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How to improve the subseasonal forecast skills of dynamic models has always been an
important issue in atmospheric science and service. This study proposes a new
dynamical-statistical forecast method and a stable components dynamic statistical
forecast (STsDSF) for subseasonal outgoing long-wave radiation (OLR) over the
tropical Pacific region in January-February from 2004 to 2008. Compared with 11
advanced multi-model ensemble (MME) daily forecasts, the STsDSF model was able
to capture the change characteristics of OLR better when the lead time was beyond
30 days in 2005 and 2006. The average pattern correlation coefficients (PCC) of STsDSF
are 0.24 and 0.16 in 2005 and 2006, while MME is 0.10 and 0.05, respectively. In addition,
the average value of PCC of the STsDSF model in five years is higher than MME in 7–11
pentads. Although both the STsDSF model and MME show a similar temporal correlation
coefficient (TCC) pattern over the tropical Pacific region, the STsDSF model error grows
more slowly than the MME error during 8–12 pentads in January 2005. This phenomenon
demonstrates that STsDSF can reduce dynamical model error in some situations.
According to the comparison of subseasonal forecasts between STsDSF and MME in
five years, STsDSFmodel skill depends strictly on the predictability of the dynamical model.
The STsDSF model shows some advantages when the dynamical model could not
forecast well above a certain level. In this study, the STsDSF model can be used as an
effective reference for subseasonal forecast and could feasibly be used in real-time
forecast business in the future.
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INTRODUCTION

The atmosphere is a complex nonlinear giant system with external forcings and internal dissipations.
Under the impact of external forcing factors, such as the sun, ocean, land, and human activities, a
series of physical and chemical changes and interactions occur in the atmosphere, which brings great
difficulties to weather and climate prediction [1–3]. A small error can be dramatically amplified over
time, which allows for a predictable limit on the weather forecast. Moreover, some studies suggest
that the chaotic effects could prove the predictable limits of weather systems in theoretical ways [4, 5].
It is now accepted that the upper limit on the predictability of actual weather systems is
approximately 2 weeks [6, 7]. However, studies have shown that the predictability of some large-
scale components is significantly higher than that of small-scale components, which could be more
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than 2 weeks [8, 9]. At the same time, some low frequency
weather systems with a duration of more than 2 weeks were
found in the observations.

Based on the theory of predictability, the prediction error of
dynamic models mainly results from the following aspects: the
initial error of observation data, the error caused by the set
scheme in the dynamic model simulation, and the systematic
error of the model in the single variable simulation [10]. The
initial error of the observation data is mainly caused by the
inaccuracy of the observation value and the uneven distribution
of observation stations. The error of set scheme in dynamic mode
simulations is mainly caused by the numerical set in order to
deduct the random error. The systematic error of the single
variable simulation is mainly caused by the performance of
the model itself, such as the model resolution,
parameterization scheme for the physical processes, and the
calculations of the discrete numerical difference scheme
[11–13]. The reasons described above limit the forecast
accuracy of dynamic models and are the main obstacles to the
further improvement of the subseasonal forecast.

Given the shortcomings of error growth theory based on the
linear framework, Chen et al. andDing et al. developed a new theory
of nonlinear error growth to measure the predictability of
atmosphere and the nonlinear local Lyapunov exponent (NLLE),
revealing the temporal and spatial distribution of the predictable
duration in different weather and climate variables [14, 15].
Theoretical studies show that climate variables are composed of
climate signals and noises, and climate signal is mainly affected by
the external boundary conditions of the climate system [16, 17]. For
example, the heat capacity of subsurface water during an El Niño
event can significantly enhance the East Pacific tropical cyclone [18].
When the proportion of climate signals in variables is large enough
to overcome the destructive effects of noises, climate anomalies may
show a certain degree of predictability [19]. Observational studies
show that there are some slow changing processes in atmospheric
evolution above the level of weather noises, these slow changing
processes are associated with large-scale atmospheric motions and a
timescale of several weeks, which is much longer than that estimated
by nonlinear hydrodynamics [20–22]. There are still some
predictable meteorological characteristics in the subseasonal time
scale, and the atmospheric stable component can be robustly
predicted [23, 24].

Although the development of extended period forecast skills is
remarkable, its technical difficulty can not be covered up. On the
one hand, it is difficult to use commonly used methods to predict
the intensity and duration of the weather process objectively. On
the other hand, the ability of the daily weather forecast depends
on the increase of initial error by chaotic motion in the
atmosphere [25, 26]. According to the chaotic characteristics
of the atmospheric system, Chou et al. expounded the extraction
method of the predictable components in the 10–30 days
extended period, and further suggest that different strategies
and methods should be adopted for predictable components
and random components [27]. However, if each time step
needs to be checked in the actual forecast process, the
computation expenses will be very large. Ren et al. proposed a
similar evolution method, assuming that similar initial conditions

have similar prediction errors in the allowable time range [28]. By
synthesizing and analyzing the prediction errors of historical
similar initial conditions, the current prediction errors are
estimated. The calculations are greatly simplified and more
easily incorporated into numerical prediction models. Zheng
et al. discussed the properties of predictable components in the
extension period and their application in numerical models [29].

Based on predictable components theory, the model
subseasonal forecasts can be divided into two parts: the
predictable component and the random component. The
numerical model error can also be reduced in the process of
integration by using historical observation data. Therefore, it is
obvious that the method exists on model dependence. For
different numerical models, the model performance is
different, and the definition and extraction of predictable
components are different too. Focusing on the prediction of
weather or climate at different time and spatial scales, the
stable components should be especially investigated. To
improve subseasonal process diagnosis and prediction skills, it
is important to grasp the main characteristics of the subseasonal
stable component [30, 31]. Under the same initial and exogenous
forcing characteristics, the atmospheric system with a large-space
time scale is more predictable. Therefore, it is necessary to
distinguish the stable components from atmospheric
circulation on a subseasonal scale and analyze the properties
and improve subseasonal prediction skills by using stable
components [32, 33]. Moreover, because the extraction
method of stable components is based on historical
observation data instead of model data, it can overcome the
shortcoming of model dependence.

Subseasonal precipitation prediction is one of the most
important aspects of weather forecasting [34, 35]. The tropical
area accounts for about half of the total global area, of which the
ocean accounts for about 3/4. The solar radiation energy received
in the tropical area is much more than that be reflected into space,
which makes the tropical ocean a vital energy source for global
atmospheric circulation movement [36, 37]. In addition, the
tropical ocean is one of the most important water vapor sources
for the global atmosphere [38, 39]. Due to the abundant water
vapor contents in tropical marine areas, precipitation generation is
closely related to atmospheric vertical convection intensity. The
intensity of precipitation can be characterized by OLR in the
tropics. If the subseasonal variability of OLR can be forecasted
well, the tropical precipitation forecast skills will be robust [40, 41].
Therefore, this study mainly uses a dynamic statistical forecast
model (STsDSF) to improve the subseasonal forecast skills of 11
advanced multi-model ensembles for OLR over the tropical Pacific
region (140°E-100°W, 30°S-30°N) and discusses the predictability of
STsDSF in January and February from 2004 to 2008. It proposes a
new application of the dynamic-statistical method in subseasonal
forecast.

DATA AND METHODOLOGY

The daily OLR data was published by the National Oceanic and
Atmospheric Administration (NOAA) over the period from 1979

Frontiers in Physics | www.frontiersin.org January 2022 | Volume 9 | Article 6658282

Wang et al. A New Subseasonal Forecast Model

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


to 2008 with a horizontal resolution of 2.5° × 2.5° [42]. The
external boundary conditional forcing of sea surface temperature
(SST) is represented by Oceanic Niño Index (Niño 3.4), which is
also published by NOAA.

The hindcast data of the dynamical model is from
Intraseasonal Variability Hindcast Experiment (ISVHE), which
is jointly supported by the Asian Pacific Climate Center (APCC),
NOAA, Climate Variability and Predictability (CLIVAR) Asian-
Australian Monsoon Panel, and some other organizations [43].
The model products of ISVHE have been studied at the
predictability of intraseasonal variability as a whole [44, 45].
In total, ten one-tier hindcasts and one two-tier hindcast from
ISVHE were used in this study, including the Australian Bureau
of Meteorology (AOBM) coupled model, the coupled model of
Euro-Mediterranean Center on Climate Change (CMCC), the
European Centre for Medium-Range Weather Forecasts
(ECMWF) model, the Geophysical Fluid Dynamics Laboratory
(GFDL) model, the Japan Meteorological Agency (JMA) coupled
model, the Japan Agency for Marine-Earth Science and
Technology (JAMSTEC) model, the NCEP/Climate Prediction
Center (CPC) coupled model, the Pusan National University
(PNU) model, the Seoul National University (SNU) coupled
model, University of Hawaii (UH)/International Pacific
Research Center (IPRC) model, and the European Centre (EC)
model [46–51]. The details of the model data and operation
scheme are briefly shown in Table 1. Because the skill of MME is
better than that of any single model in seasonal forecasting [52,
53], the improvement of STsDSF is mainly based on the MME
forecast. In this study, five daily OLR forecast cases were selected.
The start time of each was January 1 every year from 2004 to 2008.

STsDSF is a hybrid dynamical-statistical method for
subseasonal prediction, which consists of four steps 1)
distinguish the stable components from climatic state vector
by training daily contribution rate of variance and persist time
2) divide the dynamical model output into predictable
components and random components by projection 3)
forecast predictable components in dynamical simulation and
forecast random components in statistical estimation 4) make
ensemble predictands for dynamical simulation and statistical
estimation. Figure 1 is the schematic diagram of the STsDSF

model, and the details of the STsDSFmodel have been introduced
in [32, 33]. In this study, the Niño 3.4 index is considered as a
similarity criterion that represents the external boundary
conditions of tropical SST, and three similar years chosen for
statistical estimation in the STsDSF model from 1979 to 2003.

In this study, the subseasonal forecast skill of OLR is measured
by PCC and TCC. The PCC formula is expressed as follows:

PCC �
∑n
i�1
(Xf −Xc −Mf,c)i(Xv −Xc −Mv,c)i cos ϕi��∑n

i�1

√ (Xf −Xc −Mf,c)2i cos ϕi•

��∑n
i�1

√ (Xv −Xc −Mv,c)2i cos ϕi

(1)

where Xf, Xv, and Xc are the predicted value, observed value, and
climate mean, respectively; Mf,c and Mv,c represent the deviation
means of Xf and Xv fromXc, respectively; n represents the number
of grids in the chosen area, and cosφi is the latitude of grid i.

The TCC formula is expressed as follows:

TCC �
∑n
t�1
(Xf − �Xf)t(Xv − �Xv)t��∑n

t�1

√ (Xf − �Xf)2t • ∑n
t�1
(Xv − �Xv)2t (2)

where Xf and Xv are the predicted value and observed value; �Xf

and �Xv represent the means of Xf and Xv, respectively; and n
represents the number of times. Every grid TCC is calculated by
formula (2).

SUBSEASONAL FORECAST SKILL OFMME
AND STSDSF MODEL

For subseasonal forecast products, the development trend is more
reliable than daily outputs [54, 55]. In this study, five-day mean
PCCs for both MME and STsDSF are calculated as 12 pentads.
The comparison between MME PCC and STsDSF PCC shows
that the trend of STsDSF is similar to MME. However, the
variance of MME PCC is greater than STsDSF PCC. For
example, MME PCC ranges from 0.80 to -0.18, while STsDSF
PCC ranges from 0.36 to -0.15 in 2004 (Figure 2A). The reason

TABLE 1 | One-Tier and Two-Tier System description of models and experiments.

Model Control ISO hindcast

Run Period Ens No Initial condition

ABOM POAMA 1.5 & 2.4 (ACOM2+BAM3) CMIP (100years) 2004–2008 10 The first day of every month
CMCC CMCC (ECHAM5+OPA8.2) CMIP (20years) 2004–2008 5 Every 10 days
ECMWF ECMWF (IFS + HOPE) CMIP (11yeaear) 2004–2008 15 Every 15 days
GFDL CM2 (AM2/LM2+MOM4) CMIP (50years) 2004–2008 10 The first day of every month
JMA JMA CGCM CMIP (20years) 2004–2008 6 Every 15 days
JAMSTEC SINTEX-F CMIP (20years) 2004–2008 9 The first day of every month
NCEP/CPC CFS v1 (GFS + MOM3) and v2 CMIP (100years) 2004–2008 5 Every 10 days
PNU CFS with RAS scheme CMIP (13years) 2004–2008 3 The first day of each month
SNU SNU CM (SNUAGCM + MOM3) CMIP (20years) 2004–2008 1 Every 10 days
UH/IPRC UH HCM CMIP (20years) 2004–2008 6 Every 10 days
EC GEM AMIP (21years) 2004–2008 10 Every 10 days
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for this is that MME is effective at simulating OLR at the start
time, but the accuracy drops quickly over time. According to five
OLR subseasonal forecasting cases from 2004 to 2008 (Figure 2),
the PCC of STsDSF was higher than that of MME when the lead
time was beyond 6 pentads.

During 7–12 pentads, the average value PCC of STsDSF is 0.24
and 0.16 in 2005 and 2006, verses 0.10 and 0.05 from MME,
respectively. For instance, the PCC of STsDSF is higher than
that of MME during 7–12 pentads in 2005 and 7–11 pentads in

2006 (Figures 2B,C). In 2007, the PCC of STsDSF is higher than
that of MME in 9–11 pentads (Figure 2D), while the forecasting
skill of STsDSF is worse than MME in 2008 (Figure 2E). The
possible reason may be attributed to the PCC of the MME
forecast being very accurate compared to other cases, which
means MME PCC drop slowly over time, and there is no
capacity for improvement by STsDSF in 2008. The OLR
forecast skill of STsDSF depends on the performance of the
model simulation. If the model can reasonably capture the

FIGURE 1 | Schematic diagram of the STsDSF model.

FIGURE 2 | PCC of STsDSFmodel andMME for OLR subseasonal forecasting over the tropical Pacific region during 2004–2008: (A) 2004; (B) 2005; (C) 2006; (D)
2007; (E) 2008. Red line is STsDSF model and blue line is MME.
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climatic patterns on a subseasonal scale, the forecast skill of
STsDSF will be reduced.

Different from 1–6, the STsDSF model shows some
advantages in 7–12 pentads. The five-year mean PCC of the
STsDSF model is compared with MME for OLR in 7–12 pentads
in Figure 3. The PCC of the STsDSF model ranges from -0.03 to
0.20, and the PCC of MME ranges from 0.10 to 0.18. Besides 12
pentads, the STsDSF model is more skillful than MME in 7–11
pentads. Therefore, the numerical simulation for the five
consecutive year average also agrees with the conclusion
above. Only when the skill of MME reduces to a certain level,
the improvement of MME by STsDSF can show some advantages.

The standard deviation of STsDSF PCC is less than that of
MME PCC (Figure 3), which indicates that the STsDSF model is
more stable. The reason is that the principle of the STsDSF model
is to distinguish model predictable information based on climate
state and to replace random information with climate analogue.
For the subseasonal OLR forecast over tropical Pacific region after
30 days, statistical methods still have the potential to surpass the
dynamic model. To further investigate the STsDSF model
performance in subseasonal time scale pentad by pentad, in
the next section of the article, a case study from 2005 is
presented to analyze the characteristics of OLR forecast error
over the Pacific region.

SUBSEASONAL FORECAST OF STSDSF
MODEL AND MME IN 2005

In this section, a forecast case covering January-February 2005 is
selected as an example for specific analysis. TCC is a common
way to investigate the predictability distribution. The TCC of the

STsDSF model and MME is shown in Figure 4. The red area
indicates that the forecasting skill is high, and the blue area
indicates that the forecasting skill is low. As shown in Figure 4B,
MME forecasts well in most tropical regions, with TCC exceeding
0.993. Only in two meridional zonal regions (180° and 120°W),
the TCC is lower than 0.989 and the distribution patterns of the
two regions are very similar. The corresponding TCC of the
STsDSF model in Figure 4A shows that the overall distribution
pattern is the same as that of MME, and the values are close.
However, the TCC of the STsDSF model is more complete and
more continuous in the blue areas, and the TCC of MME is more
dispersed. Comparing Figure 4A with Figure 4B, the overall
forecast skill pattern has no great change in the subseasonal
period, and the distribution characteristics of MME are retained
in the STsDSF model.

The variation of MME forecast error for OLR in January-
February 2005 is exhibited pentad by pentad (Figure 5). MME
can capture the movement of OLR very well in pentad 1
(Figure 5A). During pentad two to five, the forecast error
increases to 60W/m2, and the discrete anomaly is mainly
distributed in the southwest and northeast of the tropical
Pacific (Figures 5A–E). During pentads 8–12, the forecast
error increases to 80 W/m2, and the error region are complete
and continuous. Overall, MME forecast error is mainly negative
anomalous, and the skill is poor over southwest and northeast of
the tropical Pacific. MME can capture the patterns of OLR over
the tropical Pacific in the beginning, and the error grows
gradually over time, which is consistent with the PCC changes
in the above analysis (Figure 2).

Different from the error distribution of MME for OLR
subseasonal forecasts, the forecast error of the STsDSF model
shows larger negative anomalies in 1–4 pentads (Figures 6A–D).

FIGURE 3 | Five-year mean PCC of (A) STsDSF model and (B) MME for OLR subseasonal forecasting over the tropical Pacific region in 7–12 pentads. The
standard deviation is marked as a vertical black line.
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The error is smaller in equatorial and larger in the higher latitudes
over the Pacific. In addition, the pattern and intensity of STsDSF
model error change little during 5–12 pentads (Figure 6E–l).
Based on the diagnosis of OLR subseasonal forecast skill of
STsDSF model and MME in January-February 2005, although
STsDSF model error is larger than MME at the beginning, it
grows slowly and shows some advantages in 8–12 pentad
(Figure 6H–l).

DISCUSSION AND SUMMARY

The predictability of atmospheric stable component mainly comes
from three aspects: outer boundary condition forcing, a continuous
component of low frequency wave, and atmospheric periodic
component. Furthermore, these atmospheric components are
statistically regular [56, 57]. In this study, a new method called
the STsDSFmodel is proposed, to improve the subseasonal dynamic
model for OLR over the tropical Pacific region in January-February
from 2004 to 2008. We compare subseasonal forecast skills of the
STsDSF model and MME of 11 advanced models and analyze the
growth characteristics of subseasonal forecast error.

The conclusions of this study reveal that the performance of
the STsDSF model is largely determined by the forecasting skill of
the dynamical model. The STsDSF model only provides
additional improvement information when the dynamical

model output incredible data. According to five OLR
subseasonal forecasting cases from 2004 to 2008, the PCC of
STsDSF will be higher than that of MME when the lead time is
beyond 6 pentads. These results demonstrate that the STsDSF
model can be used as an important reference for subseasonal
forecasting after 30 days. The numerically simulated results for
five consecutive years on average have a good agreement with the
above discussion.

Moreover, the overall OLR TCC pattern of the STsDSF model
is similar to that of MME, and the TCC values are close over the
tropical Pacific. The change characteristics of MME are retained
in the STsDSF model in time scale, as well as in the space scale. In
addition, by comparing the subseasonal forecast error pentad by
pentad, the error of the STsDSF model grows more slowly than
that of the MME model in 12 pentads.

The STsDSF model only uses the initial condition and
historical observation data to improve the subseasonal
dynamical model and could feasibly be incorporated into
existing business real-time forecast products. However, further
studies are still needed. For example, we focus on the subseasonal
forecast over tropical Pacific OLR in January-February
2004–2008. Further investigations of the STsDSF model,
considering different meteorological elements, periods, and
regions, needs more modeling studies. In this study, the
similarity criterion of selecting historical data is Niño 3.4,
considered as an important external boundary forcing signal.

FIGURE 4 | TCC of (A) STsDSF model and (B) MME for OLR subseasonal forecasting over tropical Pacific region.
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FIGURE 5 | The error distribution of MME for OLR subseasonal
forecasts over the tropical Pacific region in 1(A)–12(L) pentad. (Unit: W/m2).

FIGURE 6 | The error distribution of STsDSF model for OLR
subseasonal forecasts over tropical Pacific region in 1(A)–12(L) pentad. (Unit:
W/m2).
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However, Niño 3.4 is a Pacific index and can not stand for all SST
forcings [58, 59]. Therefore, a more comprehensive index
considering different weights for different ocean forcings could
be developed. In addition, when we analyze the subseasonal
forecast skill of the STsDSF model, considering El Niño-
Southern Oscillation (ENSO) cycle in interannual timescale, the
relationship between subseasonal forecast skill and ENSO cycle is
intriguing, a new story which could be further discussed in the
future.

The hindcast skill of ISVHE performs better than the business
model, so it needs to be further verified whether the improvement
effect of the STsDSF model is different for the dynamical model
forecasts with different forecasting skills. Moreover, due to the
limitation of the time span of dynamical model data, we only
select cases of five consecutive years for comparative analysis.
Therefore, more simulation experiments are needed in further
studies.
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