
REVIEW
published: 28 May 2021

doi: 10.3389/fphy.2021.661367

Frontiers in Physics | www.frontiersin.org 1 May 2021 | Volume 9 | Article 661367

Edited by:

Giancarlo Ruocco,

Italian Institute of Technology (IIT), Italy

Reviewed by:

Enzo Orlandini,

University of Padua, Italy

Alexey Lyulin,

Eindhoven University of

Technology, Netherlands

Carlo Pierleoni,

University of L’Aquila, Italy

*Correspondence:

Vlasis G. Mavrantzas

vlasis@chemeng.upatras.gr

Specialty section:

This article was submitted to

Soft Matter Physics,

a section of the journal

Frontiers in Physics

Received: 30 January 2021

Accepted: 17 March 2021

Published: 28 May 2021

Citation:

Mavrantzas VG (2021) Using Monte

Carlo to Simulate Complex Polymer

Systems: Recent Progress and

Outlook. Front. Phys. 9:661367.

doi: 10.3389/fphy.2021.661367

Using Monte Carlo to Simulate
Complex Polymer Systems: Recent
Progress and Outlook

Vlasis G. Mavrantzas 1,2,3*

1Department of Chemical Engineering, University of Patras, Patras, Greece, 2 Institute of Chemical Engineering Sciences

(ICE-HT), Foundation for Research and Technology, Hellas (FORTH), Patras, Greece, 3 Particle Technology Laboratory,

Department of Mechanical and Process Engineering, ETH Zürich, Zürich, Switzerland

Metropolis Monte Carlo has been employed with remarkable success over the years to

simulate the dense phases of polymer systems. Owing, in particular, to the freedom it

provides to accelerate sampling in phase space through the clever design and proper

implementation of even unphysical moves that take the system completely away from

its natural trajectory, and despite that it cannot provide any direct information about

dynamics, it has turned to a powerful simulation tool today, often viewed as an excellent

alternative to the other, most popular method of Molecular Dynamics. In the last years,

Monte Carlo has advanced considerably thanks to the design of new moves or to

the efficient implementation of existing ones to considerably more complex systems

than those for which these were originally proposed. In this short review, we highlight

recent progress in the field (with a clear emphasis in the last 10 years or so) by

presenting examples from applications of the method to several systems in Soft Matter,

such as polymer nanocomposites, soft nanostructured materials, confined polymers,

polymer rings and knots, hydrogels and networks, crystalline polymers, andmany others.

We highlight, in particular, extensions of the method to non-equilibrium systems (e.g.,

polymers under steady shear flow) guided by non-equilibrium thermodynamics and

emphasize the importance of hybrid modeling schemes (e.g., coupled Monte Carlo

simulations with field theoretic calculations). We also include a short section discussing

some key remaining challenges plus interesting future opportunities.

Keywords: Monte Carlo, simulation, polymers, review, progress

INTRODUCTION

Metropolis Monte Carlo is a powerful simulation technique for equilibrating the dense phases of
complex systems and predicting their key physicochemical properties because of the freedom it
provides to sample new points in phase space thanks to the design of artificial (even fictitious) trial
moves that can take the system completely away from its natural trajectory. It is particularly suited
for simulating the bulk phases of chain-like (polymer or macromolecular) systems, because one can
think of several suchmoves (both simple and complex) and combinations thereof that can design in
order to generate trial states. Combined, in particular, with methods such as replica exchange, these
moves can accelerate system equilibration by several orders of magnitude compared to dynamic
methods such asMolecular Dynamics (MD). This is especially important at low temperatures or for
systems characterized by highly dense structures, since dynamics becomes too slow to be followed
reliably and ergodically by a detailed dynamic method.
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In the last years, the method has expanded considerably
through numerous applications in a variety of systems, often
in the form of hybrid schemes with theoretic methods,
thus providing invaluable insight into their thermodynamic,
structural and conformational properties (and indirectly the
dynamic ones). Our goal in this rather short report is to
highlight important advances over the last 10 years or so,
with some more emphasis on new applications to complex
systems. We start by presenting the basic concepts underlying
the method, then we review progress in the development of
new Monte Carlo moves or interesting implementations of
existing moves to new systems, then we discuss the development
of new software for the more friendly execution of Monte
Carlo simulations, and finally we discuss findings from several
applications to polymer systems. These include the use of
Monte Carlo in addressing polymer self-assembly, structure
and conformation in polymer nanocomposites, polymers under
flow, confined polymers, grafted polymers, polymer rings
and knots, semiflexible polymers, polymer networks, polymer
crystallization, and polymerization reactions. We discuss recent
advances in all these areas and outline interesting future
directions. Given the brief character of the review, we would
like to deeply apologize in advance if we failed to include
some significant contributions over the period (last decade
or so) covered. For exactly the same reason, we have
restricted our presentation to applications related with system
equilibration and relaxation for soft materials made up of
oligomers or polymers. Thus, extremely interesting extensions
such as implementations to calculate rate constants or to track
physicochemical processes in the form of kineticMonte Carlo are
not covered.

BASIC CONCEPTS

Let ρeq be the probability density in the equilibrium ensemble
wherein the Monte Carlo simulation is carried out, and let us
assume that in a given Monte Carlo step a move is attempted
from an old state (o) to a new or trial state (n). Let us also denote
by a (o → n) the corresponding stochastic matrix a of attempt
probabilities, which is usually symmetric, i.e., it satisfies

a (o → n) = a (n → o) (1)

Then, in the Metropolis Monte Carlo method, the new state is
accepted with probability [1]:

pacc (o → n) = min

[

1,
ρeq (n)

ρeq (o)

]

(2)

with ρeq (o) and ρeq (n) denoting the probabilities of the system
to be in state o or in state n, respectively. The corresponding
Markov chain of states thus generated samples asymptotically the
probability distribution ρeq. In the canonical (NVT) ensemble,
Equation (2) reduces to [2–5]:

pacc (o → n) = min

(

1, exp

[

−
U

(n)
pot − U

(o)
pot

kBT

])

(3)

whereU(n)
pot−U

(o)
pot is the difference1Upot in the potential energies

between new and old states, kB denotes the Boltzmann constant,
and T is the absolute temperature.

The power of the Monte Carlo method in simulating complex
physical systems lies in the fact that one has considerable
freedom in choosing the matrix a as long as the requirement
a (o → n) = a (n → o) is satisfied. For example, one can
even think of applying totally unphysical moves for the system
at hand, as far as the internal geometry and the molecular
architecture of the constituent molecules are not destroyed. This
can substantially speed up the rate with which the system moves
through configuration space, which is particularly advantageous
in the case of the dense phases of chain-like molecules (e.g.,
synthetic polymers and biopolymers) that are known to be
characterized by a very broad distribution of relaxation times that
renders their direct MD simulation a formidable task.

An interesting point in the Metropolis Monte Carlo scheme
is that one can replace Equation (1) with the following more
general condition:

ρeq (o) a (o → n) pacc (o → n) = ρeq (n) a (n → o) pacc (n → o)

(4)

also known as detailed balance or condition of microscopic
reversibility [3–5]. Then, the Metropolis criterion, Equation
(2), becomes

pacc (o → n) = min

(

1,
ρeq (n) a (n → o)

ρeq (o) a (o → n)

)

(5)

If, in addition, the elementary move is designed in a set of
coordinates that differs from the configuration-space coordinates
wherein the equilibrium probability density ρeq was defined, then
Equation (5) must be modified to account for the Jacobian of
transformation J from one coordinate system to the other:

pacc (o → n) = min

(

1,
ρ(n)

ρ(o)

J(n)

J(o)

a (n → o)

a (o → n)

)

(6)

From the elements of the underlying matrix a, the transition
probability matrix π is defined next according to

πno = π (o → n)

=

{

a (o → n) , if ρeq (n) ≥ ρeq (o) , n 6= o

a (o → n) ρeq(n)
ρeq(o) , if ρ

eq (n) < ρeq (o) , n 6= o
(7)

πoo = 1−
∑

n6=o

πno

and, by definition, is stochastic [2]. Then, as the
Monte Carlo iterations progress, the row vector
ρt = (ρt (1) , ρt (2) , ..., ρt (o) , ..., ρt (n) , ...) containing the a
priori probabilities of all states after step t of the simulation
converges to the desired equilibrium distribution lim

t→∞
ρt = ρ

eq

satisfying [4, 5]:

ρ
eq = π · ρeq (8)
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Equation (8) implies that the equilibrium distribution ρ
eq is

an eigenvector of the transition probability matrix π , with the
corresponding eigenvalue equal to one [4, 5].

MONTE CARLO MOVES FOR POLYMERS

Due to difficulties associated with excluded volume interactions,
chain connectivity, and conformational stiffness [6], early Monte
Carlo simulations were performed on lattice models [7], but soon
implementations in continuous space appeared. Today, we can
categorize Monte Carlo moves developed for polymers roughly
into three groups: simple, complex, and advanced.

Simple Monte Carlo Moves
Simple Monte Carlo moves include [4]: reptation [8], end-
mer rotation [9], libration or flip [9], dimer flip [10, 11],
configurational bias (CB) [12–15], extended configurational bias
[16–22], concerted rotation (ConRot) [23], intra-chain and inter-
chain concerted rotation [24, 25], generalized reptation [9, 26],
parallel rotation [27], (g) pivot [28, 29], atom identity exchange
[30], and volume fluctuation [9]. These moves apply only to a
single polymer chain; moreover, reptation, configurational bias,
end-mer rotation and generalized reptation apply only at chain
ends. With these simple moves, only chains up to about 70 units
long can be simulated. Special mention should be made of the
reptation move (Figure 1), perhaps the very first Monte Carlo
move devised for polymer chains; it is realized by cutting out a
monomer from one end of the chain and appending it to the other
end. Thus, the move simulates the diffusive (slithering-snake)
motion of the chain. In the configurational biasmove (Figure 2),
on the other hand, one cuts out an entire segment composed of
manymonomers at one end of the chain and regrows it monomer
by monomer in a biased way so as to avoid overlaps with the
monomers on the same or nearby chains. The bias introduced
in the construction of the new configuration is removed at the
final stage of the move when the acceptance criterion is applied,
by appropriately modifying it. As far as the local conformation at
the interior of a chain is concerned, this is typically equilibrated
with the help of the ConRot move, which involves the concerted
rotation of an internal segment of the chain, of size equal to 5
monomers (Figure 3).

Complex Monte Carlo Moves
Complex Monte Carlo moves induce drastic reconfigurations
of large internal sections within one or two polymer chains
simultaneously. Initially they appeared in the form of chain
breaking moves [31] in Monte Carlo simulations of polymers
on lattices; later they gave rise to the so-called family of chain-
connectivity altering moves. Following some rigorous schemes,
these moves effect large conformational changes at the level
of the end-to-end distance of one or two chains at the same
time, which can dramatically accelerate the rate with which the
long-range conformational features of the polymer are sampled,
often however at the expense of introducing polydispersity in the
polymer. The family of complex Monte Carlo moves includes [9,
26, 32, 33]: end-bridging, directed internal bridging, directed end-
bridging, self end-bridging, and fusion-scission [34]. Introduction

of these moves almost revolutionized the field of the molecular
simulation of polymers [4, 5]. Figure 4 presents a design of the
end-bridging move.

From a technical point of view, and in order not to violate
the very important condition of microscopic reversibility, in
a variable connectivity Monte Carlo move proper care should
be taken to: (a) evaluate all possible geometric solutions to
the underlying bridging problem, (b) incorporate appropriate
Jacobians in the acceptance criterion (because the solution of
the geometric problem is typically carried out in the space of
generalized coordinates), and (c) address both the forward and
the reverse problem pertinent to the move.

As already mentioned, chain connectivity altering algorithms
typically induce polydispersity in the sample because the
molecular lengths of the chains involved in these moves
are altered. Because of this, the corresponding Monte Carlo
simulations are carried out in a semigrand canonical ensemble,
wherein the following quantities are kept constant: the total
number of chains Nch, the total number of mers n, the pressure
P, the temperature T, and the spectrum of relative chemical
potentials µ

∗ of all chain species within the system except two
that are taken as reference species [26, 35]. Such an ensemble
is typically denoted as [NchnPTµ

∗] and the average molecular
length is estimated from the distribution of chain lengths
eventually sampled, which in turn is dictated by the applied
spectrum of relative chemical potentials µ

∗.

Advanced Monte Carlo Moves: Simulation
of Non-linear Chain Systems
Advanced Monte Carlo moves include Double Bridging (DB)
and Intramolecular Double Rebridging (IDR) [36, 37]. These
are generalizations of the end-bridging move in the sense that
they involve the sequential or simultaneous construction of two
trimer bridges (instead of one). The latter family of moves has
found tremendous applications in simulations of polymers with
a non-linear chain architecture such as long-chain branched, tri-
arm star, and H-shaped polymers [10, 11, 37, 38]; they have
helped to understand how chain dimensions and other important
conformational quantities depend on the precise molecular
architecture of the chains [39–41] (frequency and length of
branches). A typical design of the double bridging move for linear
polymers is shown in Figure 5.

NEW MONTE CARLO SOFTWARE

In their majority, the Monte Carlo moves discussed in the
preceding section have been implemented for specific polymer
chemistries and architectures using home-made algorithms.
However, there exist a few software packages offering these
Monte Carlo moves for generic polymer structures. Available
Monte Carlo software includes: (a) the Enhanced Monte Carlo
code [42] which was used in simulations of semicrystalline
polymers [43–46]; (b) Towhee [47]; (c) Cassandra [48]; and (d)
RASPA [49].

Recently, Alexiadis et al. [50] presented Chameleon, a
new simulation software in C++ wherein several chain
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connectivity altering Monte Carlo moves were implemented.
The new software can handle several polymer structures
such as polyethylene (PE), polystyrene (PS) and polyvinyl
chloride (PVC), and many different polymer architectures
(e.g., linear and branched), described either through an all-
atom, a united-atom, or a coarse-grained model. Direct
comparison of several structural and volumetric properties
of the above systems obtained with Chameleon against

FIGURE 1 | Schematic illustration of the reptation (slithering-snake) Monte

Carlo move for polymer simulations in continuous space.

available experimental data and previous computational works
demonstrated excellent agreement.

For solute-solvent systems in liquid or gas phase, Cezar et al.
[51] have introduced a new version of DICE (https://portal.if.usp.
br/dice), aMonte Carlo algorithm for themolecular simulation of
long flexible molecules, based on an improved implementation of
the configurational bias move.

MONTE CARLO SIMULATION OF
SELF-ORGANIZED POLYMER PHASES

A family of polymer systems for which molecular modeling
could provide significant insight is that of soft nanostructured
materials (e.g., organic semiconducting polymers, polypeptides,
polymerosomes, micellar surfactants and many others) because
of the capabilities it offers to follow chain self-organization into
a variety of structures and morphologies depending on operating
(e.g., temperature) and physicochemical (e.g., concentration, type
of solvent present, pH) conditions. Because self-organization can
occur over long time scales, many of these systems cannot be
simulated by a brute force application of the MD method. This
explains why people resort to coarse-graining [52], an approach,
however, that suffers from many drawbacks [53, 54]. In this
case, atomistic Monte Carlo offers an excellent alternative, as one
can still maintain the detailed molecular representation while
overcoming the problem of long relaxation times through the

FIGURE 2 | Schematic illustration of the configurational bias Monte Carlo move for polymer simulations in continuous space.

FIGURE 3 | Schematic illustration of the ConRot Monte Carlo move for polymer simulations in continuous space.
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FIGURE 4 | Schematic illustration of the end-bridging Monte Carlo move for polymer simulations in continuous space.

FIGURE 5 | Schematic illustration of the double bridging Monte Carlo move for polymer simulations in continuous space. In general, given an internal atom in one

chain and an internal atom in the other chain, there are four possible combinations with which this move can be realized (based on what pairs of trimers are chosen to

be cut out), and in the Figure we have included only one of these combinations.

application of the artificial moves presented in section Monte
Carlo Moves for Polymers. Directly simulating ordered phases
of polymers or oligomers with Monte Carlo is best exemplified

by the work of Alexiadis et al. [30] for an alkanethiol self-
assembled monolayer on Au. These authors proposed a Monte
Carlo algorithm involving a mix of moves such as reptation, flip,
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concerted rotation, atom identity exchange, configurational bias,
and intramolecular double rebridging which led to the formation
of a self-assembled monolayer (SAM) on the gold substrate
starting from a completely random configuration of a certain
number of alkanethiols above the substrate. The conformational
characteristics of the formed monolayer (especially the tilt angle)
came out to be in very favorable agreement with measured
data already known in the literature. This was an excellent
demonstration of the limitless capabilities of Monte Carlo, as
the formation of the corresponding monolayer is practically
impossible to achieve with MD except if one starts from a pre-
assembled structure very close to the final (equilibrium) one. In
a later study, a similar Monte Carlo algorithm was developed for
the bulk phase self-assembly of semi-fluorinated alkanes [55].

Recently, Tsourtou et al. [56, 57] redesigned several of the
Monte Carlo moves discussed in section Monte Carlo Moves
for Polymers for bulk models of oligo and polythiophenes
by properly accounting for the regular presence of thiophene
rings along their backbones. Monte Carlo moves implemented
included bias reptation of an end thiophene ring, flip of an
internal thiophene ring, rotation of an end thiophene ring,
concerted rotation of three consecutive thiophene rings, rigid
translation of an entire molecule, rotation of an entire molecule,
and volume fluctuation. A schematic representation of the ring
ConRot move is shown in Figure 6. According to this, the C-S-C
trimer of a randomly selected thiophene ring (e.g., segment C12-
S13-C14 in Figure 6) is re-positioned by having the two atoms
C9 and C17 neighboring the trimer being displaced following
small rotations of the rings on the left and right of the central
ring around their respective bonds; this alters also the positions
of atoms C6, C10, C16, and C20. At the end of a successful
ring ConRot move, eleven inner atoms (C6, C9, C10, C11, C12,
S13, C14, C15, C16, C17, and C20) have been displaced to
new positions.

In the work of Tsourtou et al. [56], thiophene ring atoms
in all moves implemented were assumed to remain rigid and
strictly coplanar while inter-ring torsion and bond bending
angles were assumed to be fully flexible governed by suitable
potential energy functions.

With the new algorithm, the authors studied (Figure 7)
the different phases formed when α-sexithiophene (α-6T),
an important thiophene oligomer, is cooled down to lower
temperatures isobarically, starting from the isotropic (Iso) phase
at a relatively high temperature (above 700K). To avoid system
size effects, a rather large simulation cell was used in the
simulations. The Monte Carlo simulations were performed with
a new united-atom model specifically developed for the purpose
of the study. For comparison, the authors carried out similar
MD simulations with a detailed, well-validated all-atom model,
which showed four phase transitions: an isotropic-to-nematic
(Iso-to-Nem) at 640K, a nematic-to-smectic A (Nem-to-SmA)
at 630K, a smectic A-to-smectic C (SmA-to-SmC) at 620K
(demonstrating smectic polymorphism), and a SmC-to-crystal-
like (SmC-to-Cry) at 600K. Similar transitions were observed in
the Monte Carlo simulations except that no Nem phase was seen,
which was attributed to the stiffer nature of the corresponding
forcefield. Indirectly, this provides evidence that predictions of

morphology from coarse-grained models should not be fully
trusted because of the highly approximate character of the
effective potentials utilized in such models.

Monte Carlomoves similar to those discussed above have been
adapted [58–61] over the last years for simulations of jamming
and crystallization of polymer molecules modeled as freely-
jointed chains of tangent hard spheres of uniform size, both in the
bulk and under confinement. Simulations carried out over a wide
range of concentrations, from the very dilute up to the maximally
random jammed state, addressed how factors like chain length,
chain flexibility and volume fraction affect the structure and
packing of polymer chains, with emphasis on phase transitions
from disordered to more ordered structures. Recently, the work
was extended to polymer chains interacting with the square well-
potential [62]. The authors also tested highly confined systems of
such chains by letting the inter-wall distance approach the size of
the polymer bead [61]. Due to attraction, distinct morphologies
were developed, spanning the entire spectrum of structures from
purely amorphous to well-ordered ones depending on the specific
values of the model parameters assigned [62].

For similar systems (dense hard sphere polymer melts),
Kampmann et al. [63] proposed a Monte Carlo algorithm for
their off-lattice simulation using both cluster and swap moves.
The algorithm was validated by comparing against other Monte
Carlo and MD simulations for the same system. At short time
scales, the event chain Monte Carlo algorithm was shown to
exhibit Rouse dynamics. At intermediate or long time scales, on
the other hand, and in the absence of swap moves, it followed
reptation dynamics.

Monte Carlo moves have also been implemented by Reith
and Virnau [64] for single flexible globular homopolymer chains.
For chains larger than a few hundreds of monomers, analysis
of correlation times between unknotted globular states showed
that bridging moves become more efficient than slithering-snake
ones. However, the performance of the moves should depend
on long-range correlations (which were not considered in the
analysis) as well as on the specific molecular model considered.
Also, if chain stiffness is included, efficiency is expected to drop.

MONTE CARLO AS A TOOL FOR
UNDERSTANDING THE STRUCTURE OF
POLYMER NANOCOMPOSITES

Connectivity-alteringMonte Carlo algorithms have been coupled
with preferential sampling techniques by Pandey and Doxastakis
[65] and Pandey et al. [66, 67], together with an extended
reptate algorithm to facilitate polymer mass transfer from
the nanoparticle surface to the bulk polymer, to explore
structural and conformational features of polymers in a polymer
nanocomposite melt containing highly curved nanoparticles.
Using a rather detailed molecular model, the authors found
that when the size of nanoparticle becomes comparable to
the Kuhn segment length of the polymer, long train segments
are disfavored.

Vogiatzis et al. [68] and Vogiatzis and Theodorou [69]
combined Monte Carlo simulations with a field theoretic
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FIGURE 6 | Schematic illustration of the ring ConRot move. Reprinted (adapted) with permission from Tsourtou et al. [56]. Copyright (2018) American Chemical

Society.

FIGURE 7 | Characteristic atomistic snapshots from the Monte Carlo simulations of Tsourtou et al. [57] of a model system of α-unsubstituted sexithiophene (α-6T). (a)

The isotropic (Iso) phase at T = 700K, (b) the smectic-C (SmC) phase at T = 680K with α-6T molecules self-organized into layered states, and (c) a zoom into the

SmC phase showing the layer normal vector l̂ and the director n̂ of the phase. Sulfur, carbon, and end-carbon atoms of the outer rings are represented with yellow,

white, and red color, respectively. Reproduced from Tsourtou et al. [57] by permission of The Royal Society of Chemistry.
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approach to address structural effects of long polymer chains
next to nanoparticles. For example, the authors investigated the
dependence of several physical properties (such as local polymer
density around the nanoparticle, thickness of the depletion layer,
bond orientation and scattering patterns) on chain length and
grafting density. This was one of the very first times that a
real experimental nanocomposite system was studied, since the
coarse-grained nature of the model employed could address
length scales comparable to those accessed by small angle neutron
scattering experiments, thereby allowing for a direct comparison
between simulation and experiments. For example, the scattering
of the whole corona was analyzed (Figure 8). An important
conclusion of the work was that the brush thickness increases
with increasing molecular weight of the grafted chains, thus
causing a shift of scattering peaks to lower q-values.

Dodd and Jayaraman [72] employed Monte Carlo to study
polydispersity effects in the structure of polymers grafted on
spherical surfaces. They examined the conformation of grafted
polymer chains, the thickness of the polymer layer formed, and
the distribution of free-end monomers within the grafted layer.
At brush-like grafting densities, with increasing polydispersity
index, the scaling exponent describing the variation of the radius
of gyration of the grafted chains with their molecular weight was
observed to approach that of a single chain grafted on the same
nanoparticle; this happens because polydispersity decongests the
brush from monomer crowding. At high polydispersity indices,
chains shorter than the number average chain length had more
compressed conformations while chains longer than the number
average chain length stretched less than in the monodisperse
case. Monte Carlo simulations were also employed to obtain
intramolecular structure factors needed in theoretical approaches
to polymer nanocomposites through the self-consistent polymer
reference interaction site model (PRISM) [73]. Such a combined
approach allows mapping out equilibrium structure and phase
behavior of polymer nanocomposites involving polymer-grafted
nanoparticles in the matrix. Heterogeneous (e.g., copolymer-
grafted nanoparticles) as well as polydisperse (e.g., bidisperse
graft chain lengths) systems were studied [73].

At low enough temperatures, nanoparticles can act as
effective heterogeneous nucleation sites, thus promoting
polymer crystallization [74–76]. Here, Monte Carlo can provide
information concerning the role of factors such as nanoparticle
shape and size on polymer crystallization. According to the
work of Gu et al. [74], one-dimensional nanoparticles are the
most effective in inducing crystallization, leading to uniformly-
oriented crystals. Additional Monte Carlo simulations by Nie et
al. [75] addressed the competition for crystallization of mixed
polymers grafted on a substrate. It was found that stereo-complex
crystallites have higher thermal stability compared to homo-
crystallites, which appears to be supported by experimental
observations. Such simulations are of relevance (e.g.) in studies
involving stereo-complex formation in poly(L-lactide)-poly(D-
lactide) (PLLA/PDLA) blends. Ming et al. [76] used Monte Carlo
simulations to study how polymer crystallization is affected
by chain grafting onto the surface of the filler. It was found
that the induction period for nucleation in a grafted system is
shorter than in the system where chains are not grafted, but

eventually the same degree of crystallinity is obtained. With
increasing molecular weight, the induction period for nucleation
decreases followed by an increase in the degree of crystallinity
finally observed.

MONTE CARLO SIMULATION OF
POLYMERS UNDER FLOW

Metropolis Monte Carlo was originally designed to sample
equilibrium states. However, as Kikuchi et al. [77] showed,
the method can also be used as a numerical technique for
solving the Fokker-Planck equation, thus providing information
for the diffusive motion of a Brownian particle. Later, Sanz
and Marenduzzo [78] presented a comparative study between
Monte Carlo and Brownian Dynamics simulations for colloidal
suspensions and reported that for the results from the two
methods to be in agreement, the Monte Carlo time must be
rescaled by the acceptance probability. A subsequent study
[79] demonstrated that one can achieve quantitative agreement
between Brownian Monte Carlo and Brownian Dynamics
simulations also in the case of systems with orientational degrees
of freedom.

From a strict statistical mechanics point of view, using
Metropolis Monte Carlo to sample states in systems beyond
equilibrium requires the introduction of expanded (generalized)
ensembles wherein, in addition to the typical macroscopic
variables routinely employed, a coarse-grained variable should
be included accounting for the average polymer conformation
that develops in response to the external field. For melts of
unentangled polymer chains, a good such structural variable
is the dimensionless conformation tensor c̃ [80, 81]. Then,
guided from non-equilibrium thermodynamics [80–86], one
can postulate the following expression for the internal energy
function U of the polymer melt under the external field a:

dU (S,V ,Nch, c̃) = TdS− PdV + µdNch + NchkBTa : dc̃ (9)

In Equation (9), T is the absolute temperature, kB the Boltzmann
constant, S the entropy, P the pressure,V the volume,µ the chain
chemical potential, Nch the number of chains in the system, c̃
the dimensionless conformation tensor, and a a tensorial variable
(the synthetic field) carrying information about the underlying
(true) flow field that cannot be used directly in the Monte
Carlo simulation. Equation (9) defines the so called

[

Nch,V ,U, c̃
]

ensemble, an expanded [N,V ,E] ensemble accounting for the
overall conformation of polymer chains in response to the field a.

From Equation (9), all other thermodynamic functions can be
derived through appropriate Legendre transforms [82–84]. From
a statistical mechanics point of view, it is more suitable to work
with the [Nch, P,T, a] ensemble, for which a Legendre transform
with respect to variables S, V , and c̃ leads to

dG (T, P,Nch, a) = −SdT + VdP + µdNch − NchkBT c̃ : da

(10)

Equation (10) allows one to carry out simulations in the
generalized [Nch, P,T, a] ensemble involving (in addition to the
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FIGURE 8 | Monte Carlo predictions for the scattering curve
Sg(q)

ng(Ng+1)
(Sg (q)

denotes the corona structure factor, ng the number of grafted chains on the

nanoparticle, and Ng the length of grafted chains in Kuhn segments) of a

system consisting of an 8 nm-radius silica nanoparticle on the surface of which

atactic polystyrene chains of molecular weight equal to 20 kg/mol have been

grafted at surface density equal to 0.5 nm−2. The grafted corona is inside a

100 kg/mol atactic polystyrene matrix. A piecewise cubic Hermite (PcH) spline

interpolation scheme has been used. Results from two theoretical models [the

form factor of a spherical shell of uniform density and thickness equal to the

estimated brush thickness, and the model proposed by Pedersen and

Gerstenberg [70] and Pedersen [71] for block copolymer micelles] are also

included. Reprinted (adapted) with permission from Vogiatzis and Theodorou

[69]. Copyright (2013) American Chemical Society.

typical variables Nch, T, and P) the synthetic field a. If we
further allow for changes in the connectivity of chains implying
a polydisperse system (this is important in cases where drastic
Monte Carlo moves are incorporated in the algorithm such
as the generalized reptation and the end-bridging ones), the
simulation must be carried out in the expanded semi-grand
canonical ensemble [Nch, n, P,T,µ

∗, a] where the spectrum of
chemical potentials µ

∗ also appears controlling the chain length
distribution together with the total number of atomistic segments
(or monomers) n which remains constant in the course of
the simulation. The corresponding probability density function
is [82]:

ρNchnPTµ
∗a (r1, r2, ..., rn,V)

∼ exp



−β



Upot (r1, r2, ..., rn,V) + PV

−

Nch
∑

k=1

µ∗
kNk − kBTa :

Nch
∑

k=1

c̃k







 (11)

implying that system configurations are sampled according to the
following generalized Metropolis criterion:

p
NchnPTµ

∗a
acc

∼ exp



−β



1Upot + P1V −

Nch
∑

k=1

µ∗
k1Nk − kBTa :

Nch
∑

k=1

1c̃k









(12)

or, for the case of a system simulated under conditions of constant
volume V (i.e., constant density ρ) according to:

p
NchnVTµ

∗a
acc

∼ exp



−β



1Upot −

Nch
∑

k=1

µ∗
k1Nk − kBTa :

Nch
∑

k=1

1c̃k







 (13)

where β ≡ 1
kBT

. In the above equations, {r } = {r1, r2, ..., rn}

denotes the space of atomic position vectors, Upotis the potential

energy of the system,
{

µ∗
k

}Nch

k=1
the set of chain relative chemical

potentials, and {c̃k}
Nch

k=1 the set of chain conformation tensors.
For the method to be applied, one needs to provide input

data for the tensor a. Defining, however, a for a given flow field
is not an easy task. Here, we can get help by looking at the
corresponding evolution equation for the variable c̃ as derived
from the generalized bracket [80] and GENERIC [81] formalisms
of non-equilibrium thermodynamics. Through this, we find
that a conveys information related to the underlying dissipative
or relaxation matrix of the viscoelastic model describing the
polymeric fluid under study. Any proposition, therefore, for
a from theory would be model-dependent, and thus also
approximate. For example, in the case of steady shear flow
described by the following velocity gradient tensor

∇u =





0 0 0
γ̇ 0 0
0 0 0



 (14)

and for the simple upper-convected Maxwell model, we find that

a =









1
2

(λ0γ̇ )2

1+(λ0γ̇ )2
1
2

λ0γ̇

1+(λ0γ̇ )2
0

1
2

λ0γ̇

1+(λ0γ̇ )2
− 1

2
(λ0γ̇ )2

1+(λ0γ̇ )2
0

0 0 0









(15)

where λ0 denotes the longest relaxation time of the polymer.
To compute model-independent values of a one should run

GENERIC Monte Carlo simulations in parallel with direct non-
equilibrium molecular dynamics (NEMD) simulations for the
specified value of shear rate γ̇ using (e.g.) the following more
general form of a

a =





axx axy 0
axy ayy 0
0 0 0



 (16)
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and then match the resulting chain conformation tensors from
the two methods [84]. An interesting feature of such an approach
is that by comparing the values of a computed from the
GENERIC Monte Carlo simulations with those suggested by
the macroscopic model, one can validate the model or deduce
information how to modify it so that model predictions and
simulation data for the same flow superimpose. It suggests
therefore a solid framework for improving available macroscopic
models for the viscoelasticity of polymer melts [84, 85]. It can
also be used to test fundamental thermodynamic equations far
away from equilibrium. For example, the form of a provided
by Equation (16) for ayy = 0 implies the following generalized
Maxwell relation [86]:

(

∂cxx

∂αxy

)

T,V ,Nch ,αxx

= 2

(

∂cxy

∂αxx

)

T,V ,Nch ,αxy

(17)

Test GENERICMonte Carlo simulations provide direct evidence
for the validity of this equation over a wide range of field strengths
(Figure 9).

The methodology was implemented initially for unentangled
polymer melts although recently Roh and Baig [87] proposed a
simple extension to an entangled polyethylene melt by treating
each chain as a sequence of entanglement segments (each
one consisting of approximately 68 carbon atoms), with the
synthetic field a coupled simultaneously and independently with
the conformation tensors of all these entanglement segments.
Although all components of the tensor a had to be recomputed
(compared to those estimated for an unentangled PE melt at
the same temperature and flow conditions) in order for the
GENERIC Monte Carlo predictions to match the direct NEMD
ones for the overall conformational properties of the polymer
(Figure 10), gratifying agreement was observed between the
two methodologies in the regime of weak flows, but some
systematic deviations were noted in the regime of weak-to-
strong flows. These deviations were attributed to the fact that the
synthetic field a was coupled independently to all entanglement
strands along a chain, which fails to account for the inter-
dependence of deformation between entanglement strands either
intra-molecularly or inter-molecularly.

OTHER APPLICATIONS

In addition to addressing soft nanostructured materials, polymer
nanocomposites, and steady-state polymer flows, Metropolis
Monte Carlo has been used in the past few years to
provide a wealth of information for other polymer systems
and/or properties. We briefly review many of them in the
next paragraphs.

Polymer Chain Stiffness
On the basis of single chainMetropolis Monte Carlo simulations,
Tzounis et al. [88] proposed a methodology for computing the
unperturbed chain dimensions of any polymer chain, irrespective
of its chemical or architectural complexity. The authors tested
many Monte Carlo moves and the most efficient ones in terms of
their capability to relax both linear and branched polymer chains

were found to be the rotate strand (pivot) and rotate branch
ones, as they could induce drastic changes to the conformation of
long strands and branches along the polymer chain. In addition,
an iterative scheme was proposed to define local interactions.
The method was used to predict the characteristic ratio of a
series of polymers (Figure 11) and satisfactory agreement with
experimental data was obtained.

Confined Polymers
Lattice Monte Carlo simulations have been combined with
lattice self-consistent field (SCF) theory [89] to study athermal
homopolymer solutions confined between parallel, non-
absorbing surfaces at equilibrium with a bulk solution.
Calculations of the effective interaction between the two surfaces
provided support for a fluctuation-induced repulsion between
the confining surfaces at intermediate separation as had been
suggested by Obukhov and Semenov [90] and Semenov and
Obukhov [91].

Despite being inherently a non-dynamic method, Monte
Carlo has been exploited to capture also the main features of
polymer dynamics. It has been used [92] to simulate polymer
diffusion in narrow periodic channels with alternating attractive
and repulsive parts, and to study [93] the dynamics of a
semiflexible polymer chain in the presence of an array of
periodically distributed nanoparticles. In the former work, the
diffusion coefficient was found to change periodically with the
polymer length. In the latter work, the authors investigated
polymer dynamics for repulsive, weak attractive, and strong
attractive nanoparticles. An interesting finding in the case of
strongly attractive nanoparticles was that a stiff polymer may
move faster than a flexible one, since chain stiffness effectively
weakens nanoparticle attraction. Monte Carlo has also been
employed [94] to study the rupture of ultra-thin polymer film
melts under strong confinement.

Grafted Polymers
TheMonte Carlo moves described in sectionMonte CarloMoves
for Polymers were extended quite early by Daoulas et al. [95]
to address melts of polymer chains grafted by one of their
ends onto a solid substrate. The simulations were used to test
theoretical scaling laws for the conformation and orientational
order of grafted chains as a function of chain length and
grafting density [96]. To account for the effect of grafting on the
polydispersity of the melt (as induced by the chain connectivity
moves included in the Monte Carlo algorithm), an iterative
scheme was presented [35] capable of controlling the spectrum of
chain relative chemical potentials discussed in section Complex
Monte CarloMoves so that the chain length distribution sampled
in the course of the simulation is the desired one. This was
achieved by accounting explicitly for interatomic interactions
and is very important in reproducing and maintaining in the
course of the simulation the desired polydispersity in applications
of the method to inhomogeneous or anisotropic polymers.

Mendonça et al. [97] developed a configurational bias Monte
Carlo method, as an alternative to dissipative particle dynamics
(DPD) method, to study friction between grafted polymers
in good solvent. The friction was examined as a function
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FIGURE 9 | Validity of the generalized Maxwell equation, Equation (17), from GENERIC Monte Carlo simulations with an unentangled C78 PE melt at 450K over a

wide range of fields a. Reprinted (adapted) with permission from Baig et al. [86]. Copyright (2011) American Chemical Society.

of intramolecular flexibility (controlled through the bond-
stretching and bond-angle bending potentials imposed in the
simulation) based on predictions for the tangential component
of the pressure induced by imposing a certain degree of mismatch
in the registry of the two grafting surfaces. The main conclusion

was that, the more flexible the polymer layer, the much lower the
value of the shear force at which slip occurs.

Monte Carlo simulations with a single-site bond fluctuation
model have also been used [98] to study protein adsorption
on end-grafted polymers and investigate the role of polymer
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FIGURE 10 | Direct comparison between GENERIC Monte Carlo calculations and NEMD simulations for the four (xx, xy, yy, and zz) components of the dimensionless

conformation tensor based on the chain end-to-end unit vector, c̃ete, as a function of applied Deborah number (the dimensionless shear rate) De. Results shown are

for a C400 PE melt at T = 450K. Reproduced with permission from Roh and Baig [87].

FIGURE 11 | Characteristic snapshots from the single chain Monte Carlo simulations of Tzounis et al. [88] for six different polymers [polyethylene (PE), isotactic

polypropylene (i-PP), atactic polystyrene (a-PS), poly(ethylene oxide) dimethyl ether (PEODME), poly(dimethylsiloxane) (PDMS), and atactic poly(methyl methacrylate)

(a-PMMA)], and the simulation predictions for the dependence of chain characteristic ratio Cn on the number of backbone bonds n at 450K. Reprinted (adapted) with

permission from Tzounis et al. [88]. Copyright (2017) American Chemical Society.

hydrophilicity and grafting density on the conformation and
height of the brush.

We also mention the Monte Carlo method introduced by
Pakula [99] and Polanowski and Pakula [100] based on the
dynamic lattice liquid model which was employed by Polanowski
et al. [101] to simulate the growth of polymer brushes by the
grafting-frommethod using atom transfer radical polymerization
(ATRP). It allowed the authors to study the influence of
the overall polymerization rate and the relationship between

monomer attachment probability and activation/deactivation
probabilities on polymer dispersity, polymer concentration
profile and distribution of active chain ends in space. The
work was extended to include also the dynamics of such
realistic, polydisperse brushes starting from the “as obtained”
(and usually non-equilibrium) state. This allowed investigating
chain relaxation independently of chain growth, which in real
ATRP synthesis is a much slower process, and results for various
grafting densities and polymerization rates were presented.
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Polymer Rings and Knots
Polymer rings is an intriguing class of polymers whose properties
cannot be described by the reptation theory due to lack of
chain ends. They have been the subject of intense research
work in the past few years, especially after the pioneering work
of Kapnistos et al. [102] was published according to which
contamination by linear chains even at very small levels can
dramatically affect the stress relaxation properties. Given the
capabilities offered by simulations to precisely control sample
composition, molecular simulation techniques such as Molecular
Dynamics and Monte Carlo have emerged as excellent tools for
studying the conformational and dynamic properties of polymer
rings and ring-linear blends including their dependence on the
relative concentration of the two species (ring and linear).

Lee and Jung [103] used lattice Monte Carlo simulations to
study the connection between slow diffusional processes in melts
of polymer rings and topological constraints associated with
threading events between different ring molecules. Monte Carlo
simulations on a face-centered-cubic lattice were employed by
Suzuki and collaborators in a series of papers [104–108] to study:
(a) the size and conformation of non-concatenated polymer rings
in the melt state [104], (b) molecular conformations of trivial, 31-
knot, and 51-knot ring polymers at their theta points [105, 106],
(c) the temperature dependence of the second virial coefficient
of ring polymers [107], and (d) the size and conformation of
catenated ring polymers in dilute solution, over a wide range of
chain lengths [108].

Lattice Monte Carlo simulations have been used by Reigh and
Yoon [109] to study concentration effects on the conformation
of ring polymers. Shanbhag [110] and Henke and Shanbhag
[111] have made use of Monte Carlo simulations with the
bond fluctuation model to study dynamics (chain center-of-mass
diffusion) and conformational properties (radius–of-gyration
and end-to-end distance) in symmetric and asymmetric ring-
linear polymer blends.

In a very recent study, Monte Carlo simulations based on
the reptation (slithering-snake) and flip (crankshaft) moves were
employed to sample configurational space and thus parameterize
a generic soft repulsive potential of a mesoscopic, worm-like
chain model for polymer knots (i.e., closed loops typically
categorized according to the minimum number of crossings in
a projection onto a plane) [112]. A similar method had been
followed in the past to determine knotting probabilities and
typical sizes of knots in double-stranded DNA containing up to
half a million base pairs [113].

Semiflexible Polymers
Monte Carlo simulations of self-avoiding walks on a simple
cubic lattice have been employed to study semiflexible polymers
(chains with variable flexibility) and test the applicability of the
Kratky-Porod model [114] and the structure of bottle-brush
polymers [115], as well as to get information for the force-vs.-
extension behavior of flexible chains and semiflexible bottle-
brush polymers adsorbed from a good solvent on a planar
substrate using the bond fluctuation model [116, 117]. The same
bond fluctuation model was used to study transitions associated
with orientational ordering in thin films [118] or near walls [119],
at nematic ordering. For example, Monte Carlo simulations have

confirmed [120] surface-induced nematic ordering in semi-dilute
solutions of chains with amoderate stiffness in films that are thick
enough for their central region to exhibit bulk behavior.

Greco et al. [121] used coarse-grained Monte Carlo
simulations to study conjugated polymers forming nematic
mesophases. In the method, polymer chains were described in
the context of the discrete worm-like chain model subject to
a soft non-bonded potential containing an isotropic repulsive
and an anisotropic attractive term (of the type of Maier-Saupe)
capable of inducing nematic order.

Manca et al. [122] used Monte Carlo to study how flexible and
semiflexible single polymer chains anchored by one of their ends
stretch due to an applied external field, and the results were used
to validate a statistico-mechanical analytical model on the basis
of the freely-jointed and worm-like chain models.

In the past, Monte Carlo simulations of long, single linear
polymer chains subjected to uniform stretching by Pierleoni
et al. [123] provided confirmation of the tensile blob concept
introduced earlier by Pincus [124] and de Gennes [125]. In a
later study, Titantah et al. [126] used Monte Carlo to study
the thermo-elastic properties of individual polyethylene chains
at theta and good solvent conditions by employing a realistic
model for polyethylene, in two different ensembles (fixed-
external stretching force on chain and fixed relative extension
of chain).

Physical Gels, Hydrogels, and Networks
Monte Carlo simulations with the bond fluctuation model
have been employed [127–129] for star-polymer networks.
Lange et al. [128] reported Monte Carlo simulations of
the network structure of a tetra-PEG hydrogel (formed by
an A-B reaction of two symmetric four-arm polymers),
which was experimentally characterized using proton multiple-
quantumNMRmeasurements at low field. Different connectivity
modes (regular single links and double links) between the
macromonomers were suggested for individual stars, together
with some other network structures characterized by lower
order parameters. In this case, the simulations confirmed
the concentration-dependence of the network structure and
the fraction of double links probed experimentally. Monte
Carlo simulations with the bond-fluctuation model were also
performed by Lang et al. [129] to test the predictions of a
rate theory for the formation of short cyclic structures in
networks formed by the homo- and co-polymerization of f-
functional molecules.

Bergsma et al. [130] combined Monte Carlo with the
Scheutjens-Fleer self-consistent field theory to address gels of
ABA triblock copolymers as a function of polymer volume
fraction. Associative A blocks were confined to small volumes
called nodes, the number of polymers per node being a
parameter. B blocks, on the other hand, were allowed to move
freely as long as they were connected to A blocks. With Monte
Carlo, the authors could sample node configurations on a lattice
(Figure 12) while with the Scheutjens-Fleer theory they could
determine changes in free energy. The proposed method (a
hybrid Monte Carlo—SCF scheme) has the advantage that the
interaction potential between nodes needs not to have been
defined in advance.

Frontiers in Physics | www.frontiersin.org 13 May 2021 | Volume 9 | Article 661367

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Mavrantzas Monte Carlo Simulation of Polymers

FIGURE 12 | An example of the system simulated by Bergsma et al. [130].

Dark red cubes indicate nodes (whose cores are shown with a slightly lighter

red color). Due to steric repulsion, polymer molecules push each other away

from the node, this drags anchoring groups outside the core, and therefore the

density within the core decreases. Figure reprinted with permission from

Bergsma et al. [130]. Notice to readers: further permissions related to the

material excerpted should be directed to the ACS.

Polymer Crystallization
Monte Carlo has also been used to study the kinetics and
morphology of polymers undergoing crystallization under an
applied 3-d flow [131], or strain-enhanced stereo-complex
polymer crystallization [132]. In another study [133], the method
was extended to binary blends of symmetric crystallizable
polymers in which the authors enhanced (separately) the driving
forces leading to polymer-uniform and polymer-staggered
crystals. Under parallel enhancements, polymer-uniform crystals
were observed to exhibit faster nucleation and growth, more
chain folds and less lamellar thickening than polymer-staggered
ones. Tahara et al. [134] used Monte Carlo to simulate 2-
d small-angle X-ray scattering (SAXS) patterns exhibited by
oriented crystalline polymer samples, and thus indirectly deduce
information concerning the structure of lamellar aggregates
(Figure 13). The 2-d model corresponded to the projection of the
3-d lamellar structure or to the averaged structure viewed along
the direction of the beam.

Polymer Reaction Engineering
The Monte Carlo method has also been very popular in
polymer reaction engineering because of its capability to describe
polymerization reactions. This is an interesting subject by itself
and we refer readers to the detailed review by Brandão et al. [135].

SUMMARY AND OUTLOOK

Out of our short review we hope it has been shown that, thanks
to the development and efficient implementation of advanced
moves that can induce large conformational changes in the
interior of a polymer chain and, consequently, considerably
accelerate the rate with which configurational space is sampled,
Metropolis Monte Carlo has advanced today to a powerful
computational tool that can be used to address several physico-
chemical properties of real polymers (structural, conformational,
thermodynamic, and morphological) with remarkable accuracy.
We should emphasize, in particular, the capability to treat

polymer molecular organization and morphology at several
scales. Direct observation of self-organization starting from
a purely random configuration of an ensemble of polymer
chains with the detailed Molecular Dynamics method is often
impossible for polymers with high molecular weight due to
the long time scales involved in the course of the phase
transition, despite that molecular organization in condensed
phases is determined predominantly by short-range repulsive or
attractive forces between polymer atoms or groups of atoms.
Resorting to a non-dynamic method such as atomistic Monte
Carlo in which the path followed in going from the original
completely disordered state to the final self-organized one departs
considerably from the natural trajectory seems to be much
more promising.

The benefits of using a non-dynamic method to simulate
ordered phases without making big compromises in the degree
of atomistic detail accounted for are far more reaching and
important than what has been discussed here, since tiny details
in the chemical structure (e.g., exact length of a side alkyl
group, or exact degree of flexibility of the main chain) can
dramatically affect the phase behavior of the system. For example,
it can influence the precise morphological structure or even the
number of intermediate ordered phases predicted as the value of
a physical parameter (e.g., temperature, concentration or volume
fraction) is varied. Failure to take proper account of the full
complexity of interactions may lead to erroneous predictions
concerning the full spectrum of morphologies manifested by
the system under study. This renders atomistic Monte Carlo
a much more reliable and attractive method to employ than
techniques based on structural coarse-graining and the use of
effective potentials that offer only an approximate treatment of
the problem, the possible dependence of the parameters of the
effective potentials on the conditions of the simulation (e.g.,
temperature and pressure or density) notwithstanding.

Despite its unlimited potential (the method is only limited
by our imagination to devise new moves), there is still many
issues and problems to be addressed for the method to reach the
level of maturity of Molecular Dynamics. First of all, most Monte
Carlo simulation algorithms today are highly system-specific,
in the sense that the corresponding Monte Carlo moves are
tailored for a particular polymer chemistry (e.g., polyethylene or
polypropylene or polybutadiene) and/or molecular architecture
(e.g., linear polymer, branched polymer, cyclic polymer). This
strongly prohibits code transferability from the original polymer
system for which the moves were developed to another. We
are clearly in the need of further algorithmic developments
before Monte Carlo can be regarded as a friendly, ready-
to-use simulation tool for different polymers. The problem
becomes more acute considering the great complexity of certain
polymers such as the simultaneous presence on the same chain
of side groups, branches, rings, functional groups etc., or the
emphasis today on multicomponent systems (e.g., polymer
nanocomposites, polymer mixtures, block copolymers, etc.).
Even if the corresponding moves are rigorously adapted for a
new polymer ensuring an ergodic simulation, it is not at all clear
that their acceptance rates will be sufficient to ensure complete
relaxation at all length scales. This is often the case when the
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FIGURE 13 | Stacked lamellar models proposed [134] on the basis of information extracted from the Monte Carlo simulations of observed SAXS patterns of a biaxially

oriented LLDPE (linear low density polyethylene) sample. Different sets of data are shown corresponding to SAXS patterns measured at different positions in the

sample. Also shown is the comparison between experimentally observed and Monte Carlo simulated SAXS patterns. Reprinted (adapted) with permission from Tahara

et al. [134]. Copyright (2020) American Chemical Society.

polymer contains relatively long side groups or stiff units or when
specific structural features exclude the implementation of some
key Monte Carlo moves like ConRot or end-bridging.

The obstacles discussed in the previous paragraph doubtless
pose significant limitations to the applicability of Metropolis
Monte Carlo to polymer systems of considerable industrial and

technological interest presently. At the same time, however,
they call for important developments in the next years along
several directions. One such direction would be to develop new
moves for the more efficient treatment of polymer segments
around branch points or junctions; the latter would be of
relevance to polymer networks. Although procedures for treating
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such points have already appeared, devising moves to further
enhance equilibration around branch points or junctions would
be an important step forward, since these points constitute
the Achilles heel of the majority of Monte Carlo algorithms
presently available. Even under the hypothesis that no new
moves are introduced, significant progress could be made
by extending existing ones (in particular, the most advanced
chain-connectivity altering moves) to systems that depart
structurally from the original polymer system for which the
moves were developed (e.g., linear or branched polyethylene, or
polybutadiene) but whose complexity remains simple enough
to offer a relatively straightforward implementation. This is
the case of block copolymers. To the best of our knowledge,

casting Monte Carlo moves already developed for specific
pairs of homopolymers (e.g., polystyrene and polyisoprene
or polybutadiene) to their copolymers with the object of
exploring their rich phase diagram has not been undertaken
thus far. A direct treatment of the full phase diagram of
block copolymers with Monte Carlo would not be prohibitively
difficult and would constitute a significant step forward in the
field indeed.
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