can observe numerous differences in the range of 5–30%,

with some rising of up to 90% (see G08 of
136Xe in Table 1). Such

differences would impact the LNV values and the conclusions
regarding the sensitivity of the experiments with various isotopes
to the possible 0νββ mechanisms. In passing, we mention that in
addition to the development of the new PSF codes, our group has
also developed a very fast effective method [59] that is still based
on the formalism of [40], but is fitted and tweaked to replicate
the current results obtained with the most rigorous methods.
Within reasonable precision, this method can be used for rapid
PSF estimations and for plotting the un-integrated angular and
energy electron distributions.

The NME are calculated within a ShM approach with the
ingredients presented in section 2.2. ShM calculations are
attractive because they consider all the correlations around the
Fermi surface, respect all symmetries, and take into account
consistently the effects of the missing single particle space via
many-body perturbation theory (the effects were shown to
be small, about 20%, for 82Se [60]). In the case of closed-
shell nuclei, ShM calculations using optimized Hamiltonians
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for nucleon-nucleon interactions are very reliable and compare
well with the spectroscopic data available from experiments.
Another advantage of this approach, important for reliable
calculations, is that the calculated nucleon occupancies are close
to the experimental ones. ShM calculations were successful
in predicting the 2νββ decay half-life of 48Ca [12] before
experimental measurements. Calculations of different groups
largely agree with each other without the need to adjust
model parameters.

From Equation (2), using the NME and PSF in Table 1, we
calculate the M

2
i factors that enter the half-life in Equation (1).

Using these factors and the most recent experimental half-life
limits, we re-evaluate the LNV parameters corresponding
to the four mechanisms. These results are presented
in Table 2.

Table 2 first presents in the top section the experimental lower
half-life limits T1/2 in years. The next rows list the M

2
i factors

that contain combinations of PSF and NME for the five nuclei
of current experimental interest, in the case of four possible
0νββ decay mechanisms described in Equation (2). In the middle
section are found the values of the LNV parameters Ei deduced
from the experimental T1/2 and the M

2
i factors. For the mass

mechanism, we also show the electron neutrino mass parameters
〈m0ν〉 in units of eV that are obtained by the multiplication of
E0ν with the electron mass me. This extracted 〈m0ν〉 is what is
most commonly reported in the literature and is presented here

for the convenience of the reader and an easier comparison with
other references.

Lastly, we perform predictions of the half-lives for each
isotope that would correspond to the LNV parameters extracted
from one experiments of the highest sensitivity. Choosing the Ei
LNV deduced from the 76Ge experiment [50], we estimate the
half-lives of the other four isotopes. These values are displayed
in the lower section of Table 2 and offer an indication about the
relative sensitivity between DBD experiments.
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