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We investigate coarse-grained models of suspended self-thermophoretic
microswimmers. Upon heating, the Janus spheres, with hemispheres made of different
materials, induce a heterogeneous local solvent temperature that causes the self-phoretic
particle propulsion. Starting from molecular dynamics simulations that schematically
resolve the molecular composition of the solvent and the microswimmer, we verify the
coarse-grained description of the fluid in terms of a local molecular temperature field, and
its role for the particle’s thermophoretic self-propulsion and hot Brownian motion. The
latter is governed by effective nonequilibrium temperatures, which are measured from
simulations by confining the particle position and orientation. They are theoretically shown
to remain relevant for any further spatial coarse-graining towards a hydrodynamic
description of the entire suspension as a homogeneous complex fluid.

Keywords: homogenisation, active particles, microswimmers, hot brownian motion, non-isothermal molecular
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1 INTRODUCTION

Mesoscale phenomena are at the core of current research in hard and soft matter systems [1, 2]. The
reason for this is at least twofold. Firstly, some of the most interesting states of matter are not
properties of single atoms or elementary particles, but emerge from many-body interactions, at the
mesoscale; e.g., the mechanical strength of many materials is determined by low-dimensional
mesostructures. Secondly, these interesting mesoscale properties are often insensitive to molecular
details and amenable to widely applicable coarse-grained models that provide both physical insight
and efficient control [3]. Extensive atomistic computer simulations can therefore usually be bypassed
either by much more efficient coarse-grained numerical techniques [4–6] or even by analytical
methods [7, 8]. Both exploit the universality of the mesoscale physics to compute experimental
observables without having to resolve the atomistic details. The price one pays for this efficiency is
that fluctuations, which are increasingly important in biophysical and nanotechnological
applications [9–13], may get renormalized or even inadvertently lost upon coarse graining. It is
then not always obvious how they have to be properly re-introduced when need arises [14]. Systems
with non-equilibrium mesoscale fluctuations, such as suspensions of self-propelled particles and
other active fluids [15, 16], are of particular interest in this respect.

One might imagine an approach based on non-equilibrium thermodynamics, which, like
hydrodynamics itself, is often valid down to the nanoscale, if judiciously applied [17]. But this
theory’s starting point is a macroscopic deterministic one, without fluctuations, so that it is natively
blind to the refinements we are after. The framework of stochastic thermodynamics would seem
more appropriate, but, in its current formulations, temperature gradients, which are of particular
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interest to us, are explicitly excluded [18]. So the question that we
address here, namely how nonisothermal and other non-
homogeneous fluctuations scale under hydrodynamic coarse-
graining, is not only of practical interest, but is also a
profound theoretical problem that affects the construction of
hydrodynamic theories, in general.

Our strategy is to start from a complete atomistic description
of a well-defined model system that allows for analytical progress,
yet provides the basis for simulating a number of innovative
technologies [9, 11–13, 19]. The system is a solvent of
Lennard–Jones atoms with embedded nanoparticles that are
themselves made of Lennard–Jones atoms but maintained in a
solid state by additional FENE attractions. The computer
simulation of the model reveals that, even upon mesoscopic
heating, nanoparticles and solvent admit a local-equilibrium
description in which a (molecular) temperature field T(r, t)
can be defined that represents the local molecular temperature
at position r and time t almost down to the atomic scale. In other
words, the notion of a rapid local thermalization of the molecular
degrees of freedom, in the conventional sense of canonical
equilibrium, is still reasonable, even for very small volume
elements. As it turns out though, important hydrodynamic
degrees of freedom of the system are, in general, not locally
thermalized at T(r, t), unless this field is everywhere equal to the
constant ambient temperature T0 (in which case the fluid is in a
global isothermal equilibrium). In other words, there is a priori no

obvious recipe how to canonically construct an “average
molecular temperature” that would allow us to start from the
atomistic model and move up to a coarse-grained description by
some straightforward low-pass filtering. In the following we
demonstrate what can be done, instead, and why and how the
resulting coarse-grained model deviates from naive expectations.

The paper is organized as follows. Section 2 introduces the
atomistic description of our model. The first coarse-graining step
that admits the formulation of a local temperature field T(r, t) is
done in Sec. 3. Section 4 reviews some basic results from the
theory of hot Brownian motion that permits a first-principle
calculation of the Brownian fluctuations of a thermally
homogeneous nanoparticle exposed to the field T(r, t), and
therefore provides the basis for a theory of nonisothermal
Brownian motion. Section 5 considers the more challenging
case of a thermally anisotropic particle, specifically a Janus
particle as depicted in Figure 1 (alongside some notation).

Not only does the symmetry breaking complicate the
computation of its hot Brownian fluctuations compared to an
isotropic particle, it also gives rise to a spontaneous anisotropic
solvent flow in its vicinity [23, 24]. Such a particle therefore
advances thermophoretically along its symmetry axis, under non-
isothermal conditions [20, 21]. In the supplemental material
pertaining to this article, we provide evidence that our
simulation method indeed leads to a well-controlled, sizable
net propulsion of the Janus particle, as was already reported in
[22]. Finally, in Sec. 6 we address the largely open task of
homogenizing a whole suspension of hot, active particles,
before we close with a brief conclusion.

2 ATOMISTIC MODEL OF A HOT JANUS
SWIMMER

Here, we briefly characterize the most salient features of our
simulation setup. For additional technical details, the reader is
referred to Refs. [22, 25–27]. We consider a heated metal-capped
Janus sphere immersed in a fluid as depicted in Figure 1. In order
to resolve microscopic details, such as the interfacial thermal
resistance and the mechanism of thermophoresis [23], our
simulation is based on a schematic molecular model, in which
both the fluid and the Janus particle are atomistically resolved. All
atomic interactions are modeled by a modified Lennard–Jones
12–6 potential

uαβ(r) � 4ϵ[(σ
r
)12

− cαβ(σr)
6], (1)

(truncated at r � 2.5 σ). We henceforth measure length, energies
and times in terms of the Lennard–Jones units σ, ϵ, and
τ ≡

�����
mσ2/ϵ

√
, respectively, where m denotes the atomic mass.

The solvent molecules always interact via the standard
Lennard-Jones potential, i.e., cαβ � css � 1. The Janus particle
constitutes a spherical cluster of Lennard–Jones atoms
additionally bound together by a FENE potential u(r) �
−0.58R2

0 ln[1 − (r/R0)2], with the spring constant 8 � 30 ϵ/σ2
and R0 � 1.5 σ justified in [28]. The prefactor cαβ in Eq. 1

FIGURE 1 | Sketch of a spherical Janus particle coated with a thin gold
layer on one hemisphere. Upon heating (indicated by the schematic red color
gradient), the particle induces an anisotropic temperature profile in the
ambient fluid. The resulting thermo-osmotic interfacial flux gives rise to a
net propulsion at swim speed vtp along the symmetry axis [20–22]. A reference
frame attached to the particle’s geometric center has its z-axis aligned with the
symmetry axis, pointing towards the uncoated hemisphere. The polar angle
between the position vector r and the z-axis is denoted by θ.
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determines the position (2σ6/cαβ)1/6 of the interaction potential’s
minimum. By varying cαβ we can tune the wetting properties of
the nanoparticle surface and thereby its Kapitza heat resistance
[29, 30]. To mimic the anisotropic physio-chemical properties of
Janus spheres, typically realized in experiments [20, 21] by
capping one hemisphere of a polystyrene (p) bead with a thin
gold (g) layer, we employ the parameters cgs and cps, representing
gold-solvent and polystyrene-solvent interactions, respectively.
The gold cap is modelled by a 1 σ-layer of Lennard–Jones
particles on one hemisphere. The wetting parameters cαβ play
a significant role in creating the temperature difference across the
poles of the Janus particle. At the solid-fluid interface the
existence of the interfacial resistance (Kapitza resistance)
results in a discontinuity in the temperature profile and this
temperature jump is sensitive to the choice of cαβ. Consequently,
the temperature jumps across the two surfaces are different,
leading to a self-created temperature gradient along the
particle axis. Hence, in order to achieve sizeable
thermophoretic motion, the imperfect heat conduction
between the swimmer’s surface and the adjacent fluid due to
the Kapitza heat resistance is important [22]. In our simulations, a
periodic cell of length L � 50 σ was filled with 107,233 solvent
molecules, and the Janus sphere, which itself is composed of 767
atoms constituting a particle of radius R ≈ 5 σ. With an
integration time step of 0.005 τ, our simulations then proceed
as follows. At first, the system is equilibrated in theNPT ensemble
using a Nose-Hoover thermostat and barostat at a temperature of
T0 � 0.75 ϵ/kB and a thermodynamic pressure of p � 0.01 σ3/ϵ to
ensure equilibration of the Lennard-Jones fluid into a liquid state
[31, 32]. In the subsequent heating phase, we apply a momentum
conserving velocity rescaling procedure to thermostat the gold
cap atoms at a temperature TP >T0 while keeping solvent atoms
whose distance from the Janus particle is larger than 22 σ, at
T ≡ T0. (We note that other methods to conserve the total energy
of similar thermophoretic-microswimmer systems have been
employed, e.g., following a dissipative-particle-dynamics
approach with energy conservation [33] or combining MD
simulation methods with multiparticle collision (MPC)
dynamics [34].) The described procedure indeed realizes
sizable self-propulsion of the Janus particle [22]. Its propulsion
speed and direction are determined by the wetting parameters cαβ
of the interaction potential 1) and the heating temperature TP of
the gold cap as shown in the supplemental material.

Colloidal thermophoresis has been studied extensively by
means of mesoscopic theories and atomistic computer
simulations. For example, thermal conductivity and
thermodiffusion in nanofluids were studied in [35, 36] by
means of nonequilibrium molecular dynamics simulations,
whereas Refs. [22, 27, 37–39] focused on the realization of
self-phoretic microswimmers and the study of their dynamical
properties utilizing MPC and/or MD simulation methods.
Moreover, molecular simulations were used to quantify
thermo-osmotic forces and the associated thermo-osmotic slip
[40–42], also employing MPC and MD methods. Thermal
nonequilibrium transport in colloids and the role of
hydrodynamic slip were theoretically studied in [43, 44], and a
unified description of colloidal thermophoresis was suggested in

[45] using a nonequilibrium-theromodynamics approach.
Furthermore, different minimal models have been employed,
e.g., to derive a force density from a gradient in a certain
potential that is associated with the colloid [46–50]. The
following paragraphs of the present contribution focus on a
specific aspect, which has received relatively little attention so
far, namely the enhanced thermal fluctuations experienced by a
heated Brownian particle in its (self-created) nonisothermal
environment. The swimmer’s so-called hot Brownian motion
inevitably interferes with its self-propulsion randomizing particle
position and orientation. In the following section, the crucial
elementary notion for theories of hot Brownian motion, namely
that of a molecular temperature field at which the Lennard–Jones
fluid locally equilibrates, is properly introduced, analytically
studied, and tested against simulation results.

3 MOLECULAR TEMPERATURE FIELD

In order to justify the concept of a molecular temperature field
T(r, t), we measured the average kinetic energy of the fluid atoms
within 1) thin concentric spherical shells of radial thickness
≈ 0.1 σ around the particle’s geometric center and 2) angular
bins of size π/10 around the Janus sphere. Due to the symmetric
particle composition, we expect the temperature profile to depend
only on the radial distance r from the particle’s geometric center
and the polar angle θ with respect to its symmetry axis. Figure 1
supports these considerations visually. The corresponding angle-
averaged and radially averaged temperature profiles, 〈T〉θ(r) and
〈T〉r(θ), are presented in Figure 2 for various heating
temperatures TP of the gold shell. In accordance with previous
studies regarding isotropic, homogeneously heated Brownian
particles [25, 51, 52], we find the temperature profiles to be
stationary, as expected from the strong time scale separation
between the swimmer’s motion and the kinetic and energetic
equilibration in the solvent. We exploit this fact in Sec. 4 to
estimate the effective temperatures governing the particle’s
enhanced hot Brownian motion. To get a feeling for the
numbers: from the measured compressibility 8T , viscosity η,
fluid density ρ and specific heat cp of the bulk solvent in a
thermodynamic state characterized by T0 and p, we obtain
D ≡ kBT/(6πηR) ≈ 0.003 σ2/τ, DT ≡ κ/(ρcp) ≈ 2 σ2/τ and
] ≡ η/ρ ≈ 3 σ2/τ, for the diffusivities of mass, heat, and
vorticity (transverse momentum), respectively [25, 27].

We start our quantitative discussion with the thermodynamic
description of heat conduction. In steady state, the heat
conduction equation for the temperature profile T(r)
reads [53].

Q(r) � ∇ · [κ(r)∇T(r)] (2)

� ∇κ(r) · ∇T(r) + κ(r)∇2T(r), (3)

where κ(r) denotes the heat conductivity andQ(r) is the heat flux
absorbed by the gold cap. Equation 3 is accompanied by
boundary conditions at the particle surface r � R. In our
simulations, a sudden temperature drop at the particle-fluid
interface signifies a substantial Kapitza heat resistance. In the
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simplified theory, we neglect this effect and enforce the continuity
of the temperature profiles inside and outside the particle,
Tin(R, θ) � Tout(R, θ), for the sake of simplicity. Following the
derivations in [24], we also demand continuity in the normal
component of the heat flux,

κinzrTin � κoutzrTout for 0≤ θ ≤ π/2, (4)

along the uncoated part of the Janus sphere. Motivated by its very
large heat conductivity, the gold cap of the Janus sphere is
modelled as an isotherm kept at surface temperature

T(R, θ) � T0 + ΔT for π/2≤ θ ≤ π, (5)

where ΔT denotes the increment relative to the ambient
temperature T0 of the fluid. We further set the heat
conductivities κin � κout ≡ κ for the remainder of this section.
Besides, we henceforth omit the subscript for the outer
temperature profile, Tout ≡ T , as the temperature profile inside
the particle is not relevant in the following. If, as a first crude
approximation, we finally assume that κ � const. throughout the
whole system, the temperature field T(r, θ) is given by [24].

T(r, θ) � T0 + ΔT ∑∞
n�0

BnPn(cosθ)(Rr)
n+1

, (6)

with the Legendre polynomials Pn and expansion coefficients

B0 � 1
2
+ 1
π
, B2k � −B2k+1 � 1

π
· (−1)

k

2k + 1
. (7)

Due to the orthogonality relations (δlk denotes the Kronecker-
delta)

∫1

−1
dc Pk(c)Pl(c) � 2

2l + 1
δkl, (8)

and with the short-hand notation c ≡ cos θ, the angle-averaged
temperature profile 〈T〉θ(r) simplifies to

T0 + 〈ΔT〉θ(r) �
∫π

0
dθ T(r, θ)sin θ
∫π

0
dθ sin θ

� ∫1

−1 dc T(r, c)∫1

−1 dc
, (9)

� T0 + ΔT
2

∑∞
n�0

Rn+1

rn+1
∫1

−1
dc BnPn(c), (10)

� T0 + ΔTB0
R
r
. (11)

We infer from Eq. 11 that the actual and mean surface
temperature increment are related via

B0 � 〈ΔT〉θ
ΔT . (12)

Using the ambient fluid temperature T0 and the surface
increment ΔT as parameters, we fitted Eq. 11 to the
numerically simulated average temperature profiles. The
resulting fits are presented in Figure 2A for two distinct
heating temperatures (dotted curves). Matching the measured
temperature profiles well at larger distances, the theory curves
slightly but systematically underestimate the numerical data
closer to the particle surface. As a result, the mean surface
temperature increment 〈ΔT〉θ and thus, via Eq. 12, also ΔT
itself, are underestimated. This becomes even more pronounced
when comparing measurements of the radially averaged
temperature data 〈T〉r(θ) to the corresponding radial average
of the theory curve 6) as shown in Figures 2B,C. The former plot
depicts 〈T〉r(θ) close to the particle surface, whereas for the latter
one, we averaged up to a distance 2.5 σ away from the swimmer’s

FIGURE 2 | Mean fluid temperatures extracted from MD simulations
(symbols) with wetting parameters cgs � 2 and cps � 1 compared to theory
(curves). (A) Mean fluid temperature at radius r averaged over concentric
spherical shells of thickness 0.1 σ for two different heating temperatures
TP of the god cap. The Janus spheres’ surface is indicated by the gray bar.
Using T0 and ΔT as fit parameters, theory curves are obtained from Eq. 11
(dotted orange/red), and by θ-averaging the dipole approximation of Eq. 13
(solid orange/red). Inset: Data collapse for three distinct heating powers,
characterized by the particle temperatures given in the legend. The reduced
temperature fields are obtained according to the l.h.s. of Eq. 16/Eq. 15 using
fit parameters (T0 ,ΔT) / (T0 , 〈ΔT〉θ) as obtained in the main plot, open/filled
symbols referring to the left/right y-axis. Black solid and dashed lines
represent aR/r andB0R/r decay, respectively, withB0 � 1/2 + 1/π,Eq. 7. (B),
(C) Themeasured radially averaged fluid temperature as a function of the polar
angle for two distinct heating temperatures [same as in (A)], averaged up to a
distance of 0.1 σ and 2.5 σ from the surface, respectively. For the dotted
theory curves we radially averaged the first 100 terms of Eq. 6, while the solid
lines were obtained from the first 100 terms of the numerically averaged profile
in (13); parameters T0, ΔT as obtained in (A).
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surface. In both cases the dotted theory curves lie significantly
below the numerical data, especially on the coated part
(π/2≤ θ ≤ π) of the particle.

The described shortcomings of the theoretical temperature
profile 6) can be improved by taking the temperature dependence
of the heat conductivity κ(T) of the fluid into account. For the
studied Lennard–Jones fluid, the heat conductivity approximately
follows a (T−1)-law [25]. Plugging κ∝ 1/T into Eq. 3, the ansatz
T(r, θ) � T0 exp[ψ(r, θ)] yields the equation ∇2ψ(r, θ)∝Q(r, θ)
for the auxiliary dimensionless field ψ(r, θ). Sticking to thick-cap
boundary conditions, 4) and (5), ψ(r, θ) solves the same
boundary value problem as the temperature field in the
previously discussed case of κ � const., albeit the latter
boundary condition now reads ψ(R, θ) � ln(1 + ΔT/T0) for
π/2≤ θ ≤ π. Hence, the solution for ψ(r, θ) equals the one
given in Eq. 6 upon replacing T0 → 0 and
ΔT→ ln(1 + ΔT/T0). The resulting temperature field
eventually takes the form

Tκ(r, θ) � T0(1 + ΔT
T0

)∑
∞

n�0
BnPn(cos θ)(R

r)n+1
. (13)

As detailed in the supplemental material, an analytic expression
for the radially averaged temperature field 〈Tκ〉θ(r) can be
calculated when truncating the infinite series in the exponent
of Eq. 13 after n � 1 (dipole) or n � 2 (quadrupole). The solid
curves in Figure 2A corresponds to the averaged dipole
approximation, which represents the simulation data very well,
also close to the particle surface. The quadrupole approximation
is practically indistinguishable from it and is therefore not
depicted in Figure 2A. Remarkably, also the temperature
field [25].

〈T〉θ(r) � Thom(r) � T0(1 + 〈ΔT〉θ
T0

)R/r

(14)

of an isotropic particle homogeneously heated up by 〈ΔT〉θ
delivers great fits to the data. Here, 〈ΔT〉θ served as a fit
parameter. Since the corresponding fits to the temperature
profiles would be indistinguishable from the solid curves, the
superiority of Eq. 14 over the κ � const. approximation, Eq. 11, is
illustrated in the inset of Figure 2A. The colored symbols and the
solid line show that measured average temperature profiles 〈T〉θ
for distinct heating temperatures nicely collapse onto the
prediction

ln(〈T〉θ/T0)
ln(1 + 〈ΔT〉θ/T0) �

R
r

(15)

obtained by rearranging Eq. 14. In contrast, the collapse is
violated close to the particle surface when the temperature
profiles are simplified according to Eq. 11,

〈T〉θ − T0

ΔT � B0
R
r
, (16)

as can be inferred from the open symbols and dashed curve. This
indicates that, close to the particle surface, the characteristic decay

of 〈T〉θ(r) is significantly influenced by the temperature
dependence of the heat conductivity κ(T), whereas
heterogeneities in the particle-fluid interactions can be
subsumed into a single (fit-)parameter 〈ΔT〉θ. In order to
resolve the angle dependence of the temperature profile, we
have to resort back to Eq. 13. Using the obtained optimal fit
parameters for T0 and ΔT , we numerically determined the angle-
resolved temperature profiles 〈Tκ〉r(θ). They improve the
quantitative agreement with the simulation data, as the solid
curves in Figures 2B,C indicate. Moreover, the theory curves in
both panels are free of spurious fluctuations that were present in
previous attempts to fit the angle-resolved temperature
profiles [22].

The measured temperature profiles in Figure 2B also show
that for θ ∼ π/2, the metal cap is not well described by an
isotherm. Thus, our theoretical prediction slightly
overestimates the temperature profile in those regions. Also,
close to the pole of the particle’s uncoated hemisphere (θ ∼ 0)
the measurements indicate a slight temperature increase—an
effect that fades further away from the particle surface as
Figure 2C shows. The investigation of this effect bears
potential for future studies as it might indicate a feedback of
the particle’s hydrodynamic flow field [24] onto the temperature
profile. Further improvement of the fits might be obtained by
taking the numerically observed Kapitza heat resistance into
account.

Having justified the notion of a local molecular temperature,
we next exploit the aforementioned Brownian time scale
separation in order to calculate the effective nonequilibrium
temperatures THBM that characterize the Janus particle’s
overdamped hot Brownian motion.

4 HOT BROWNIAN MOTION

A hot nanoswimmer is inevitably subject to Brownian motion
which randomizes the path of the particle in both position
and orientation. In the classical Langevin picture of
equilibrium Brownian motion, the Sutherland-Einstein
relation

D � kBT0/ζ (17)

for the particle diffusivity D guarantees that the stochastic forces
driving the Brownian particle balance the losses by the friction
−ζV , with friction coefficient ζ and velocity V , such as to
maintain the Gibbs equilibrium at the temperature T0.
Equation 17 links the atomistic world, represented by the
Boltzmann constant kB, to mesoscopic transport coefficients, D
and ζ . The existence of such a fluctuation-dissipation relation is
often taken for granted even when there are temperature
gradients present in the solvent, as is the case for heated
nanoparticles. In this situation, however, the stochastic force
on the particle must be evaluated as the superposition of the
thermal fluctuations within the whole solvent. In the Markov
limit, i.e., on time scales where the particle’s momentum and
hydrodynamic modes have fully relaxed and Brownian
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fluctuations are effectively diffusive [26], generalized overdamped
Langevin equations of the form

0 � (M 0
0 I

) · ( _V
_Ω
) � −Z · (V

Ω
) + ξ(t) + ( Fext

Text
) (18)

are found to hold [54, 55]. Here, M, I denote the particle’s mass
and tensor of inertia,V ,Ω its translational and rotational velocity,
Z the 6 × 6 friction tensor, ξ(t) Gaussian white noise, and
Fext,Text the external force and torque, respectively. The
equations of motion are complemented by the specification of
the noise strength

〈ξ(t)〉 � 0, (19)

〈ξμ(t)ξ](t′)〉∝Tμ]
HBMZ

μ]
HBMδ(t − t′), (20)

with effective temperatures Tμ]
HBM and friction coefficients Zμ]

HBM,
respectively. The superscript μ] indicates that for non-isothermal
Brownian motion, different degrees of freedom (e.g., translation,
rotation, or both coupled) sense distinct effective temperatures
[55] rendering THBM, in general, a tensorial quantity. Using the
framework of fluctuating hydrodynamics, the effective
temperatures Tμ]

HBM turn out to be given by a weighted spatial
average of the local solvent temperature field T(r) [54]:

Tμ]
HBM � ∫ dr T(r)ϕμ](r)∫ dr ϕμ](r) . (21)

The weight function

ϕμ](r) ≡ η(r)∑
i,j

[ziuμj (r)ziu]
j (r) + ziu

]
j (r)zjuμ

i (r)] (22)

is the (excess) viscous dissipation function induced by the velocity
fields uμ,] pertaining to the considered motion and η is the
dynamic viscosity of the fluid. Note that Tμ]

HBM is therefore a
tensorial quantity.

We stress the fact that the theory of hot Brownian motion
connects the particle’s enhanced thermal fluctuations with the
associated energy dissipation into the ambient fluid.
Therefore, the dissipation function ϕμ] defined in Eq. 22
must not include contributions due to the particle’s active
swimming, even though the latter typically exceeds the former
considerably.

In the following section, we use Eq. 21 to estimate effective
temperatures characterizing the rotational and translational hot
Brownian motion of a Janus sphere.

5 ESTIMATING THBM FOR A JANUS SPHERE

Since a generally temperature dependent viscosity η(T) renders
the calculation of effective temperatures rather complicated, we
pursue a similar approach as in [51, 52], where a first estimate for
Tμ]
HBM could be obtained by employing a temperature independent

viscosity η ≡ η0. In the case of a homogeneously heated particle
[51, 52] with a surface temperature increment ΔT , this lead to the
first order term in THBM(ΔT). Following the same route, we

calculate the effective temperatures Tθ‖/⊥
HBM and Tx‖/⊥

HBM for a Janus
sphere. The superscripts represent motion types considered in
this article, namely.

• θ‖/⊥: rotation about/perpendicular to the particle’s
symmetry axis,

• x‖/⊥: translation along/transverse to the symmetry axis.

The effective temperature Tm
HBM corresponding to the

considered motion type m ∈ {θ‖/⊥, x‖/⊥} is given by

Tm
HBM � ∫ dr T(r)ϕm(r)∫ dr ϕm(r) (23)

Note that superpositions of the motion types listed above
generally sense yet different effective temperatures, e.g., Tx‖ ,θ⊥

HBM.
Here, we only consider the elementary degrees of freedom.

The temperature field around a Janus sphere of radius R solves
the heat conduction Eq. 3. Assuming constant viscosity and heat
conductivity κ, the solution can be expanded in terms of Legendre
polynomials Pn as

T(r, θ) � T0 +∑∞
n�0

TnPn(cos θ)(Rr)
n+1

, (24)

with the ambient fluid temperature T0. The expansion coefficients
T n are determined by boundary conditions at the particle surface,
which we do not further specify here. Analogous to the
calculation in Eqs 9–11, the average surface temperature
increment is given by

〈ΔT〉θ � T 0. (25)

Since the coefficient T 0 pertains to an angle independent 1/r-decay in
the temperature field (24), it represents a spherical particle
homogeneously heated to T0 + 〈ΔT〉θ . Higher coefficients T n> 0

characterize anisotropies of the temperature field.
We now turn to the calculation of the effective temperature

Tx‖
HBM via Eq. 23, where we first consider the Janus particle’s

translation along its symmetry axis. Introducing the
abbreviations s ≡ sinθ and c ≡ cosθ, the corresponding viscous
dissipation function for a sphere of radius R at translation speedV
within an infinite homogeneous system with constant viscosity
reads [52].

ϕx(r, θ) � η0[ fs(r)s2 + fc(r)c2], (26)

where we introduced

fs(r) ≡ 9
r8
K2
2 , (27)

fc(r) ≡ 3
r8
(K1r

2 + 3K2)2, (28)

with the constant coefficients K1 � −3VR/2 and K2 � VR3/2. As
the dissipation function ϕx is composed of terms proportional to
s2 and c2 � 1 − s2, the product of T(r, θ) and ϕx(r, θ) in the
enumerator of Eq. 23 yields integrals over the polar angle of the
kind ∫1

−1 dc s
2Pn(c). By virtue of the relation s2 � 2[P0(c) −

P2(c)]/3 and Eq. 8, this integral simplifies to
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∫1

−1
dc s2Pn(c) � 2

3
( 2δ0n
2n + 1

− 2δ2n
2n + 1

). (29)

Therefore, only the coefficients T 0 and T 2 from the infinite series
24) contribute to Tx‖

HBM, while all other terms vanish by symmetry
upon averaging, which actually holds for all cases considered in
this article. Explicit calculation of Tx‖

HBM via Eq. 23 gives for the
non-trivial part of the numerator:

2T 0 ∫
∞

R

dr r2fs(r)Rr (30)

+ 2
3
T 0 ∫

∞

R

dr r2[ fc(r) − fs(r)]Rr (31)

+ 4
15

T 2 ∫
∞

R

dr r2[ fc(r) − fs(r)](Rr)
3

(32)

� 3
4
T 0RV

2 + 1
2
T 0RV

2 + 0 (33)

� 5
4
T 0RV

2. (34)

The denominator analogously gives 3RV2. With Eq. 25, we
finally obtain

Tx‖
HBM � T0 + 5

12
〈ΔT〉θ. (35)

Hence, for translation along its symmetry axis, the Janus sphere’s
hot Brownian motion is identical to that of a sphere
homogeneously heated by 〈ΔT〉θ [52]. The vanishing integral
in line 32) reveals that there is no coupling between the
dissipation function ϕx and angular variations in the
temperature field represented by T 2. Therefore, no correction
term accompanies the factor 5/12 in Tx‖

HBM. This result could have
been anticipated as the authors of Ref. [54] showed that a linear
temperature field implies no corrections to the standard Langevin
description of Brownian motion when the viscosity is assumed to
be constant.

As anticipated on the same grounds and explicitly shown in
the supplemental material, a similar calculation with a simple
coordinate transformation leads to

Tx⊥
HBM � T0 + 5

12
〈ΔT〉θ, (36)

for the particle’s translation perpendicular to its symmetry axis.
Thus, also for transverse motion the corresponding effective
temperatures are exactly given by those of a sphere
homogeneously heated up by 〈ΔT〉θ.

We now turn to the particle’s rotational degrees of freedom
starting with the calculation of Tθ‖

HBM for rotation about its
symmetry axis. The corresponding viscous dissipation function
for a rotating sphere reads [51].

ϕθ(r, θ)∝ r−6sin2θ. (37)

Using Eq. 29, the non-trivial part of the numerator of Eq. 23
evaluates to

2
3
∑∞
n�0

∫∞
R

dr∫1

−1
dc Pn(c) 1r4 (Rr)

n+1
[P0(c) − P2(c)] (38)

� 2
3
[2T 0 ∫∞

R
dr

R
r5
− 2
5
T 2 ∫∞

R
dr

R3

r7
] (39)

� 4
9R3

[3
4
T 0 − 1

10
T 2], (40)

and likewise the denominator to

4
3
∫∞

R
dr r−4 � 4

9R3
. (41)

Using T 0 � 〈ΔT〉θ finally yields

Tθ‖
HBM � T0 + 〈ΔT〉θ(34 − 1

10
T 2

〈ΔT〉θ
). (42)

In contrast to our results for translation, Eq. 35, Eq. 36, we find
that Tθ‖

HBM − T0 is composed of two parts: 1) the contribution
3〈ΔT〉θ/4 corresponding to an isotropic sphere homogeneously
heated up by 〈ΔT〉θ [51] and 2) a correction term proportional to
T 2. The latter stems from a non-vanishing coupling between the
θ-dependence of the temperature field 24) and the dissipation
function (37). For most practical cases, the correction term is
negligible with respect to 3/4 since, typically, T 2 < T 0 � 〈ΔT〉θ .
For instance, in the thick-cap limit, for which the temperature
field is explicitly given by Eq. 6, Eq. 7, one
has. T 2/(10T 0) ≈ − 0.03.

A simple coordinate transformation (see supplemental
material) and similar calculations as presented above yield

Tθ⊥
HBM � T0 + 〈ΔT〉θ(34 + 1

20
T 2

〈ΔT〉θ
), (43)

for rotation perpendicular to the particle’s symmetry axis. In this
case, the correction term is only half in magnitude and has
opposite sign as compared to the one in Eq. 42. This stems
from the fact that the symmetry axis of the particle, and thus of
the temperature profile, does not coincide with the rotation axis,
thus leading to a distinct coupling between the temperature field
and the dissipation function.

In order to test the theory, we measured the effective
temperatures using MD computer simulations as described in
Sec. 2. We therefor additionally confined the Janus sphere
employing an external angular or spatial harmonic potential
parallel or perpendicular to its symmetry axis [51] and
measured its response. Figures 3A,B illustrate the respective
distributions of the Janus particle’s position z and orientation
θ relative to its symmetry axis for distinct heating temperatures.

From the variances of the effectively Gaussian distributions, we
extracted the effective temperatures for translation and rotation,
respectively [51]. The corresponding average surface temperature
increments 〈ΔT〉θ were obtained by fitting the angle averaged
temperature profiles via Eq. 14 (cf. Figure 2). As Figure 3C
shows, the measured effective temperatures are nicely described by
our theory. We also compared our results to the effective
temperatures for a homogeneously heated Brownian particle. The
prediction for the enhanced diffusion of homogeneous hot Brownian
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spheres has been quantitatively verified in dedicated experiments [56,
57]. According to the theory, a similar enhancement of the long-time
diffusivity must be expected for the transverse and rotational motion
of a Janus sphere. Along the particle’s axis of propulsion, the long-
time diffusivity is typically dominated by its active propulsion [26].

Having seen that the coarse-grained non-equilibrium
hydrodynamic description works well on the single-particle level,
we now address the task of further coarse graining a suspension of
hot microswimmers to an effective homogeneous complex fluid.
Although for related microswimmer systems, scientists have
developed powerful methods accounting for large numbers of
individual swimmers [58–61], the task of homogenizing a whole
suspension of hot, active particles and the role of effective
nonequilibrium temperatures has received relatively little attention.

6 COMPLEX FLUID HOMOGENISATION

One is often interested in the collective (thermo) dynamical
properties of an assembly of colloids and their embedding
solvent, rather than in the motion of a single unit. Particle-

based descriptions are impractical to inspect the behavior of such
a complex fluid and one therefore often seeks a more versatile
continuum approach, which allows one to leapfrog, in an efficient
way, over the diverse time and length scales of its various
constituents.

To this aim, we study non-isothermal fluctuating
hydrodynamic equations of a fluid with suspended colloids,
which are recast in terms of dynamical equations for coarse-
grained volume elements. Surprisingly, a non-local frequency-
dependent temperature appears due to the presence of the
dispersed particles, which characterizes the intensity of their
thermal fluctuations. Consider an incompressible solvent of
density 9 with velocity field u described by the linearized
fluctuating hydrodynamic equations [55].

9ztu(r′, t) � ∇ · σ(r′, t) + ∇ · τ(r′, t), (44)

and N suspended colloids coupled to the fluid velocity via no-
slip boundary conditions. Here, σ denotes the total stress
tensor and τ is a zero-mean Gaussian random stress tensor
with delta correlations in space and time. The molecular
temperature is prescribed by the heat equations. For later
convenience, we assume that the flow field u is defined also
inside the colloids, where it equals identically the colloid
velocity V i, namely

u(r′, t) � V i, if
∣∣∣∣r′ − X i′

∣∣∣∣<R. (45)

The colloids are idealized as spheres with radius R and mass M,
and their positions are denoted by Xi.

The coarse-graining procedure proceeds as follows:

1. We divide the system into mesoscopic volumes V(r), with edge
length l, located at position r. Old and new coordinates, r′ and r
respectively, are related by the scaling r � r′/l, where l defines the
coarse-graining length scale, much larger than the colloidal radiusR.

2. We define the coarse-grained velocity of the complex fluidU(r, t)
as the spatial average over the coarse-grained volume ν(r)

U(r, t) � 1
l3

∫
ν(r)

dr′ u(r′, t). (46)

3. In Eq. 46 the integration volume ν(r) is split into the volume
occupied by the solvent νs(r) and that occupied by the solute
particles νp(r). Introducing the local particle volume fraction
ϕ(r) ≡ ∣∣∣∣νp(r)∣∣∣∣/|ν(r)|, we obtain

U(r, t) � 1
l3

∫
νs(r)

dr′ u(r′, t) + ϕ(r)V(r, t), (47)

where we have defined the local average velocity of the colloids

V(r, t) ≡ 1
N(r) ∑

i∈ν(r)
Vi(t), (48)

N(r) ≡ ∑
i∈ν(r)

1. (49)

4. We take the time derivative of Eq. 47,

FIGURE 3 | Upper panels: Histograms of harmonically confined position
(A) and orientation (B) of the Janus particle heated to TP � 1.0 ϵ/kB in (A) and
TP � 1.0 ϵ/kB in (B). Histograms were fitted by Gaussian profiles (lines) to
extract the corresponding effective temperature THBM. (C) Lower line
and data: Numerically measured Tx‖

HBM (blue triangles), Tx⊥
HBM (pink pentagons)

for translation along/transverse to the symmetry axis of a heated Janus
particle against the theory from Eq. 35, Eq. 36. Upper line and data: Tθ‖

HBM

(orange squares) for rotation around the particle’s symmetry axis, and T θ
HBM for

an isotropic, homogeneously heated Brownian particle [51] (green circles)
versus theory from Eq. 42, neglecting the small correction term (which would
hardly be discernible, anyway). In all simulations, the wetting parameters were
cps � 1 and cgs � 2.
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ztU(r, t) � 1
l3

∫
vs(r)

dr′ ztu(r′, t) + ϕ(r)ztV(r, t). (50)

The first summand is rewritten, using Eq. 44

1
l3

∫
νs(r)

dr′ ztu(r′, t) (51)

� 1
9l3

∫
vs(r)

dr′(∇ · σ(r′, t) + ∇ · τ(r′, t)) (52)

� 1
9
(∇ · ~σ(r, t) + ∇ · ~τ(r, t)), (53)

where ~σ and ~τ are the coarse-grained stress tensors.
It is not hard to convince oneself that the random tensor τ] is

still a zero-mean Gaussian noise with delta correlations in space
and time. In fact, using the divergence theorem the mean is

∫
zνs(r)

d2r′ n′ · 〈τ(r′, t)〉 � 0, (54)

and the correlation function becomes

∫
zνs(r1)

d2r′ ∫
zνs(r2)

d2r″n′n″ · 〈τ(r′, t)τ(r″, t)〉
� 2 ∫

zνs(r1)
d2r′ ∫

zνs(r2)
d2r″ n′n″η(r)T(r)δ(r′ − r″)δ(t − t′), (55)

which is nonzero only if r1 � r2 and is proportional to δ(t − t′).
Here, n′ and n″ denotes the inner normal vectors along the surface
zvs(r1,2) of the respective volume element. For the second summand
in Eq. 50, we decompose the particle velocity V i(t) � vtp,i(t) +
~V i(t) into thermophoretic propulsion (induced by the deterministic
local temperature field) and nonisothermal fluctuations (induced by
the ambient fluid’s thermal fluctuations [54]). Assuming that the
suspension of hot microswimmers is sufficiently dilute so that
hydrodynamic and temperature-mediated interactions between the
colloids are negligible, each particle (approximately) propels at a
constant speed v0 along its current orientation n̂i(t). For common
experimental conditions this ballistic motion dominates over its
diffusive transport, at late times, but remains slow compared to
the fluid response [26]. Then, the second summand in Eq. 50 is [54].

ϕ(r)
N(r) ∑

i∈ν(r)
V
·
i(t) � ϕ(r)

N(r) ∑
i∈ν(r)

⎛⎜⎜⎝ν0 ~Ωi(t) × n̂i(t)

− ∫t

−∞
dt′

Zx(X i′ , t − t′) · ~V i(t′)
M

+ ξxi (X i′ , t)⎞⎟⎟⎠,

(56)

where, we used _̂ni(t) � ~Ωi(t) × n̂i(t), with the particle’s angular
velocity ~Ωi(t), and introduced the time-dependent friction kernel
Zx(Xi′ , t) and the unbiased white Gaussian noise process
ξxi (Xi′ , t) corresponding to particle translation. Since
interactions between colloids are neglected (dilute-solution
approximation), the angular velocity is solely governed by the

fluctuating hydrodynamics of the medium and obeys generalized
Langevin equations of the form [54, 55].

I · _~Ωi(t) � −∫t

−∞
dt′Zθ(X i′ , t − t′) · ~Ωi(t′) + ξθi (Xi′ , t), (57)

where we introduced the particle moment of inertia I, and the time-
dependent rotational friction kernel Zθ(Xi′ , t) and the unbiased
white Gaussian noise process ξθi (Xi′ , t) for the particle rotation.
Therefore, the average acceleration is given by a sum of generalized
Langevin equations of the type previously derived for hot Brownian
motion [54, 55]. We use the result obtained for a generic (but
stationary) temperature field T(r′), here generated by the colloids
sitting in their average positions. The noise spectrum reads

〈ξμi (Xi′ ,ω)ξ]i (Xi′ ,ω)〉∝ T μ](Xi′ ,ω)Zμ](Xi′ ,ω) (58)

and displays a tensorial frequency-dependent
temperature—generally distinct from T(r′) —

T μ](Xi′ ,ω) ≡ ∫
V
d3r′ ϕμ](r′,ω)T(Xi′ + r′)
∫
V
d3r′ϕμ](r′,ω), (59)

whose zero-frequency limit should be compared with Eq. 21. The
weight function ϕμ](r′,ω) denotes the (excess) viscous
dissipation function associated to the unsteady thermal motion
of a colloid. For this to apply to all particles in the suspension, the
latter has to be sufficiently dilute so that hydrodynamic and
temperature-mediated interactions between the colloids are
negligible. Under this assumption, also thermal noises acting
on different colloids can be taken to be uncorrelated.

This analysis suggests that a non-trivial coarse-grained noise
temperature arises through the presence of “slow” degrees of
freedom. These are, in a hydrodynamic description, coupled to
the fast ones via boundary conditions and thus are subjected to
long-range forces, in contrast to the local, Markovian thermal
stresses acting on the fluid elements.

7 CONCLUSION

We have performed microscopically resolved molecular dynamics
simulations of a single hot Janus swimmer immersed in a Lennard-
Jones fluid.We locallymeasured the inhomogeneous and anisotropic
temperature profile induced in the solvent and compared it against
analytic expressions basing on the heat conduction equation. We
thereby verify the notion of a molecular temperature at which the
surrounding medium locally equilibrates. We then exploited a large
Brownian timescale separation in order to address the Janus particle’s
overdamped hot Brownian motion. In a first-order approximation in
the mean temperature increment 〈ΔT〉θ of the particle surface, we
calculate effective nonequilibrium temperatures THBM for distinct
types of motion. Our theoretical predictions nicely agree with
measurements of THBM over a wide temperature range. In the last
coarse-graining step, we studied non-isothermal fluctuating
hydrodynamic equations of a fluid with such suspended
nonisothermal active colloids. The noise spectrum of the coarse-
grained fluid is governed by tensorial, local and frequency-dependent
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effective temperatures that generally differ from the local molecular
temperature field in the solvent. They have to separately be taken
along in any attempt to coarse grain a suspension of hot particles into
a an effectively homogeneous complex fluid.
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