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We discuss the thermodynamics of an array of collinear black holes which may be

accelerating. We prove a general First Law, including variations in the tensions of strings

linking and accelerating the black holes. We analyse the implications of the First Law

in a number of instructive cases, including that of the C-metric, and relate our findings

to the previously obtained thermodynamics of slowly accelerating black holes in anti-de

Sitter spacetime. The concept of thermodynamic length is found to be robust and a

Christoudoulou-Ruffini formula for the C-metric is shown.
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1. OVERVIEW

Black hole thermodynamics is a rich subject, straddling both the classical and quantum aspects
of gravity. The thermodynamic charges of a black hole such as entropy and temperature, while
intrinsically quantum in nature, are related to classical attributes such as horizon area and surface
gravity [1–4]. Indeed, it was considering the classical response of a black hole to infalling matter
that led Bardeen, Carter, and Hawking to make the link between black hole variations and the First
Law of thermodynamics in their seminal paper [5].

More recently, our understanding of black hole thermodynamics and the interpretation of the
various parameters has also been improving. The first law of thermodynamics in gravitational
systems has been more comprehensively understood as an extended thermodynamical law by
including pressure in the guise of variations in vacuum energy [6–10], and a more complete
understanding of the nature of “M” for the black hole has emerged as the enthalpy of the system [7]
(see [11] for a review).

These attempts at understanding the First Law have largely considered single, isolated, black
holes, as in the Kerr-Newman family of solutions. However, there are more complex, and therefore
more interesting, multi-black hole systems for which exact solutions are known. Such geometries
are thus amenable to thermodynamic analysis. For example, the Israel-Khan solution [12] is an
asymptotically flat geometry consisting of two black holes kept apart by a “strut”—a conical defect
with an angular excess—corresponding to a negative tension cosmic string. More generally, one can
sacrifice global asymptotic flatness to remove the unphysical negative-tension defect by running
a positive tension cosmic string through the spacetime [13–15]. In doing so, one retains local
asymptotic flatness away from the core. Generalizing further, the accelerating black hole, encoded
in the C-metric [16, 17], consists of a black hole with a protruding cosmic string [18] (or an
imbalance between antipodal strings) that provides an accelerating force. In this case, not only is
asymptotic flatness lost near the string extending to spatial infinity, but a non-compact acceleration
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horizon forms. Such systems beg the question: how does
one define thermodynamics for a geometry which is neither
asymptotically flat, an isolated black hole, nor (in the case of the
Israel-Khan solution) stable?

Early thermodynamic investigations of black holes with
conical defects focused on a fixed deficit threading the horizon
[13, 19–22], or a deficit “variation” during the capture of a cosmic
string [23]. The thermodynamic consequences of a truly varying
deficit, however, were not worked out until recently. In particular,
an accelerating, asymptotically locally anti-de Sitter black hole
has provided a context within which one maintains excellent
computational control. This is owing both to one’s ability to
accelerate a black hole without forming an acceleration horizon,
and the availability of the holographic dictionary [24]. A fully
general First Law was hence derived [25, 26], accounting for a
variation in a string’s tension µ:

δM = TδS− λδµ + · · · . (1.1)

This tension comes paired with a conjugate thermodynamic
potential λ, christened the thermodynamic length of the string
[26]. These results were later generalized to accelerating black
holes carrying rotational and U(1) gauge charge [27, 28].
Interestingly, the expression for thermodynamic tension parallels
that of the gravitational tension of Kaluza-Klein black strings
[29–31], a set-up with no conical deficits.

Some understanding of the origin of thermodynamic length
has also arisen. Considering a system of two black holes coupled
by a strut, Krtouš and Zelnikov [32] have found a thermodynamic
length corresponding to the strut worldvolume evaluated at some
fixed time. This has since been verified for similarly coupled
Kerr-Newman black holes [33].

One should expect that if gravitational solutions are truly
representatives of a first law of thermodynamics in the classical
limit, then one will find common features no matter the number
of black holes involved. We demonstrate this here, by calculating
variations of an array of collinear black holes—connected by
strings—which may be accelerated by external strings so as to
form an acceleration horizon. We allow all parameters in the
solution to vary and thereby prove a general First Law,

δM =
∑

I

TIδSI −
∑

J

λJδµJ , (1.2)

wherein the temperatures TI and entropies SI of the compact
black hole horizons contribute together with the thermodynamic
lengths λJ and tensionsµJ of the strings. We justify the quantities
appearing in (1.2), and consider its implications in a number
of instructive cases, including a triple black hole system and
the C-metric geometry. A key feature of our result is that the
system behaves as a composite; the individual black holes are not
thermodynamically isolated, but each interacts with the other, a
variation of one having implications for all the rest.

Note also that the First Law (1.2) further supports the
notion of M as enthalpy [7], even though there is no
cosmological constant present here. The energy momentum
of the conical deficit, or cosmic string, takes the form of a

worldsheet cosmological constant: the string has a tension equal
in magnitude and opposite in sign to its energy density. Thus, the
“−δµJ” term in (1.2) is in fact a “+δpJ” term, or pressure term,
for the cosmic string. That the First Law contains a λδp, rather
than pδλ is indicative that M truly represents an enthalpy, and
not an internal energy as previously imagined.

The outline of the paper is as follows: In section 2, we review
the construction of black hole arrays and acceleration horizons in
Weyl gauge [34]. In section 3, we formulate a First Law for such
systems, justifying the charges and potentials involved. Section 4
discusses implications of the result via some instructive examples
and contains a novel Christodoulou-Ruffini mass formula [35]
for the C-Metric.

2. FOUR DIMENSIONAL WEYL METRICS:
BLACK HOLE ARRAYS

In this section we briefly review the multi-black hole solutions
we will be analysing. We will largely follow the presentation of
[36], with minor notational changes. The main new result in this
section is a discussion of the determination of the acceleration
scale for an array of accelerating black holes in (2.31). The
black holes are aligned along an axis, and are static in the
sense of possessing a time-like Killing isometry in the region
between the black hole and acceleration horizons. Though an
Israel-Khan-like solution for two rotating black holes is known
analytically [37, 38], exact solutions for three or more Kerr
black holes remain elusive1. To make the investigation of the
system’s thermodynamics accessible, we sidestep any discussion
of rotation here. One expects that rotational charges may be
included in the obvious way, once an appropriate family of
geometries is written down.

With temporal and axial symmetry, the metric can be
written in a block diagonal (Weyl) form, with metric functions
γ , ν, and α depending only on transverse coordinates r and z:

ds2 = e2γ dt2 − e2(ν−γ )(dr2 + dz2)− α2e−2γ dφ2 . (2.1)

The Einstein equations are:

1α = −8πGαe2(ν−γ ) [Tr
r + Tz

z

]

(2.2)

1γ +
∇γ · ∇α

α
= 4πGe2(ν−γ )

[

Tt
t − Tr

r − Tz
z − T

φ
φ

]

(2.3)

1ν + (∇γ )2 = −8πGe2(ν−γ )T
φ
φ (2.4)

∂2±α

α
+ 2(∂±γ )2 − 2∂±ν

∂±α

α
= 8πG[Trr − Tzz ± 2iTrz] (2.5)

where Tb
a is the energy momentum tensor of any bulk matter, 1

is the two dimensional Laplacian (∂2r + ∂2z = ∂+∂−), with ∂± =
∂r ∓ i∂z the derivatives with respect to the complex coordinates
(r ± iz)/2.

In the absence of matter or a cosmological constant, these have
a very elegant solution: one simply fixes the conformal gauge

1The existence of arrangements of more than two aligned Kerr black holes (with or
without intermediating objects) has, however, been demonstrated; see for example
[39] and references therein.
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freedom remaining in the metric (2.1) by setting α ≡ r/K,
which is consistent with (2.2). Note, we introduce the parameter
K here tomaintain a 2π periodicity of the φ−coordinate; this will
become relevant when we discuss conical sources. With α ∝ r,
(2.3) becomes a cylindrical Laplace equation for γ in vacuo, with
solution

γ = −2G

∫

S(r′)d3r′

|r− r′|
(2.6)

for a source with energy density S(r). Note then that the metric
component γ is nothing but the Newtonian source of axial
symmetry. In turn, ν is determined from γ via (2.5). Since
the equation for γ is linear, its solutions can be superposed;
the nonlinearity of Einstein gravity shows up in the solution of
ν. Note that, since regularity of the r-axis requires ν(0, z) =
− logK, in general there will be conical singularities when regular
solutions for γ are superposed. These can be interpreted as
strings or struts supporting the static sources in equilibrium.

2.1. The Schwarzschild Solution
As described in [36], a black hole may be represented by a
finite-length line source2, 8πGS(r) = δ(r)/r for z ∈ [−m,m],
yielding

γS = −
1

2

∫ m

−m

dz′

[r2 + (z − z′)2]1/2
=

1

2
log

R− − Z−
R+ − Z+

, (2.7)

where

Z± = z ∓m , R2± = r2 + Z2
± . (2.8)

Integration of (2.5) then gives

νS =
1

2
log

E+−
2R+R−

, (2.9)

where

E+− = R+R− + Z+Z− + r2 . (2.10)

Although this does not look like the familiar Schwarzschild black
hole, the simple transformation

z = (ρ −m) cos θ , r2 = ρ(ρ − 2m) sin2 θ (2.11)

in fact returns the metric to its standard spherical form, with
2m = 2GMS representing the Schwarzschild radius.

2.2. Rindler Space
Interestingly, one can formally introduce an acceleration horizon
by adding a semi-infinite line source (SILM) [40], where
8πGS(r) = δ(r)/r for z > z0:

γR = −
1

2

∫ ∞

z0

dz′

[r2 + (z − z′)2]1/2
→

1

2
ln

R0 − Z0

ℓγ

, (2.12)

2Wemake the gauge choice to center the rod at z = 0.

FIGURE 1 | Rindler worldlines of observers with differing accelerations but

same horizon.

where Z0 = (z − z0), R0 =
√

r2 + Z2
0 , and the infinite integral

has been regulated by the lengthscale ℓγ . Solving for ν yields the
Rindler metric in Weyl coordinates:

ds2 =
(R0 − Z0)

ℓγ

dt2−
ℓγ

2R0
[dr2+dz2]−

ℓγ r
2

(R0 − Z0)
dφ2 . (2.13)

Since Rindler spacetime is simply flat spacetime as observed by
an accelerating observer, we can transform (2.12) to Minkowski
spacetime (in cylindrical polars) via the transformation

t =
ℓγ

2
log

(

τ + ζ

ζ − τ

)

, r =
ρ

ℓγ

√

ζ 2 − τ 2

z − z0 =
τ 2 + ρ2 − ζ 2

2ℓγ

. (2.14)

The origin of Minkowski corresponds to z = z0, r = 0, (i.e., the
start of the SILM), as expected. The origin of the Weyl system
corresponds to ζ =

√

2ℓγ z0, which gives a natural choice of
gauge for the Weyl system. Note that the values of z0 and ℓγ

are independent from the perspective of solving the Einstein
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FIGURE 2 | The source arrangement for the multi-black hole system of section 2.3. In the non-accelerating case, the point zn, representing the start of the SILM (thick

red arrow), and the SILM itself are absent; its neighboring string (dashed black) instead extends to z → ∞.

equations, the former is a gauge choice—the origin of the z-
coordinate—and the latter because the same Rindler horizon
can apply to observers with differing accelerations A = 1/ℓγ

(see Figure 1). Interpreting the origin of the Weyl system as the
location of the accelerating observer, thus fixing the gauge, gives
z0 = 1/2A from ζ = 1/A.

2.3. Many Black Holes
Now we can consider superposing solutions for γ , to build up
multi-black hole solutions as described in [36]. We will briefly
review these solutions, using a slightly different notation to
[36] that is more suited to our argument. Each black hole is
represented by a rod of length 2mI , I = 1..N, and acceleration is
represented by a SILM as described above. We will label the rod
ends at zi, where i = 1..n and z1 < z2 < ... If we have an array of
accelerating black holes, n = 2N+1, and the SILM begins at zn, if
we have an array of (non-accelerating) black holes, then n = 2N
is even. This arrangement is depicted in Figure 2.

A natural generalization of previous notation is

Zi = z − zi , R2i = r2 + Z2
i ,

Xi = Ri − Zi , Eij = RiRj + ZiZj + r2 .
(2.15)

The solution for γ is simply the superposition of the general
potentials from (2.7), with ν then obtained by quadrature:

γ =
1

2

n
∑

i=1

(−1)i+1 log
Xi

ℓγ

,

ν =
1

4

n
∑

i,j=1

(−1)i+j+1 log
Eij

ℓ2ν
+ Onγ .

(2.16)

Here, the ℓ’s are integration constants that cancel only if n is even,
and On acts as a “switch” for additional terms when n is odd:

On = n− 2
⌊n

2

⌋

=
{

1 n odd

0 n even
. (2.17)

As we move to the thermodynamics of the system, we will need
the limit of these functions as we approach the axis, r → 0.

We therefore conclude this subsection by finding the behavior
of (2.16) as r → 0, and discussing the conical deficits on the axis.
Noting that Ri → |Zi| as r → 0, we see that

Xi ∼ |Zi| − Zi +
r2

2|Zi|
=
{

2|Zi| z < zi
r2

2Zi
z > zi

, (2.18)

hence

γ ∼
1

2

p
∑

i=1

(−1)i+1 log
r2

2|Zi|ℓγ

+
n
∑

i=p+1

(−1)i+1 log
2|Zi|
ℓγ

: z ∈ (zp, zp+1) (2.19)

where p = 0 if z < z1 leaving only the second sum, and
conversely the first sum for z > zn.

Next,

Eij ∼
{

2ZiZj z < Min[zi, zj], z > Max[zi, zj]
r2(zi−zj)2

2|ZiZj| Min[zi, zj] < z < Max[zi, zj]
. (2.20)

Hence if we approach the axis at the Ith black hole, for which
z ∈ (z2I−1, z2I),

ν ∼
1

4

2I−1
∑

i,j=1

(−1)i+j+1 log

(

2ZiZj
ℓ2ν

)

+
1

4

n
∑

i,j=2I

(−1)i+j+1 log

(

2ZiZj
ℓ2ν

)

+
1

2

2I−1
∑

i=1

n
∑

j=2I

(−1)i+j+1 log

(

r2(zi − zj)2

2|ZiZj|ℓ2ν

)

+ Onγ . (2.21)

Away from the black holes, writing ν0 = 1
2 log

(√
2ℓν

ℓγ

)

, we have:
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ν(0, z) = Onν0 z < z1

=
2I
∑

i=1

n
∑

j=2I+1

(−1)i+j+1 log(zj − zi)+ Onν0 z2I < z < z2I+1

= On

[

n−1
∑

i=1

(−1)i log(zn − zi)+ ν0

]

z2N < z < zn .

(2.22)

Notice that zj−zi+1 < zj−zi < zj+1−zi, thus ν(0, z) < ν0 for the
first string tension, and (for accelerating black holes) νN < ν0.

We can now identify the conical structure on the axis. The axis
will have a conical defect if the circumference of circles of proper
radius 1r around it are not 2π1r. For small r, 1r ∼ eν(0,z)−γ (0,z)

and the circumference is 2πre−γ (0,z)/K, hence the deficit angle δ

is

δ = 2π lim
r→0

[

1−
e−ν(0,z)

K

]

, (2.23)

which is related to the cosmic string tension via δ = 8πGµ.
Equation (2.22) dictates how the deficit angle changes as wemove
between the black holes. The tension between the Ith and (I+1)th
black hole is

µI =
1

4



1−
e−Onν0

K

2I
∏

i=1

n
∏

j=2I+1

(zj − zi)
(−1)i+j



 . (2.24)

The final black hole has µN as the deficit for z > z2N ,

µN =
{

1
4

(

1− 1
K

)

n = 2N
1
4

(

1− e−ν0

K

∏N
i=1

(zn−z2i−1)
(zn−z2i)

)

n = 2N + 1
, (2.25)

and for the incident tension, z < z1, we have

µ0 =
1

4

(

1−
e−Onν0

K

)

. (2.26)

We now see the interpretation of K. For the non-accelerating
black hole array, there is an ambient tension running through the
system, as the deficit outside the array (z < z1 and z > z2N) have
the same conical deficit of

µ0 = µN =
1

4

(

1−
1

K

)

. (2.27)

Equation (2.22) shows that eν(0,z) < 1 between the black holes.
Hence, if we did not insert the parameter K, instead retaining
a 2π periodicity of φ for z < z1 and z > z2N , the conical
singularity between any two of the black holes would be an excess
δ < 0, corresponding to a negative tension “cosmic strut” as in
[32]. Although one can consider such systems [20, 32, 33], we
prefer to keep physical sources. We therefore takeK large enough
that all the conical singularities are deficits and correspond, in
principle, to physical cosmic strings [14, 15]. Note, however
that if K > 1, there is an ambient conical deficit through the
spacetime, irrespective of whether there is acceleration.

For an accelerating black hole array, we follow the convention
of [27, 41] that K measures the ambient deficit, i.e.,

µ0 + µN =
1

2

(

1−
1

K

)

. (2.28)

This in turn allows us to determine ν0:

eν0 =
(√

2ℓν

ℓγ

)1/2

=
1

2

(

1+
N
∏

i=1

(zn − z2i−1)

(zn − z2i)

)

≡
1

2
(1+ Vn) .

(2.29)
thus we have

µ0 =
1

4

(

1−
2

(1+ Vn)K

)

, µN =
1

2

(

1−
2Vn

(1+ Vn)K

)

.

(2.30)
Note however that the choice of K is not unique; this one,
(2.30), corresponds to the same normalization as the standard C-
metric, however, if one were viewing the metric as a split cosmic
string, then an alternate natural choice might be to normalize
the “initial” deficit. That is, we could choose µ0 = 1

4

(

1− 1
K

)

,

in which case µN = 1
4

(

1− Vn
K

)

.

Finally, we are left with the length scale ℓγ , which is (only)
present in an accelerating array, This parameter represents the
net acceleration scale of the spacetime. We expect that for small
accelerations (large zn) this should asymptote the Rindler value
ℓγ ∼ 2zn. Interpreting the acceleration as the overall mass of
the composite black hole system divided by the overall force
measured by the differential deficit, we are led to

ℓγ =
M

µ0 − µN
=

Vn + 1

Vn − 1

N
∑

1

(−1)kzk , (2.31)

where M =
∑

mI/K is the total mass of the system (see section
3.1). We see that ℓγ has the required large zn limit and a clear
physical interpretation in close analogy with its pure Rindler
cousin from section 2.2.

3. THERMODYNAMICS OF AN ARRAY OF
BLACK HOLES

We now derive a First Law for collinear black holes with varying
positive tension strings and a possible acceleration horizon, the
solutions for which were presented in section 2.3.

3.1. Deriving the Thermodynamic
Parameters
First we need to derive these relevant thermodynamic
parameters. For the entropy of a given black hole, we compute
the area of the relevant horizon

SI = lim
r→0

π

2K

∫ z2I

z2I−1

reν−2γ dz =
πmI

K
lim
r→0

reν−2γ . (3.1)

For the temperature, the standard techniques apply, yielding

TI = lim
r→0

1

2π

e2γ

reν
=

mI

2KSI
. (3.2)
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The limit of reν−2γ as we approach the axis is given by (2.19),
(2.21), and using (2.29), we obtain:

log(reν−2γ ) → log 2+ On log

(

ℓγ e
ν0

2

)

+
2I−1
∑

i=1

n
∑

j=2I

(−1)i+j+1 log |zj − zi| .
(3.3)

The most challenging thermodynamic quantity to identify is the
total mass. This is in part due to the fact that external strings
which extend to infinity prevent global asymptotic flatness and
thus render the ADM mass [42] ill-defined. The presence of a
non-compact acceleration horizon further complicates matters.
Some attempt has been made [21] to redefine ADM mass in the
presence of a conical defect by calculating the mass relative to
conical Minkowski space, rather than pure Minkowski as one
would in the usual construction. However, such a construction
gives undesirable results. In particular, one would conclude that
the mass of the C-metric is vanishing. This is puzzling from
the perspective of having no smooth transition to the non-
accelerating black hole. It is also counter to the intuition gained
from the slowly accelerating black hole in AdS, for which the
mass (with an appropriately normalized time coordinate) is
MAdS = m/K. One may be confident in the AdS calculation due
to the holographic correspondence.

Although one may struggle to find a useful notion of ADM
mass, the existence of the ∂t isometry means that one still has a
Komar construction [43] at one’s disposal. Focusing first on the
non-accelerating case, Costa and Perry [20] calculated the ADM
mass for a system of collinear black holes without external strings
(µ0 = µN = 0). One can compute the asymptotic behavior,

e2γ ∼ 1−
2(6N

I=1mI)

r̃
+O(r̃−2) , ν ∼ O(r̃−2) , (3.4)

where r̃ is a suitable radial coordinate, and simply read off the
mass. As discussed above, when we have an ambient conical
deficit the ADM mass is undefined, but we may instead read off
the Komar mass asM =

∑N
I=1 mI/K.

When an acceleration horizon is present, the situation
requires more explanation. We take k = ∂t as our Killing
vector field generating time translations. The normalization of k
is implicit in the choice (2.31) of ℓγ ; see the discussion given at
the end of section 2. The covector associated to k is k♭ = e2γ dt.
Taking the exterior derivative and Hodge dual, we find

⋆ dk♭ =
r

Ke2γ

[

(∂re
2γ )dz − (∂ze

2γ )dr
]

∧ dφ . (3.5)

The causal structure of the spacetime is now significantly more
complicated than in the non-accelerating case, but there is still a
well defined spatial infinity [44]. To calculate the total mass, one
could, in principle, integrate this form over a two-surface there.
That said, it is more instructive to use Gauss’ law to rewrite the

boundary integral as the sum of integrals over each black hole
horizon and a bulk integration:

1

8π

∫

∞
⋆dk♭ =

1

8π

N
∑

I=1

∫

HI

⋆dk♭ +Mbulk . (3.6)

The quantity on the left hand side is the total mass3 M. From
(2.19) and (2.21), we have the relevant behavior for the integrand
on the right hand side of (3.6) near the Ith horizonHI ,

∂re
2γ ∼

r

2 |z2I+1z2I |
, e−2γ ∼

4 |z2I+1z2I |
r2

, (3.7)

making the integrand straightforward:

lim
r→0

[

⋆dk♭
]

z∈(z2I ,z2I+1)
=

2

K
dz ∧ dφ + . . . . (3.8)

Hence we conclude that the integral overHI , which we interpret
as the mass of an individual black hole in the array, is

MI ≡
1

8π

∫

HI

⋆dk♭ =
mI

K
. (3.9)

Finally, we note that the volume integral Mbulk vanishes,
and that the strings themselves make no contribution to the
above calculation.

The conclusion is that the total Komar mass is directly related
to the rod lengths of compact horizons. The same result for the
mass of the solitary accelerating black hole has been proposed
in [28], albeit with a non-commital attitude to the normalization
of k. We also observe a clear similarity with the holographically
calculated mass of a slowly accelerating black hole in AdS [27].

3.2. The First Law of Thermodynamics
We now show how to derive equation (1.2), the first law of
thermodynamics for an array of collinear black holes. Consider
a variation to the array. The solution (2.16) describes a coupled
system; any variation of one black hole will impact on all the
others. Therefore, we do not expect individual First Laws for each
black hole. Instead, it makes sense to consider a variation of the
total mass

M =
N
∑

I=1

mI

K
, (3.10)

as this is a state function of the complete system. Indeed, this is
the philosophy for the First Law derived in [32]. Thus, to derive
a First Law, we must compute

δM =
N
∑

I=1

1

K
δmI −mI

δK

K2
. (3.11)

3There is a caveat here that we have divided through to retain only the mass of
objects on one side of the acceleration horizon.
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We begin by computing the variation in entropies for the
individual black holes:

N
∑

I=1

TIδSI =
1

2

N
∑

I=1

δ

(mI

K

)

+S6+
OnM

2

(

δℓγ

ℓγ

+ δν0

)

, (3.12)

having replaced ℓν = e2ν0ℓγ /
√
2, and where

S6 =
N
∑

I=1

mI

2K

2I−1
∑

i=1

2N
∑

j=2I

(−1)i+j+1 δ(zj − zi)

zj − zi

+ On

N
∑

I=1

mI

2K

2I−1
∑

i=1

(−1)i
δ(zn − zi)

zn − zi
. (3.13)

This contains part of what we need for a First Law, but has a
rather messy sum!

Now we turn to the cosmic strings. We write the
thermodynamic lengths for the strings as λI = −eνILI ,
and then vary the tensions in (2.24), (2.25), and (2.26) to obtain
the contribution to the First Law coming from the tensions:

−
N
∑

I=0

λIδµI =
N
∑

I=0

LIδK

4K2
+ On

N
∑

I=0

LI

4K
δν0 + µ6 , (3.14)

where

µ6 =
N−1
∑

I=1

LI

4K

2I
∑

i=1

2N
∑

j=2I+1

(−1)i+j+1 δ(zj − zi)

zj − zi

+ On

N
∑

I=1

LI

4K

2I
∑

i=1

(−1)i
δ(zn − zi)

zn − zi
. (3.15)

Putting these two expressions together, we have:

N
∑

I=1

TIδSI −
N
∑

I=0

λIδµI

=
δM

2
+ S6 + µ6 +

N
∑

I=0

LIδK

4K2
+

On

4K

N
∑

I=0

(LI + 2mI)δν0

+ 2mI
δℓγ

ℓγ

. (3.16)

First, let us deal with the sums S6 and µ6 in these expressions.
Observing thatmI = (z2I − z2I−1)/2, we can rewrite the entropy
sum as

S6 =
2N
∑

k=1

2[ k+1
2 ]−1
∑

i=1

2N
∑

j=2[ k+1
2 ]

(−1)i+j+k+1

4K
zk

δ(zj − zi)

zj − zi

+
On

4K

2N
∑

k=1

2
[

k+1
2

]

−1
∑

i=1

(−1)i+kzk
δ(zn − zi)

zn − zi
(3.17)

Generalizing [32] for the thermodynamic lengths of strings in
between horizons as LI = z2I+1 − z2I (with the exception of L0
and LN – see later) gives the tension sum as

µ6 =
2N−1
∑

k=2

2[ k2 ]
∑

i=1

2N
∑

j=2[ k2 ]+1

(−1)i+j+k

4K
zk

δ(zj − zi)

zj − zi

+
On

4K

2N−1
∑

k=1

2
[

k
2

]

∑

i=1

(−1)i+k+1zk
δ(zn − zi)

zn − zi

+
LN

4K

2N
∑

i=1

(−1)i
δ(zn − zi)

zn − zi
.

(3.18)

We now see that many of the terms in S6 are canceled by
terms in µ6 , leaving just k = 1, 2N from the entropy sum,
and intermediate i, j terms from each when 2[ k+1

2 ] differs from

2[ k2 ]+ 1:

S6 + µ6

=
2N
∑

j=2

(−1)j+1

4K
z1

δ(zj − z1)

zj − z1
+

2N−1
∑

i=1

(−1)i+1

4K
z2N

δ(z2N − zi)

z2N − zi

+
2N−1
∑

k=2





2N
∑

j=k+1

(−1)j+k

4K
zk

δ(zj − zk)

zj − zk
+

k−1
∑

i=1

(−1)i+k+1

4K
zk

δ(zi − zk)

zi − zk





+
On

4K

(

2N−1
∑

i=1

[

(−1)i(LN + z2N )− zi
] δ(zn − zi)

zn − zi
+ LN

δ(zn − z2N )

zn − z2N

)

=
2N
∑

j=2

j−1
∑

i=1

(−1)i+j+1

4K
(δzj − δzi)

+
On

4K

2N
∑

k=1

(−1)k(LN + z2N − zk)
δ(zn − zk)

zn − zk
. (3.19)

We now have to identify LN (and L0). We write

LN = zc − z2N , L0 = z1 − zc (3.20)

in keeping with the expressions for LI , where zc is a
normalization, similar to that of the SILM in γ , to be determined.
We can therefore reduce this combination to

S6 + µ6 =
N
∑

I=1

δmI

2K

+
On

4K

2N
∑

k=1

(−1)k
(

δ(zn − zk)+ (zc − zn)
δ(zn − zk)

zn − zk

)

=
N
∑

I=1

δmI

2K
(1− On) +

On

4K
(zc − zn)

2N
∑

k=1

(−1)k
δ(zn − zk)

zn − zk

=
N
∑

I=1

δmI

2K
(1− On) −

On

4K
(zc − zn)

δVn

Vn
. (3.21)
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Having simplified S6+µ6 , we now turn to the rest of the putative
First Law, (3.16). We note that the sum of the thermodynamic
lengths can be related to the sum of the masses:

N
∑

I=0

LI =
N−1
∑

I=1

(z2I+1 − z2I)+ LN + L0 = −2
N
∑

I=1

mI . (3.22)

Hence,

N
∑

I=1

TIδSI −
∑

µ′s

λIδµI =
δM

2
+

N
∑

I=0

LIδK

4K2
+

N
∑

I=1

δmI

2K

+
On

4K

[

N
∑

I=1

2mI
δℓγ

ℓγ

−
N
∑

I=1

2δmI − (zc − zn)
δVn

Vn

]

= δM +
On

2K

[

mtot
δℓγ

ℓγ

− δmtot − (zc − zn)
δVn

2Vn

]

,

(3.23)
where mtot =

∑

I mI is shorthand for the sum of the individual
rod lengthscales. Thus, we have derived the First Law (1.2) for a
general array of black holes, provided we identify

zc = zn +
2mtotδℓγ /ℓγ − 2δmtot

δVn/Vn
= zn −

4Vnmtot

V2
n − 1

, (3.24)

for the accelerating black hole. For the non-accelerating black
hole, the First Law is automatically satisfied and we set L0 =
LN = (z1 + z2N)/2.

4. EXPLORING MULTI-BLACK HOLE
SPACETIMES

Having derived these expressions, it is interesting to explore
some sample accelerating and non-accelerating black hole
arrays to gain an understanding of the interdependency of
black hole entropy, and to see how the strings contribute to
the thermodynamic system as well as cross-checking against
known results.

4.1. Non-accelerating Arrays
We start by considering non-accelerating black holes. This
includes the Schwarzschild case as a basic cross-check of our
results, and the two black hole system which has already been
considered in the literature [20, 32, 33].

4.1.1. Schwarzschild With a String
As discussed in section 2, the Schwarzschild solution (with an
axial conical defect) has n = 2, N = 1, and z2 − z1 = 2m.
Conventionally, we set the center of the rod at the origin so that
z2 = −z1 = m. From (3.1) and (3.2) we find that the entropy
and temperature are S = 4πm2/K and T = 1/8πm, respectively,
as expected. For the cosmic string piercing the horizon, we have
µ0 = µ1 = 1

4

(

1− 1
K

)

, and λ0 = λ1 = m in agreement
with [26].

4.1.2. Two Black Holes
The First Law for the two black hole system, with K = 1, was
explored in [32]. This value of K means that there are no strings
running to infinity, but instead the black holes are held apart by a
negative tension strut. Nevertheless, for larger K,

K ≥
D2 − (m2 −m1)2

D2 − (m1 +m2)2
(4.1)

where D is the distance between the centers of the two rods,
we find results harmonious with their conclusions: the First Law
holds with the thermodynamic length of the defect connecting
the black holes given by the worldsheet volume of the string per
unit time. The thermodynamic lengths of the semi-infinite strings
are now

λ0 = λ2 =
z4 − z1

2
=

D

2
+

m1 +m2

2
(4.2)

i.e., the system responds to the average mass, and the length
between the black holes. Note that λ1 = −(z3 − z2)eν1 also has
a factor of the separation that is important for consistency in
varying the net conical deficit of the system. We discuss this in
more detail below for three black holes.

4.1.3. Three Black Holes
The three black hole system has rods on the intervals (z1, z2),
(z3, z4), and (z5, z6) (see Figure 3). We are interested in
exploring how the locations of the sources affect entropy and
tension, and how a perturbation of one black hole impacts on the
others. Hence, we consider a set-up in which the two outer black
holes have equal mass and spacing from the middle black hole,
which is centred around the origin: z6− z5 = z2− z1 = 2m0, and
z6 = −z1 = z0, z4 = −z3 = m. The entropies and tensions then
become:

S1 =
4πm2

0

K

(z0 +m0)(z0 +m0 +m)

z0(z0 +m0 −m)
= S3

S2 =
4πm2

K

(z20 −m2
0)(z0 +m0 +m)2

z20(z0 −m0 +m)2

µ0 =
1

4

(

1−
1

K

)

µ1 =
1

4

(

1−
z20(z

2
0 − (m0 −m)2)

(z20 −m2
0)(z

2
0 − (m0 +m)2)K

)

= µ2 .

(4.3)

It is easy to see that µ1 < µ0. This is to be expected: in order to
retain equilibrium, additional force must be applied on the outer
black holes to counterbalance their attraction of the middle one.

For the thermodynamic lengths we have:

λ0 = (z6 − z1)/2 = (z0 +m0) = λ3 ,

λ1 = −(z0 −m0 −m)
(z20 −m2

0)(z
2
0 − (m0 +m)2)

z20(z
2
0 − (m0 −m)2)

= λ2 .

(4.4)
Thus, the thermodynamic length of the ambient deficit—that is,
the total from both string 1 and 4—is the distance from the north
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FIGURE 3 | The source arrangement for three (non-accelerating) black holes.

FIGURE 4 | The variation of tensions and thermodynamic lengths of the three black hole system: (Left) for equal masses as a function of black hole separation, and

(Right) for fixed black hole separation but varying the mass of the outer black hole. On the left, the tension is set by taking the minimal value consistent with zero

tension between the black holes at minimum separation, zmin = 3, giving an ambient tension of 41/324. On the right the separation is set at z0 = 10, and the outer

black hole mass varies from zero to 8.8, which is very close to the merger limit of maximal tension, µ0 ∼ 0.244.

pole of the topmost black hole to the south pole of the bottom-
most black hole. The length associated to the intermediate strings
isminus the distance between the horizons of adjacent black holes
(see Figure 4).

We have found an interesting phenomenon where the
thermodynamic lengths of the outer strings are positive whereas
those of interior strings are negative. This is puzzling from the
perspective of the individual black holes. However, upon taking
the system as a composite it makes sense: if we alter the overall
tension, we must account for the contributions from both inner
and outer cosmic strings. The negative contribution from the
interior lengths then counteracts the positive contribution from

the outer lengths. Explicitly, first set up the three black holes so
that there is no deficit between the central and outer black holes.
That is, K takes the value

K0 =
z20(z

2
0 − (m0 −m)2)

(z20 −m2
0)(z

2
0 − (m0 +m)2)

. (4.5)

We now “add” a cosmic string to the system by increasing K to
K0 + K1, so that

δµ0 =
K1

4K0(K0 + K1)
, δµ1 =

K1

4(K0 + K1)
= K0δµ0 .

(4.6)
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FIGURE 5 | The entropy of the outer (left) and middle (right) black holes for equal masses as a function of black hole separation. The black holes all have unit mass,

with an ambient tension of 41/324. The tension is set by taking the minimal value consistent with no strut between the black holes at minimum separation, here

zmin = 3.

Note that the tension of the ambient cosmic string through the
whole spacetime increases from µ0 = (1− 1/K0)/4 to µ0 + δµ0.
However, the region between the black holes, which initially had
no deficit, now exhibits a cosmic string with tension K0δµ0, i.e.,
a slightly greater tension than the increase in ambient string
tension. Now let us look at the overall change in energy:

3
∑

I=0

λIδµI = λ0δµ0 + λ1δµ1 + λ2δµ2 + λ3δµ3

= 2(z0 +m0)
K1

4K0(K0 + K1)

− 2
(z0 −m0 −m)

K0

K1

4(K0 + K1)

=
(4m0 + 2m)K1

4K0(K0 + K1)
.

(4.7)

This is the total length of string captured by the black holes
multiplied by the tension. We conclude therefore that the
thermodynamic lengths really do behave in concert, combining
in such a way that the overall modification of tension has a
sensible impact on the overall thermodynamics of the system.

Turning to the entropies, one sees that S2/m2 > S1/m
2
0.

Essentially, this is saying that the inner black hole has a higher
entropy in units of its mass (squared) than the outer ones. We
understand this from the impact of the conical deficits: entropy
is decreased in general by having a conical deficit, as part of the
horizon is “cut out,” leaving a rugby, as opposed to soccer, ball
shape. We would expect that the entropy of the middle black hole
would be relatively higher, as the deficit running through this
black hole is less than the deficit emerging from the outer poles
of the outer black holes.

The picture is a little more subtle than this broad brush
expectation however; the central black hole has a uniform
tension, µ1, running through it, so naively, we might expect that
the entropy might be tracked by 4πm2(1 − 4µ1), but in fact the
entropy is higher than this. For the outer black holes, we might
expect the entropy to be tracked by the average tension between

the poles, but again, it is higher. Indeed, the entropy is higher
even than the Schwarzschild entropy for a range of separation
values z0 (see Figure 5).

Similarly, we can track what happens to the entropy of one
black hole as a result of changing the mass of the others. For
example, keeping the central black hole at unit mass, and keeping
the other two black holes at a given distance, we can see how the
entropy of the central black hole

Scentral =
4π

K

(1−m2/z20)(1+m/z0 + 1/z0)2

(1−m/z0 + 1/z0)2
(4.8)

alters as we change the mass of the outer black holes. The mass of
the outer hole m0 can range from zero to z0 − 1, however at this
point the horizons merge and to maintain a non-negative tension
between the black holes we would have to have a maximal deficit
of 2π . Instead, we choose a maximal massmmax, and set K so that
at the maximal mass there is no deficit between the black holes:

K = Kc ≡
z20(z

2
0 − (mmax − 1)2)

(z20 −m2
max)(z

2
0 − (mmax + 1)2)

. (4.9)

Figure 6 shows the variation of the entropy of the central black
hole for a separation z0 = 10, and amass range up tommax = 8.8.
This is very close to the merger limit, giving a large external
tension µ0 ∼ 0.244, so a deficit angle of δ/(2π) ∼ 0.977. As
before, the entropy is normalized by the entropy of a single black
hole in a spacetime with both this ambient deficit (SK = 4π/K)
as well as that of a black hole with a cosmic string of tension µ1

running through (Sµ = 4π(1− 4µ1)).
We now see a more nuanced behavior. Initially, at m = 0,

the spacetime is precisely that of a single black hole of unit mass
pierced by a cosmic string of tension µ0 = µ1 = (1 − 1/K)/4.
As we switch on the black hole mass at z0, µ1 decreases, and this
results in an increase in entropy, but this is over and above what
we would expect simply from a drop in µ1. This comes primarily
from the m dependence in (4.8). As we increase the mass further
however, while the function S2/SK continues to grow, the ratio
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FIGURE 6 | The entropies of the outer (left) and central (right) black holes as a function of the mass m0 of the outer black holes. The mass of the central black hole is

fixed at 1, and the outer black holes have the same mass m0.

S2/Sµ, of the entropy to that of a black hole with the µ1 cosmic
string starts to drop, eventually becoming less than one. We can
understand this as being a consequence of the very large deficit in
the majority of the spacetime, even though locally, at the central
black hole, there is no cosmic string. The outer black holes are
very close (within a Schwarzschild radius) to the central black
hole, thus the geometry is strongly distorted there.

4.2. Accelerating Arrays
Now let us consider accelerating black hole arrays of the
type depicted in Figure 2. The main difference with the non-
accelerating array is that we have chosen the parameter K
to represent the ambient tension, so that the asymptotic
tension in principle varies with the locations of the rod
ends. The expressions for entropy, temperature, tension and
thermodynamic length are readily worked out from (3.1) and
(3.2), though are not particularly illuminating. However, we can
intuit the general behavior as we vary the black hole masses
and positions.

First, note that µ0 > µN . We expect this because since the
black holes are accelerating there must be an imbalance between
the tension of the string coming in from infinity and that of
the string exiting through the acceleration horizon. Next, as
we increase the first black hole mass m1, the first tension µ1

will drop, as more of the pulling power of the string will be
used to accelerate the increased mass. Whether the subsequent
string tensions increase or decrease depends on the masses
of the individual black holes: the second black hole will be
attracted to the first (and third, if present) which provides an
additional attractive force over and above that of the cosmic
string. Typically, if the black holes are well separated relative to
their size, the string tensions will cascade down in magnitude as
one moves along the array, but for large black holes, this need not
be the case (see the two black hole case below).

4.2.1. The C-Metric
It is worth briefly checking the C-metric results, first proposed in
[28] (see also [45]). The C-metric has a single horizon and a SILM

so we have n = 3 and N = 1. The metric in Weyl form is

ds2 =
X1X3

ℓγX2
dt2 −

ℓγ E12E23

4R1R2R3E13

(

z3 − z0

z3 − z2

)2

[dr2 + dz2]

− r2
ℓγX2

X1X3

dφ2

K2
, (4.10)

where z0 = (z1+ z2)/2 is the center of the black hole rod, and we
have replaced V3 = (z3 − z1)/(z2 − z2). Here, ℓγ = 2(z3 − z0) is
shown to be the reciprocal of the acceleration of a small black hole
in Appendix A, where we also note the transformation between
this metric and the more familiar spherical coordinates.

Turning to the thermodynamics, we compute zc as

zc = z3 −
(z3 − z2)(z3 − z1)

(z3 − z0)
=

(z3z0 − z1z2)

(z3 − z0)
. (4.11)

Meanwhile, the entropy and thermodynamic lengths are

S =
4πm2

K

(z3 − z0)2

(z3 − z2)(z3 − z1)
→

4πm2

(1− 4m2A2)

λ0 = eν0 (zc − z1) = m
(z3 − z1)

(z3 − z2)
→

m(1+ 2mA)

(1− 2mA)

λ1 = eν1 (z2 − zc) = m
(z3 − z2)

(z3 − z1)
→

m(1− 2mA)

(1+ 2mA)

(4.12)

in agreement with the parameters proposed in [28].
It is also straightforward to write down a Christodoulou-

Ruffini-like formula [35] for the C-metric. Following [41], define
a quantity 1 characterizing the average tension emerging from
the black hole horizon, and a quantity C characterizing the
tension differential:

1 = 1− 2(µ0 + µ1) =
1

K
,

C =
µ0 − µ1

1
=

z2 − z1

4ℓγ

→ mA .
(4.13)
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FIGURE 7 | The variation of entropies and thermodynamic lengths as a function of mass in a two accelerating black hole set-up. The outgoing tension is fixed at

µ0 = 1/8, and the displacement of each rod from the origin at zb = 5. One mass is fixed at unity, with the other mass varying from zero to 4. The upper plots show

how the entropies, normalized by 4πm2
I /K, vary, and the lower plots the thermodynamic length. Note that K varies as mI varies, in order to keep µ0 fixed.

Then one finds that

M2 =
1S

4π

(

1− 4C2) . (4.14)

Increasing the acceleration of the black hole while maintaining
a constant ambient deficit removes energy from the black hole.
This result is not as unsettling as it may first appear, as energymay
be lost both across the acceleration horizon and as gravitational
radiation at future infinity [46].

Electromagnetic charge Q and rotational charge J fit into
the above story in a straightforward manner. By analogy with
the asymptotically AdS case [41], one should expect that the
Christodoulou-Ruffini formula will take the form

M2 =
1S

4π

[

(

1+
πQ2

1S

)2

+
(

2π J

1S

)2

− 4C2

]

. (4.15)

From the charged, rotating, (asymptotically flat) C-metric written
in Boyer-Lindquist type coordinates, one may explicitly calculate
the conserved charges using Komar-like integrals. This was done
in [28]. One then finds that (4.15) holds only if the temporal
Killing vector is normalized as it was in [28], (where the choice
of normalization was made in order to make the First Law
and Smarr relations hold). Since the quantities Q, J, S, 1, and
C are independent of the choice of normalization, one may

interpret (4.15) as evidence that the mass proposed in [28] is the
correct one.

4.2.2. Two Accelerating Black Holes
As a less trivial example, we present results for the two
accelerating black hole system, first explored in [36]. We have

ℓγ = 2z5

−
(z24 − z23 + z22 − z21)z5 − (z4 − z3 + z2 − z1)(z1z3 + z2z4)

(z4 − z3 + z2 − z1)z5 + z1z3 − z2z4

∼ 2(z5 − zcom)+O
(

z−1
5

)

, (4.16)

where zcom = z24−z23+z22−z21
2(z4−z3+z2−z1)

is the center of mass of the

pair of black holes (this formula generalizes to any number of
accelerating black holes).

Placing the two black holes at ±zb fixes the gauge, and we
can see how the string tensions and black hole entropies react to
changes in black hole mass and distance to the horizon (without
loss of generality we can keep zb fixed as a choice of scale).
Writing

S0 =
(m1 +m2)(m1 +m2 + 2zb)(m1m2 − z2

b
+ z25)

2

(z5 + zb +m1)(z5 − zb −m2)(z5(m2 +m1)+ zb(m2 −m1))
,

(4.17)
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FIGURE 8 | The variation of thermodynamic parameters for the double accelerating black hole set-up where the two black holes have equal mass m1 = m2 = 1 and

the distance between them 2zb is varied. The acceleration horizon is fixed at z5 = 12.

the entropies are

S1 =
4πm2

1

K

S0

(2zb +m1 −m2)(z5 + zb −m1)
,

S2 =
4πm2

2

K

S0

(2zb +m2 −m1)(z5 − zb +m2)
.

(4.18)

We can quickly see that if m1 = m2, the entropy of the first
black hole will always be less than that of the second, which
would be expected as the mean deficit through the first black hole
is greater than that through the second. However, normalizing
the entropies with respect to their reference SK = 4πm2

I /K,
we can see that the multiplicative factors in (4.18) show that
both initially decrease as m2 increases from zero before turning,
although S2/SK shows a sharper decrease and eventually drops
below S1/SK . Again, this behavior is easy to see from the ratios in
(4.18). Figure 7 shows this behavior with varyingmI .

In order to compare the impact of varying the masses of
the black holes and their separation, we first fix the outgoing
tension at z → −∞, so that we are comparing the same conical
asymptotics. Figure 7 shows the effect of varying the mass of the
inner and outer black hole, respectively, on the entropies and
thermodynamic lengths. In each case, we fix one of the masses
at unity and vary the other. In both cases, varying the mass of
the black hole closer to the acceleration horizon (m2) causes a
“crossover” behavior.

Figure 8 shows how the entropy, length (and tension) are
affected by moving the black holes apart. As before, the outgoing
tension is fixed at 1/8, and both black hole masses are fixed
at m1 = m2 = 1; the acceleration horizon is at z5 =
12. The normalized entropy of the black hole closer to the
acceleration horizon increases as the black holes are moved apart,
whereas the entropy of the other black hole decreases sharply.
We can get a rough understanding of this by looking at the
string tensions; the tension between the second black hole and
the acceleration horizon drops off sharply at large separation,
meaning that less of the angular direction is cut out by the deficit,
thus increasing entropy. The tension between the black holes,

µ1, in contrast increases, leading to an expectation that the first
entropy will decrease. While these statements are broadly true—
note that we have already normalized the K factor out of the
entropy, indicating that the effect of this geometry is magnified.
As expected, the thermodynamic lengths exhibit a scaling with
increasing separation, with the intermediate length λ1 negative
and decreasing to compensate the increase in λ0.

5. CONCLUSIONS

To sum up: we have proven a thermodynamic First Law for a
composite system of black holes, both accelerating and isolated.
We have allowed the varying of the tensions of the cosmic
strings along the axis that are necessary for maintaining the
equilibrium configuration. As with the accelerating AdS black
hole thermodynamics previously developed, these strings have
a corresponding potential, the thermodynamic length, which
has a direct specification in terms of the Weyl coordinate
parameterising the axis of symmetry of the black hole array.

We have presented a range of accelerating and non-
accelerating black hole systems to illustrate the various facets
of the thermodynamic parameters. The main point is that the
black holes form a fully composite thermodynamical system—
the variation of one black hole affects all the others. We also see
how the tensions and lengths in a composite system collude in
such a way that the overall picture makes intuitive sense, whereas
the individual black hole contributions may be less transparent.

Our findings, that the thermodynamic lengths between
compact horizons is related to the proper distance along the
axis, are in agreement with previous results [32, 33]. However,
in our construction there are also semi-infinite strings for
which this proper distance would be infinite, yet this is not
what we would expect thermodynamically. The thermodynamic
length represents the contribution to the enthalpy from the
tension (negative pressure) of the cosmic string inside the black
hole, thus should be finite. We take this into account via a
renormalisation process, the zc, similar to the renormalising of
the metric coefficients.
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In fact, the result for λ derived in [32], can actually be
understood in terms of the covariant-phase space formalism [47],
much as black hole entropy and temperature were interpreted by
Wald [48] and Iyer and Wald [49]. In this construction, the idea
is that, on shell, variations the action consist solely of boundary
data. Taking this variation to be the action of some Killing vector
field corresponding to time translation, one can find a quantity
which vanishes when integrated over a Cauchy slice. Taking
the variation of this quantity, and splitting the integral up into
boundary pieces via Gauss’ law, one obtains the First Law. The
contribution from infinity gives the variation in mass and the
contribution at the horizon gives TδS. When strings are present,
one must also consider the contribution from a new surface: a
“tube” which encases the string4. It is precisely this contribution
which provides λδµ. From this perspective, the thermodynamic
lengths calculated in [27, 28] for the AdS C-metric may be seen
as renormalised worldvolumes (per unit time) of the infinite
proper length strings. The sense in which the external strings are
renormalised in the asymptotically flat case is less clear andwould
be interesting to understand.

Open questions remain as to the inclusion of electric
charge. Explicit solutions to Einstein-Maxwell theory describing
two electrically charged black holes connected by a conical
singularity, without exterior strings, are known and have been
investigated thermodynamically [32, 33]. One could, therefore,
proceed as in section 3, adding exterior semi-infinite strings to
the system and determining the necessary modifications to the

4Similar ideas have been applied to thermodynamic investigations of black holes
possessing Misner strings [50, 51].

resulting thermodynamic lengths. However, since charging the
black holes destroys the linearity property present in (2.3), it
is not currently known how to construct arrays containing an
arbitrary number of charged objects.

While the system of many black holes is not stable,
it is nonetheless interesting that it too displays sensible
thermodynamic properties, further supporting the inclusion of
cosmic strings in the thermodynamic picture.
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of charged, rotating, and accelerating black holes. JHEP. (2019) 4:096.
doi: 10.1007/JHEP04(2019)096

29. Traschen JH, Fox D. Tension perturbations of black brane space-times. Class
Quant Grav. (2004) 21:289–306. doi: 10.1088/0264-9381/21/1/021

30. Harmark T, Obers NA. General definition of gravitational tension. JHEP.
(2004) 405:043. doi: 10.1088/1126-6708/2004/05/043

31. Kastor D, Traschen J. The angular tension of black holes. Phys Rev D. (2012)
86:081501. doi: 10.1103/PhysRevD.86.081501

32. Krtouš P, Zelnikov A. Thermodynamics of two black holes. JHEP. (2020)
02:164. doi: 10.1007/JHEP02(2020)164

33. Ramírez-Valdez CJ, García-Compeán H, Manko VS. Thermodynamics
of two aligned Kerr black holes. Phys Rev D. (2020) 102:024084.
doi: 10.1103/PhysRevD.102.024084

34. Weyl H. Zur Gravitationstheorie. Ann Phys. (1917) 359:117–45.
doi: 10.1002/andp.19173591804

35. Christodoulou D, Ruffini R. Reversible transformations of a charged black
hole. Phys Rev D. (1971) 4:3552. doi: 10.1103/PhysRevD.4.3552

36. Dowker HF, Thambyahpillai SN. Many accelerating black holes. Class Quant
Grav. (2003) 20:127–36. doi: 10.1088/0264-9381/20/1/310

37. Munguia C. Unequal binary configurations of interacting Kerr black holes.
Phys Lett B. (2018) 786:466–71. doi: 10.1016/j.physletb.2018.10.037

38. Manko VS, Ruiz E. Metric for two arbitrary Kerr sources. Phys Lett B. (2019)
794:36–40. doi: 10.1016/j.physletb.2019.05.027

39. Manko VS, Ruiz E, Manko OV. Is equillibrium of aligned Kerr black holes
possible? Phys Rev Lett. (2000) 85:5504. doi: 10.1103/PhysRevLett.85.5504

40. Emparan R, Reall HS. Generalized Weyl solutions. Phys Rev D. (2002)
65:084025. doi: 10.1103/PhysRevD.65.084025

41. Gregory R, Scoins A. Accelerating black hole chemistry. Phys Lett B. (2019)
796:191–5. doi: 10.1016/j.physletb.2019.06.071

42. Arnowitt R, Deser S, Misner C. Dynamical structure and definition
of energy in general relativity. Phys Rev. (1959) 116:1322–30.
doi: 10.1103/PhysRev.116.1322

43. Komar A. Positive-definite energy density and global consequences for
general relativity. Phys Rev. (1963) 129:1873-6. doi: 10.1103/PhysRev.129.
1873

44. Grffiths JB, Krtouš P, Podolsky J. Interpreting the C-metric.
Class Quant Grav. (2006) 23:6745–66. doi: 10.1088/0264-9381/23/
23/008

45. Ball A, Miller N. Accelerating black hole thermodynamics with boost time.
[arXiv:2008.03682 [hep-th]].

46. Podolsky J, Ortaggio M, Krtous P. Radiation from accelerated black
holes in an anti-de Sitter universe. Phys Rev D. (2003) 68:124004.
doi: 10.1103/PhysRevD.68.124004

47. Harlow D,Wu J. Covariant phase space with boundaries. JHEP. (2020) 10:146.
doi: 10.1007/JHEP10(2020)146

48. Wald RM. Black hole entropy is the Noether charge. Phys.Rev D. (1993)
48:R3427–31. doi: 10.1103/PhysRevD.48.R3427

49. Iyer V, Wald RM. Some properties of Noether charge and a proposal
for dynamical black hole entropy. Phys Rev D. (1994) 50:846–64.
doi: 10.1103/PhysRevD.50.846

50. Bordo AB, Gray F, Hennigar R, Kubizňák D, Misner gravitational
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APPENDIX A

COORDINATE SYSTEMS FOR THE
C-METRIC

We collect the transformation formulae between the standard C-
metric (expressed in Hong-Teo form [52]) and the Weyl form of
section 2. The C-metric in Weyl form is

ds2 =
X1X3

ℓγX2
dt2 −

ℓγ E12E23

4R1R2R3E13

(

V3 + 1

2

)2

[dr2 + dz2]

− r2
ℓγX2

X1X3

dφ2

K2
, (A1)

where ℓγ = z3 − z0 = z3 − (z1 + z2)/2 is the z-distance to the
center of the black hole rod.

Now letm = (z2 − z1)/2 and A = 1/ℓγ . Define

r = r̄ sin θ

√

f (r̄)g(θ)

(1+ Ar̄ cos θ)2
,

z − z0 = r̄
(Ar̄ + cos θ)(1−m/r̄ +mA cos θ)

(1+ Ar̄ cos θ)2
, (A2)

where

f (R) = (1− A2r̄2)

(

1−
2m

r̄

)

, g(θ) = (1+ 2mA cos θ) .

(A3)
Then the Weyl metric (A1) transforms to the C-metric in Hong-
Teo coords [52], rather than the standard Kinnersley-Walker
coordinates discussed in [36]:

ds2 =
1

(1+ Ar̄ cos θ)2

[

f̄ (r̄)dt2 −
dr̄2

f̄ (r̄)

− r̄2
(

dθ2

ḡ(θ)
− ḡ(θ) sin2 θdφ2

)]

. (A4)

Here we see the direct interpretation of ℓγ as the acceleration
length scale; for small m, A = 1/ℓγ corresponds to
the magnitude of the four-acceleration of the black
hole [44].
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