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Metamaterials with novel properties have excited much research attention in the

past several decades. Many applications have been proposed and developed for the

reported metamaterials in various engineering areas. Specifically, for the resonant-type

metamaterials with narrow resonance line width and strong resonance strength,

the resonant frequency and strength are highly depended on the changings of

meta-atom structure and/or substrate media properties induced by the environment

physical or chemistry parameters varying. Therefore, physical or chemistry sensing

applications for the resonant-type metamaterial units or arrays are developed in

recent years. In this mini review, to help the researchers in those fields to catch

up with the newly research advances, we would like to summarize the recently

reported high-performance metamaterial-inspired sensing applications, especially the

temperature sensing applications, based on different kinds of metamaterials. Importantly,

by analyzing the advantages and disadvantages of several conventional metamaterial

units, the newly proposed high quality-factor metamaterial units are discussed for

high-precision sensing applications, in terms of the sensitivity and resolution. This mini

review can guide researchers in the area of metamaterial-inspired sensors to find some

new design routes for high-precision sensing.

Keywords: metamaterial, sensor, resonance, high quality factor, high precision sensing

INTRODUCTION

Electromagnetic metamaterials are kinds of synthetic structural materials with novel
electromagnetic properties not found in nature [1]. Researchers have found very wide applications
for the electromagnetic metamaterials in the fields of electromagnetism, optics, and materials
sciences [1–4]. Specifically, the resonant frequency and strength of resonant-type electromagnetic
metamaterials are strongly correlated with unit cell structural parameters and dielectric material
properties of substrates, and those structural parameters and/or dielectric properties can be
tuned by changing the environment physical and/or chemistry parameters. Therefore, new
sensing technologies based on the resonant-type electromagnetic metamaterials can be developed
[5–9]. For examples, the electromagnetic metamaterials can be widely used to sense as well as
detect the changes of media parameters, pressure, humidity, temperature, and chemistry/biology
molecules in the environments [10–12]. Comparing with the conventional sensing techniques,
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the metamaterial-inspired sensing has the potential advantages
including the high precision, label-free, safety, and can work
properly in long-distance wireless situation. The explorations of
sensing mechanism, sensing technology and device engineering
based on the electromagnetic metamaterials are well-developed
and its application methods in environmental sensing, chemical
detection, biosensing and IoT emerging technologies are
widely studied in recent years [13–18]. Previously reported
review works have focused on the analysis of different
sensing mechanisms, sensing methods, and wide application
explorations [14–18]. However, the analysis on how to further
improve the sensing performance is absent. Therefore, this
mini review would like to summarize the recently reported
high-precision sensing applications (especially the temperature
sensing) based on the advanced high-performance resonant-type
electromagnetic metamaterials.

RESEARCH PROGRESS

Overall Sensing Applications Analysis
of Metamaterials
In the field of sensing applications based on the electromagnetic
metamaterials, a variety of sensing technologies and design
methods have been developed as mentioned above [5–13].
The sensing principle for most of the reported metamaterial-
based sensors can be summarized as follows. At the resonant
frequency of the electromagnetic metamaterial, a large number
of electric field/magnetic field components are concentrated
inside the basic unit of the electromagnetic metamaterial (meta-
atom) and thus the macroscopic resonant frequency/strength
characteristics of the electromagnetic metamaterial will follow
the structural/material parameter changings inside the meta-
atom. That means the characteristic changings of the dielectric
material as well as the changes of surrounding environments will
accordingly result in the changings of the resonant frequency or
the resonant strength. Therefore, the external detection circuit
and processing algorithm can be flexibly used to realize the
changings monitoring of chemical/biological molecule types,
gas concentrations, pressure, humidity and temperature. This
sensing mechanism based on the metamaterials has many
advantages compared to the conventional sensing techniques.

For examples, in the sensing fields of biology, chemistry,
medicine, etc., traditional biosensors need to be labeled with
fluorophores in the target. So the process is complicated,
time consumed and expensive. Considering this problem, the
researchers have developed different kinds of metamaterial-
based sensors worked at optics [11, 12, 19], THz [20–26]
and microwave [27–32], achieved groundbreaking realization
methods and performances. Specifically, the refractive index
of the medium around the meta-atom will be changed
with the lesion level and chemical composition/concentration
changings [33]. By detecting and analyzing the changes of
the electromagnetic wave transmission/reflection amplitude at
resonance or the resonant frequency caused by the corresponding
refractive index changes, the lesion level and chemistry
composition/concentration can be determined. In the field of

hazardous gas or chemical sensing applications, researchers
have also designed hydrogen concentration detectors based
on nanorod-structured electromagnetic metamaterials [11] and
hazardous chemical concentration detectors based on metal
split ring resonator (SRR) [34]. When the used metamaterial
is exposed to the hydrogen or there are different kinds and/or
concentrations of hazardous chemical materials at the split of the
metal SRR, the transmission/reflection characteristics (resonant
frequency or strength) of the electromagnetic metamaterial will
be changed. As a result, the hydrogen can be detected and
analyzed accordingly and the concentration characteristics of
other hazardous chemical materials can be detected as well.

In addition, the resonant frequency/strength characteristics of
the electromagnetic metamaterial are not only strongly related to
the properties of the dielectric material surrounding the meta-
atom, but also depended on the distance between the meta-
atom and the substrate dielectric material. The relative position
changes of the dielectric material around the meta-atom will
result in the changes of equivalent refractive index near the
meta-atom. Accordingly, the researchers designed microwave
and/or THz bands pressure sensor based on the electromagnetic
metamaterials [33, 35]. In the field of humidity sensing
applications, the humidity changes of the medium around the
meta-atom can also cause the changes of equivalent refractive
index of the medium [36]. Thereby, determining the humidity
is achieved by detecting the resonant frequency/strength of
the electromagnetic metamaterial. For example, Romero in
[37] proposed a wireless capacitive sensing tag loaded with
a metamaterial unit in a single-layer design. The selected
metamaterial structure is the conventional SRR, which allowed
the tag to be miniaturized and the sensor to be highly sensitive.

Metamaterial-Based Temperature Sensing
Technology
Among the various metamaterial-based sensing applications,
the temperature sensing is one of the key researches and
application fields for the electromagnetic metamaterials. This is
because some of the used substrate materials and/or constructed
sub-wavelength structures have high temperature sensitive
property. According to the sensing mechanism of resonant-type
metamaterial-inspired sensorsmentioned above, the temperature
sensitive dielectric substrate materials and the sub-wavelength
nano/micro mechanical structure with thermal expansion
coefficient differences will result in the changings of resonant
frequency/strength under different temperatures [38–42].

Temperature Sensing Based on

Temperature-Sensitive Dielectric Inspired

Metamaterials
Generally, for the electromagnetic metamaterials formed on
the temperature-sensitive dielectric substrate, the resonant
frequency/strength is highly related to the equivalent dielectric
constant varying of such substrate induced by temperature
changing. Various temperature-sensitivity dielectric substrates
can be used, such as the low-temperature co-fired ceramic
(LTCC) substrate, sea water, barium titanate, lithium niobate,
etc. For examples, in 2010, Varadan and Ji pioneered the
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experimental studies for the resonant frequency/strength
changing amounts of electromagnetic metamaterials based
on the LTCC substrate due to the changings of the dielectric
constant, electrical conductivity, and the thermal expansion of
the medium during the temperature changes [43]. The results
shown in this work indicated that the dielectric constant change
has the main function (accounting for 84.03%).

In 2012, Ekmekci and Turhan-Sayan explored the
temperature-sensing characteristics of SRR filling with sea
water as the background medium [44]. For the proposed
miniaturized metamaterial sensor prototype operating at X-
band, a 158-MHz resonant frequency shift corresponds to a
20◦C temperature change is achieved, leading to an average
sensitivity level of 7.9 MHz/◦C. In 2014, Zhang et al. used
barium titanate (Ba0.5Sr0.5TiO3, BST) as a temperature-
sensitive medium of the dielectric-type metamaterial and
analyzed the temperature sensing mechanism [45]. An electric
resonance characteristic with Lorentz-type dispersion of effective
permittivity is seen around the resonant frequency. The relative
permittivity of dielectric cut-wire is decreased with the increase
in environmental temperature, hence, resulted in the blue shift
of electric resonant frequency, with a calculated temperature
sensitivity of 25 MHz/◦C. In 2015, Karim et al. designed a closed-
ring resonator (CRR) and a variety of open-ring resonators based
on lithium niobate (LiNbO3) and compared their respective
temperature sensitivity performances [46, 47]. This CRR
structure-based sensor has a sensitivity up to 7.286 MHz/◦C.
At the same year, Zemouli et al. proposed a metamaterial
sensor consisting of two concentric metallic rings and a thin
metallic wire deposited on the surface of BaTiO3 substrate and
studied the variations of the resonant frequency according to the
permittivity changing under varied temperatures [40].

In 2017, Karim et al. further designed an array of CRRs
embedded in a multi-layer dielectric substrate [48]. A mixture
of 70 vol% Boron Nitride (BN) and 30 vol% Barium Titanate
(BTO) was used as the dielectric substrate. It was observed
that for a temperature change from 23 to 200◦C, the change
in resonant frequency is 81.75 MHz, corresponding to a
temperature sensitivity of 0.462 MHz/◦C. At the same year, Qiu
and Liu presented a thermally tunable Fano resonator obtained
by asymmetrically coupling a conductive rubber-based H-shaped
split ring resonator (SRR) and a copper C-shaped SRR coated
on a Teflon fiberglass slab substrate [49]. At the Fano resonance,
surface current distributions are anti-symmetric since the current
excited in the H-shaped conductive rubber-based SRR and the C-
shaped copper SRR are opposite and almost equal in magnitude.
Consequently, the electrical and magnetic fields are canceled out,
resulting in a high quality factor. Therefore, with the increase
in temperature, the Fano resonant frequency was slightly shifted
from 11 to 10.5 GHz, and the transmission loss gradually
increased as well. For more details about the high quality factor
metamaterials used in the high-performance temperature sensing
area will be discussed in later.

In general, the temperature-sensing technology based on
temperature-sensitive dielectric substrates has the advantages of
miniaturization, high flexibility and simple preparation process.
However, its dielectric constant changes with temperature

increase/decrease are in a very limited linear range. The inherent
drawbacks such as low sensitivity and small dynamic range of
this kind of metamaterial-based sensors will be limited for the
practical application.

Temperature Sensing Based on the Thermal

Expansion Coefficient Difference
Based the different thermal expansion coefficients of different
substrates used in the metamaterials, the bending deformations
due to the changes of background temperature will alter the
equivalent capacitance/inductance parameters of the meta-atom,
thereby causing the resonant frequency shift or resonance
strength change. For examples, Thai et al. firstly loaded a
cantilever arm at the open slot of the metal SRR as shown
in Figure 1A-i [38, 50]. The arm consisted of two layers
of heterogeneous materials with different thermal expansion
coefficients. The upper layer was silicon with a smaller thermal
expansion coefficient while the lower layer and the arm
are all aluminum with larger thermal expansion coefficient.
When the temperature is changed the cantilever will bend
upwards or downwards, as a result affecting the equivalent
capacitance value of the metal SRR. Figures 1A-ii,iii show
the experimental transmission curve changes with different
background temperatures, and a frequency shift of 800 MHz
from 4.8 to 4.0 GHz can be seen.

Moreover, based the well-developed nano-fabrication process,
temperature sensing and detection can be realized in the THz
and optical frequency bands by constructing nano-scale MEMS
metamaterial structures. For examples, in 2011, Ou et al. designed
the nanoscale reconfigurable photonic metamaterials and the
structure is shown in Figure 1B-i [51]. The Au-Si3N4-Au
sandwich symmetrical structure shown in this figure has a very
small deformation due to temperature change, while the two-
layer structure composed of metal-semiconductor (Au-Si3N4)
can show obviously deformation. The resonant properties of
this system utterly depend on the coupling between neighboring
bridges. For example, from Figure 1B-ii it can be seen that as the
background temperature is increased, a dramatic increase of its
transmission amplitude near its resonant frequency is achieved.
Importantly, as the metamaterial structure was cooled back to
its initial temperature these changes of its transmission spectrum
were reversed.

In addition, Alves et al. constructed a MEMS temperature-
sensing micro-mechanical arm on a semiconductor body and
explored the temperature sensing technique in the terahertz
band [29]. The sensor’s absorbing element is designed with a
resonant frequency that matches the source of the quantum
cascade laser illumination. At the same time the semiconductor
layer provides structural support, desired thermomechanical
properties. As shown in Figure 1C-i, the absorbing element is
connected to two Al/SiOx microcantilevers (legs), anchored to
a silicon substrate, which acts as a heat sink, allowed the sensor
to return to its undisturbed position when the excitation was
stopped. Figure 1C-ii shows the experimental results for the
temperature sensing properties, which indicates a sensitivity of
0.2 deg/◦C.
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FIGURE 1 | Temperature sensitivity metamaterial units. (A) SRR on a cantilever arm, and the transmission spectra and resonant frequency response under different

temperatures [38, 50], (B) nanoscale reconfigurable photonic metamaterials and the corresponding temperature changing performances [51], (C) Metamaterial

absorber configuration fabricated on a microcantilevers and the accordingly temperature changing inspired structure deformation performance [29].

Generally speaking, the temperature sensing based on the
difference in thermal expansion coefficient, especially for nano-
scale MEMS micro-mechanical structure, mainly worked in
the optical and THz frequency bands and had the advantages
of reconfigurability, miniaturization and easy to integration.
However, the shape deformation due to the difference in thermal
expansion coefficient of heterogeneous composites is weak. And
it also has complicated preparation process, high processing
difficulty and high cost.

Sensitivity Enhancement Design of
Electromagnetic Metamaterial Based
Sensor
The above research progresses and results demonstrated the
feasibility of electromagnetic metamaterials in the field of sensing
application. However, the researchers did not thoroughly study
the specific technical methods to optimize and improve the
sensitivity and resolution of sensing. According to the resonance
type sensing theory, high sensing sensitivity and resolution
require the sensing unit’s resonance quality factor and the FOM
(FOM is defined as the ratio of the sensitivity to the resonance
3-dB bandwidth) to be as high as possible [52, 53]. A resonant-
type sensor based on the meta-atom the has a large amount
of electric field/magnetic field components accumulated inside
the resonance unit (e.g., at the opening gap of the SRR) during
resonance. Therefore, it is an effective way to further improve
the sensitivity and resolution of the resonant-type sensors by

enhancing the electric field/magnetic field components of the
electromagnetic metamaterial while effectively reducing the loss,
to increase the resonant quality factor and improve the FOM of
the sensor devices.

Based on the above suggestions, researchers have explored
a variety of technical methods to improve the sensitivity of
sensor, starting from the study of the resonance characteristics of
new electromagnetic metamaterials. Firstly, the planar absorber
composed of electromagnetic metamaterial can be equivalent
to a Fabry-Perot cavity. The electric and magnetic field
energy during resonance is well-bounded inside the cavity,
and the radiation loss is small, resulting in the high resonant
quality factor. Thus, the metamaterial absorbers can be used
to improve sensing sensitivity and resolution for sensing
application. For example, Cong et al. and Yahiaoui et al.
studied the THz band single-frequency and multi-frequency
metamaterial absorber based high-sensitivity sensors [25, 26],
as shown in Figure 2A-i. It was observed from this figure
that the FOM value of metamaterial absorber sensors have
been found to be significantly higher than those of planar
metamaterial resonators. The measured frequency shift of the
sensors for different analyte thicknesses is shown in Figure 2A-ii.
It was analyzed that the total frequency shift saturated at
about 14.0%.

Moreover, Dong et al. achieved an electromagnetic-induced
transparency (EIT) resonance characteristics based on the
interaction between different electromagnetic metamaterial units
and incident electromagnetic waves [54]. They used the three-bar
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FIGURE 2 | Performance enhanced metamaterial unit based sensors. (A) CSA and CCSA based Fabry-Perot cavity type sensors and the sensing performance

[25, 26], (B) schematic illustration of EIT-like metamaterial unit and the enhanced narrow transparency windows at different refraction indexes [54], (C) microscopic

image of the terahertz asymmetric Fano resonances shift with the change in refractive indexes [24], (D) operating mechanism for the toroidal resonance and the

corresponding resonance changing performance [55], and (E) schematic illustration for the newly developed graphene-inspired anapole resonator and the accordingly

resonance changings under different Femi levels [56].

configuration to investigate the active plasmon analog of the
EIT in order to improve the performance of the refractive-
index fluctuation sensing of the surrounding medium which
can be seen in Figure 2B-i. The result shown in this work
(e.g., Figure 2B-ii) is higher than the traditional metamaterial
resonance unit, which can be used to improve sensing sensitivity
and resolution.

On another hand, Singh et al. broke the basic electromagnetic
metamaterial unit structure and proposed a new Fano
asymmetric resonance which can be seen in Figure 2C-i [24].
From that method they were able to achieve sensitivity levels of
7.75 × 103 nm/refractive index unit (RIU) for quadrupole and
5.7 × 104 nm/RIU with the Fano resonance. The sensitivity of
Fano resonance gets enhanced due to much stronger interaction
of analyte layer with the enhanced electric field in the capacitive
gaps as shown in Figure 2C-ii. Semouchkina et al. also applied
a full-scale electromagnetic metamaterial in a parallel version of
the metal waveguide to achieve an ultra-high-Q Fano resonance
characteristic, and explored the design method of a high-
sensitivity sensor [57]. In addition, in 2016, Campione et al.
presented a new approach that relies on a single resonator and
produces robust, high quality-factor Fano resonance, by breaking
the highly symmetric resonator geometries, such as cubes, to
induce couplings between the orthogonal resonance modes.
In particular, they designed perturbations that couple “bright”
dipole modes to “dark” dipole modes whose radiative decay is
suppressed by local field effects, achieving a quality-factor of
∼600 [58].

For those proposed high quality-factor metamaterials, it can
be used very easily in the high-precision temperature sensing
area if those meta-atoms are designed on the temperature
sensitivity substrates or the meta-atom is composed directly by
the temperature sensitivity metals.

DISCUSSION AND PERSPECTIVE

Based on the performance enhanced sensing designs by using
the asymmetric high quality-factor resonance mode, in the
past several years, researchers further proposed other kinds of
high quality-factor metamaterial units for sensing applications,
including the toroidal resonance [55, 59–61], anapole resonance
[56, 62–67], and enhanced magnetic plasmon resonance [68–
74]. For examples, by placing the period symmetric arrangement
of the Fano resonator shown in Figure 2C-i as the mirror
symmetric arrangement shown in Figure 2D, one can get the
toroidal resonance with quality factor larger than the regular
Lorentz resonance [63]. By concentrating the electric and
magnetic field within the resonator of the new kind of anapole
resonator shown in Figure 2E, the sensing resolution can be
further enhanced as anticipated [67].

CONCLUSION

In summary, the sensing based on the electromagnetic
metamaterials has developed rapidly in terms of sensing
mechanism and implementation methods. Especially in the
field of temperature sensing area, a variety of resonant-type
temperature sensing technologies and many achievements have
emerged in the past years, and researches and explorations have
been carried out for further optimization and improvement
of sensing sensitivity and resolution. Most of the existing
temperature-sensing technologies based on temperature-
sensitive dielectric materials, thermal expansion coefficient
difference, and nano-scale MEMS structure are all derived from
the dielectric constant, material shape, mechanical structure,
etc. The sensing sensitivity improvement technologies based on
high-quality-factor electromagnetic metamaterials are explored.
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