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MHD Modeling of Solar Coronal
Magnetic Evolution Driven by
Photospheric Flow
Chaowei Jiang*, Xinkai Bian, Tingting Sun and Xueshang Feng

Institute of Space Science and Applied Technology, Harbin Institute of Technology, Shenzhen, China

It is well-known that magnetic fields dominate the dynamics in the solar corona, and new
generation of numerical modeling of the evolution of coronal magnetic fields, as featured
with boundary conditions driven directly by observation data, are being developed.
This paper describes a new approach of data-driven magnetohydrodynamic (MHD)
simulation of solar active region (AR) magnetic field evolution, which is for the first
time that a data-driven full-MHD model utilizes directly the photospheric velocity field
from DAVE4VM. We constructed a well-established MHD equilibrium based on a single
vector magnetogram by employing an MHD-relaxation approach with sufficiently small
kinetic viscosity, and used this MHD equilibrium as the initial conditions for subsequent
data-driven evolution. Then we derived the photospheric surface flows from a time series
of observedmagentograms based on the DAVE4VMmethod. The surface flows are finally
inputted in time sequence to the bottom boundary of the MHD model to self-consistently
update the magnetic field at every time step by solving directly the magnetic induction
equation at the bottom boundary. We applied this data-driven model to study the
magnetic field evolution of AR 12158 with SDO/HMI vector magnetograms. Our model
reproduced a quasi-static stress of the field lines through mainly the rotational flow of
the AR’s leading sunspot, which makes the core field lines to form a coherent S shape
consistent with the sigmoid structure as seen in the SDO/AIA images. The total magnetic
energy obtained in the simulation matches closely the accumulated magnetic energy as
calculated directly from the original vector magnetogram with the DAVE4VM derived flow
field. Such a data-driven model will be used to study how the coronal field, as driven by
the slow photospheric motions, reaches a unstable state and runs into eruptions.

Keywords: magnetic field, magnetohydodynamic, numerical modeling, solar corona, photospheric flow

1. INTRODUCTION

Magnetic fields dominate the dynamics in the Sun’s upper atmosphere, the solar corona. On the
solar surface, i.e., the photosphere, magnetic fields are seen to change continuously; magnetic
flux emergence brings new flux from the solar interior into the atmosphere, and meanwhile the
flux is advected and dispersed by surface motions such as granulation, differential rotation, and
meridional circulation. Consequently, the coronal field evolves in response to (or driven by) the
changing of the photospheric field, and thus complex dynamics occur ubiquitously in the corona,
including the interaction of newly emerging field with the pre-existing one, twisting and shearing of
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the magnetic arcade fields, magnetic reconnection, and magnetic
explosions which are manifested as flares and coronal mass
ejections (CMEs).

As we are still not able to measure directly the three-
dimensional (3D) coronal magnetic fields, numerical modeling
has long been employed to reconstruct or simulate the
coronal magnetic fields based on different assumption of the
magnetohydrodynamic (MHD) equations, such as the most-
frequently used force-free field model [1], which has been
developed for over four decades. However, the force-free field
assumption is only valid for the equilibrium of the corona,
and it cannot be used to follow a continual and dynamic
evolution of the magnetic fields. In recent years, with vector
magnetogram data in the photosphere measured routinely with
high resolution and cadence, data-driven modeling is becoming
a viable tool to study coronal magnetic field evolution, which can
self-consistently describe both the quasi-static and the dynamic
evolution phases [e.g., 2–10]. Still, due to the limited constraint
from observation, data-driven models are developed with very
different settings from each other [11]. For simplicity, some used
the magneto-frictional model [4, 10], in which the Lorentz force
is balanced by a fictional plasma friction force. As such, the
magnetic field evolves mainly in a quasi-static way [12], although
in some case an eruption can be reproduced but it evolves in a
much slower rate than the realistic one [10], because the dynamic
is strongly reduced by the frictional force. Some used the so-
called zero-β model [7, 9, 13], in which the gas pressure and
gravity are neglected. The zero-β model might fail when there
is fast reconnection in the field, in which the thermal pressure
could play an important role in the dynamics in weak-field
region of magnetic field dissipation. Therefore, it is more realistic
and accurate to solve the full MHD equations to deal with the
non-linear interaction of magnetic fields with plasma.

To drive the full MHD model, one needs to specify all the
eight variables (namely plasma density, temperature, and three
components of velocity and magnetic field, respectively) in a
self-consistent way at the lower boundary. Previously, with only
the magnetic field obtained from observations, we employed
the projected-characteristic method [2, 14–17] to specify the
other variables according to the information of characteristics
based on the wave-decomposition principle of the full MHD
system [e.g., 5, 18]. Specifically, the full MHD equations are
a hyperbolic system that can be eigen-decomposed into a set
of characteristic wave equations (i.e., compatibility equations),
which are independent with each other; on the boundary, these
waves may propagate inward or outward of the computational
domain because the wave speeds (the eigenvalues) of both
signs generally exist at the boundary. If the wave goes out
of the computational domain through the boundary, it carries
information from the inner grid to the boundary, and thus
the corresponding compatibility equation should be used to
constrain the variables on the boundary surface. Thus, if there
are five waves going out, and with three components of magnetic
field specified by observed data, the eight variables are fully
determined. Ideally and in principle, the projected-characteristic
method is the most self-consistent one with inputting data that
is partially available (for example, in our case, only the data

of magnetic field). However, such conditions, i.e., exactly five
waves going out, are often not satisfied in the whole boundary
and other assumptions are still necessary. Even worse, in areas
near the magnetic polarity inversion line (PIL) where the normal
magnetic field component is small, the Alfvén wave information
goes mainly in the transverse direction rather than the normal
one, and the projected-characteristic approach may fail. Another
shortcoming of the method lies in its difficulty in code
implementation, which needs to perform eigen-decomposition
and solve a linear system of the compatibility equations on every
grid point on the boundary to recover the primitive variables
from the characteristic ones.

In this paper we test another way of specifying the bottom
boundary conditions, which uses the surface velocity derived
by the DAVE4VM method [19] to drive the MHD model. The
differential affine velocity estimator (DAVE) was first developed
for estimating velocities from line-of-sight magnetograms, and
was then modified to directly incorporate horizontal magnetic
fields to produce a differential affine velocity estimator for
vector magnetograms (thus called DAVE4VM). It is generally
accepted that the coronal magnetic fields are line tied in the
dense photosphere and are advected passively by the surface
motions of the photosphere, such as the shearing, rotational,
and converging flows [20]. Thus, with the surface velocity in
hand, we can solve the magnetic induction equation on the
bottom boundary to update self-consistently the magnetic field
to implement such a line-tying boundary condition, which is
a much simpler way than using the projected-characteristic
method. To illustrate the approach, we take the solar AR 12158
as an example to simulate its two-day evolution from 2014
September 8 to 10 during its passage of the solar disk. This AR is
of interest since it produced an X1.6 eruptive flare accompanied
with a fast CME with speed of ∼ 1300 km s−1, which is well-
documented in the literature [21–23]. The AR is well-isolated
from neighboring ARs, thus is suited for our modeling focused
on a single AR. Within a few days prior to this major eruption,
the AR developed from a weakly sheared magnetic arcade into a
distinct sigmoidal configuration, indicating a continual injection
of non-potential magnetic energy into the corona through the
photospheric surface motion. Indeed, prior to the eruption, the
major sunspot of the AR showed a significant rotation of over
200◦ in 5 days [21]. Based on the sigmoidal hot coronal loop seen
immediately before the flare, many authors have interpreted it as
a pre-existing magnetic flux rope which erupted and resulted in
the flare and CME [e.g., 21–23], while some non-linear force-free
field extrapolations appear not to support this [24, 25]. Thus, a
fully data-driven MHD simulation can provide valuable insight
in addressing this issue by following the dynamic evolution of the
coronal magnetic field, although the main objective of this paper
is to describe the methods.

In the following we first describe our model equation in
section 2. The data-driven simulation consists of three steps, and
first we constructed anMHD equilibrium based on a single vector
magnetogram observed for the start time of our simulation,
which is described in section 3. Then in section 4 we calculated
the surface flow field using the DAVE4VM code with the time
series of vector magnetograms. Finally, we input the flow field in
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TABLE 1 | Parameters used for non-dimensionalization.

Variable Expression Value

Density ρs = nm 2.29× 10−15 g cm−3

Temperature Ts 1× 106 K

Length Ls = 16 arcsec 11.52 Mm

Pressure ps = 2nkBTs 2.76× 10−2 Pa

Magnetic field Bs =
√

µ0ps 1.86 G

Velocity vs =
√
ps/ρs 110 km s−1

Time ts = Ls/vs 105 s

Gravity gs = vs/ts 1.05 km s−2

n is a typical value of electron number density in the corona given by n = 1 × 109 cm-3

and m is the mean atomic mass.

the model to drive the evolution of theMHD system, as described
in section 5. Summary and discussion are given in section 6.

2. MHD EQUATIONS

We numerically solve the full MHD equations in a 3D Cartesian
geometry by an advanced conservation element and solution
element (CESE) method [26]. Before describing the model
equations in the code, it is necessary to specify the quantities
used for non-dimensionalization. Here we use typical values at
the base of the corona for non-dimensionalization as given in
Table 1. In the rest of the paper all the variables and quantities are
written in non-dimensionalized form if not mentioned specially.

In non-dimensionalized form, the full set of MHD equations
are given as

∂ρ

∂t
+ ∇ · (ρv) = −νρ(ρ − ρ0),

ρ
Dv

Dt
= −∇p+ J× B+ ρg+∇ · (νρ∇v),

∂B

∂t
= ∇ × (v× B),

∂T

∂t
+ ∇ · (Tv) = (2− γ )T∇ · v. (1)

where J = ∇ × B, ν is the kinetic viscosity, and γ is the
adiabatic index.

Note that we artificially add a source term −νρ(ρ − ρ0) to
the continuity equation, where ρ0 is the density at the initial
time t = 0 (or some prescribed form), and νρ is a prescribed
coefficient. This term is used to avoid a ever-decreasing of
the density in the strong magnetic field region, which we
often encounter in the very low-β simulation. It can maintain
the maximum Alfvén speed in a reasonable level, which may
otherwise increase and make the iteration time step smaller and
smaller and the long-term simulation unmanageable. Specifically,
this source term is a Newton relaxation of the density to its initial
value by a time scale of

τρ =
1

νρ

= 20τA, (2)

where τA = 1/vA is the Alfvén time with length of 1 (the length
unit) and the Alfvén speed vA = B/

√
ρ. Thus, it is sufficiently

large to avoid its influence on the fast dynamics of Alfvénic time
scales. As a result, we used νρ = 0.05vA in all the simulation in
this paper.

No explicit resistivity is used in the magnetic induction
equation, but magnetic reconnection is still allowed through
numerical diffusion when a current layer is sufficiently narrow
such that its width is close to the grid resolution. In the energy
(or temperature) equation, we set γ = 1 for simplicity, such that
the energy equation describes an isothermal process1. The kinetic
viscosity ν will be given with different values when needed, which
is described in the following sections.

3. CONSTRUCTION OF AN INITIAL MHD
EQUILIBRIUM

We first constructed an initial MHD equilibrium based on a
single vector magnetogram taken for time of 00:00 UT on 2014
September 8 by SDO/HMI. Such an equilibrium is assumed
to exist when the corona is not in the eruptive stage, and is
crucial for starting our subsequent data-driven evolution. The
vector magnetogram is preprocessed to reduce the Lorentz force
and is further smoothed to filter out the small-scale structures
that are not sufficiently resolved in our simulation. Reduction
of the Lorentz force is helpful for reaching a more force-free
equilibrium state [e.g., 27], and smoothing is also necessary to
mimic the magnetic field at the coronal base rather directly
the photosphere, because the lower boundary of our model is
placed at the base of the corona [28]. The preprocessing is done
using a code developed by Jiang et al. [29], which is originally
designed for NLFFF extrapolation using the HMI data [30].
Specifically, the total Lorentz force and torque are quantified
by two surface integrals associated with three components of
the photospheric magnetic field, and an optimization method
is employed to minimize these two functions by modifying
the magnetic field components within margins of measurement
errors. Then Gaussian smoothing with FWHM of 8 arcsec
is applied to all the three components of the magnetic field.
Figure 1 compares the original HMI vector magnetogram with
the preprocessed one as well as the final smoothed version. Using
the vertical component Bz of this preprocessed and smoothed
magnetogram, a potential field is extrapolated and used as the
initial condition of the magnetic field in the MHDmodel.

In addition to the magnetic field, an initial plasma as the
background atmosphere is also needed to start the MHD
simulation. We used an isothermal plasma in hydrostatic
equilibrium. It is stratified by solar gravity with a density ρ = 1
at the bottom and a uniform temperature of T = 1. Using this
typical coronal plasma, we did not directly input the magnetic
field into themodel butmultiplies it with a factor of 0.05 such that
the maximum of magnetic field strength in normalized value is

1Although in this case we can simply discard the energy equation by setting the
temperature as a constant, we still keep the full set of equations in our code which
can thus describe either the isothermal or adiabatic process by choose different
value of γ .
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FIGURE 1 | Comparison of the original HMI vector magnetogram for time of 00:00 UT on 2014 September 8 (Top), the preprocessed one (Middle), and the final
smoothed one (Bottom). From left to right are shown for magnetic field components Bx , By , and Bz , respectively.

approximately 50 ∼ 100 in the model. If using the original values
of magnetic field, its strength (and the characteristic Alfvén
speed) near the lower surface is too larger, which will be a too
heavy burden on computation as the time step of our simulation
is limited by the CFL condition. With the reduced magnetic
field, we further modified the value of solar gravity to avoid an
unrealistic large plasma β (and small Alfvén speed) in the corona.
This is because if using the real number of the solar gravity
(g⊙ = 274 m s−2/gs = 0.26), it results in a pressure scale height
of Hp = 3.8, by which the plasma pressure and density decay
with height much slower than the magnetic field. With the weak
magnetic field strength we used, the plasma β will increase with
height very fast to above 1, which is not realistic in the corona.
To make the pressure (and density) decrease faster in the lower
corona, we modified the gravity as

g =
1.5Hpg⊙

(1+ 0.15z)2
. (3)

By this, we got a plasma with β < 1 mainly within z < 10 and
the smallest value is 5× 10−3.

Then we input the transverse field of the smoothed
magnetogram to the model. This is done by modifying the
transverse field on the bottom boundary incrementally using
linear extrapolation from the potential field to the vector
magetogram in time with a duration of 1 ts until it matches the
vector magnetogram. This will drive the coronal magnetic field
to evolve away from the initial potential state, since the change of
the transverse field will inject electric currents and thus Lorentz
forces, which drive motions in the computational volume. Note
that in this phase all other variables on the bottom boundary are
simply fixed, thus the velocity remaining zero. This is somewhat
un-physical since the Lorentz force will introduce non-zero flows
on the bottom boundary, but it provides a simple and “safe” way
(avoiding numerical instability) to bring the transverse magnetic
field into the model. Once the magnetic field on the bottom
surface is identical to that of the vector magnetogram, the system
is then left to relax to equilibriumwith all the variables (including
the magnetic field) on the bottom boundary fixed. To avoid a
too large velocity in this phase such that the system can relax
faster, we set the kinetic viscosity coefficient as ν = 0.51x2/1t,
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where 1x is the local grid spacing and 1t the local time step,
determined by the CFL condition with the fastest magnetosonic
speed. Actually this is the largest viscosity one can use with given

FIGURE 2 | Evolutions of the total magnetic energy, kinetic energy, and
residual of magnetic field in the process of the constructing the initial MHD
equilibrium. The black curves show the results for the first evolution phase,
and the blue ones show that for the second, “deeper” evolution phase.

grid size 1x and time step 1t, because the CFL condition for
a purely diffusive equation with diffusion coefficient ν requires
1t ≤ 0.51x2/ν.

For the purpose of minimizing the numerical boundary
influences introduced by the side and top boundaries of the
computational volume, we used a sufficiently large box of
(−32,−32, 0) < (x, y, z) < (32, 32, 64) embedding the field
of view of the magnetogram of (−8.75,−8.25) < (x, y) <

(8.75, 8.25). The full computational volume is resolve by a non-
uniform block-structured grid with adaptive mesh refinement
(AMR), in which the highest and lowest resolution are 1x =
1y = 1z = 1/16 (corresponding to 1 arcsec or 720 km,
matching the resolution of the vector magnetogram) and
1/2, respectively. The AMR is controlled to resolve with the
smallest grids the regions of strong magnetic gradients and
current density. The magnetic field outside of the area of the
magnetograms on the lower boundary is given as zero for the
vertical component and simply fixed as the potential field for the
transverse components. On the side and top boundaries, we fixed
the plasma density, temperature, and velocity. The horizontal
components of magnetic field are linearly extrapolated from the
inner points, while the normal component is modified according
to the divergence-free condition to avoid any numerical magnetic
divergence accumulated on the boundaries.

In Figure 2, the curves colored in black show the evolution
of the magnetic and kinetic energies integrated for the
computational volume, and the residual of the magnetic field of
two consecutive time steps which is defined as

ResB =

√

√

√

√

√

√

1

3

∑

δ=x,y,z

∑

i

(

Bkiδ − Bk−1
iδ

)2

∑

i

(

Bkiδ

)2 , (4)

FIGURE 3 | 3D magnetic field of the MHD equilibrium based on the magnetogram taken for 00:00 UT on 2014 September 8. The thick lines are magnetic field lines
and are pseudo-colored by value of the force-free parameter α. The background is shown with the magnetic flux distribution (i.e., Bz ) on the bottom surface of the
model.
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where the indices k and k − 1 refer to the two consecutive time
steps and i goes through all the mesh points. It can be seen
that the magnetic energy increases sharply in a few time units2,
reaching ∼ 1.4 of the potential field energy E0 (here E0 = 1.2 ×
1033 erg when scaled to the realistic value in the corona), and then
keeps almost constant during the relaxing phase with bottom
boundary fixed. Very similar, the kinetic energy first increases
and later keeps on the level of 3× 10−3 of E0. The residual of the
magnetic field increases in the first ts as we continually modified
the transverse field at the bottom boundary which drives quickly
the evolution of the field in the corona. Then it decreases to
below 10−5 with a time duration of 20 ts, which indicates that
the magnetic field reaches a quasi-equilibrium state.

To make the field even closer to equilibrium, we carried
out a “deeper” relaxation by running the model again, which is
started with the relaxed magnetic field obtained at t = 20 ts
and the initially hydrostatic plasma. Now we reduce the kinetic
viscosity to ν = 0.051x2/1t, i.e., an order of magnitude smaller
than the previously used one, which will let the magnetic field
relax further. Furthermore, the magnetic field at the boundary
boundary is allowed to evolve in a self-consistent way by
assuming the bottom boundary as a perfectly line-tying and fixed
(i.e., v = 0) surface of magnetic field lines. However, such
a line-tying condition does not indicate that all magnetic field
components on the boundary are fixed, because even though
the velocity v is given as zero on the bottom boundary, it is
not necessarily zero in the neighboring inner points. To self-
consistently update the magnetic field, we solve the magnetic
induction equation on the bottom boundary. Slightly different
from the one in the main Equations (1), the induction equation
at the bottom surface is given as

∂B

∂t
= ∇ × (v× B)+ ηstable∇2

⊥B, (5)

where we added a surface diffusion term defined by using a

surface Laplace operator as ∇2
⊥ = ∂2

∂x2
+ ∂2

∂y2
with a small

resistivity for numerical stability near the PIL ηstable = 1 ×
10−3e−B2z , since the magnetic field often has the strongest
gradient on the photosphere around the main PIL. The surface
induction Equation (5) in the code is realized by second-order
difference in space and first-order forward difference in time.
Specifically, on the bottom boundary (we do not use ghost cell),
we first compute v × B, and then use central difference in
horizontal direction and one-sided difference (also 2nd order) in
the vertical direction to compute the convection term∇×(v×B).
The surface Laplace operator is also realized by central difference.

The curves colored in blue in Figure 2 show the evolution
of different parameters during this relaxation phase3. Initially

2Note that at the very beginning the magnetic energy actually decreases shortly for
about 0.5 ts, which is unphysical as the potential field energy is in principle the
lowest energy with a given magnetic flux distribution on the bottom boundary.
Such an unphysical evolution is a result of the fact that we modified directly the
transverse magnetic field on the bottom boundary in an unphsyical way.
3Note that the initial values of the blue curves (the deeper relaxation phase) do not
equal to the values of the black curves at t = 20ts although the deeper relaxation
phase starts from that time point. This is because in the deeper relaxation process,

FIGURE 4 | Evolution of Poynting flux (black line) and the accumulated energy
(red line) which is time integration of the Poynting flux. The gray bars denote
the data gaps of the vector magnetograms for which a simple linear
interpolation in time is used to fill.

one can see a fast decrease of the magnetic energy because the
magnetic field becomes more relaxed. As the viscosity is reduced
significantly, the kinetic energy first increases, as driven by the
residual Lorentz force of themagnetic field, to almost 5×10−3 E0.
Then as the magnetic field relaxed, the kinetic energy decreases
fast to eventually less than 10−3 E0, which is a very low level.
The residual of magnetic field of two consecutive time steps also
decreases to 10−5. These values show that the magnetic field
reaches an excellent equilibrium.

Figure 3 shows the 3D magnetic field lines of the final relaxed
MHD equilibrium. Note that the field lines are false-colored by
the values of the force-free factor defined as α = J · B/B2, which
indicates how much the field lines are non-potential. For a force-
free field, this parameter is constant along any given field line. As
can be seen, the magnetic field is close to a perfect force-free one
since the color is nearly the same along any single field line. In the
core of the configuration, the field lines are sheared significantly
along the PIL, and thus have large values of α and current density.
On the other hand, the overlying field is almost current-free or
quasi-potential field with α ∼ 0, which plays the role of strapping
field that confines the inner sheared core. Such a configuration is
typical for eruption-productive ARs [e.g., 5, 31–34].

4. DERIVE THE SURFACE FLOW FIELD

Based on the time sequence of vector magnetograms, it is
straightforward to derive the surface velocity by employing
the DARE4VM code developed by [19]. The differential affine
velocity estimator (DAVE) was first developed for estimating
velocities from line-of-sight magnetograms, and was then
modified to directly incorporate horizontal magnetic fields
to produce a differential affine velocity estimator for vector

there are three ways different from the initial relaxation one: (1) the velocity is
reset to zero and the plasma is reset to hydrostatic state, thus the kinetic energy is
reset to zero; (2) the viscosity is abruptly reduced by an order of magnitude; (3)
the boundary condition is changed. Furthermore, not data of every time step in
the run is recorded, thus small difference is shown in the magnetic energy of the
initial value of the blue line (which is not exactly for the time of t = 20ts) from the
t = 20ts of the black line.
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FIGURE 5 | Four snapshots of the surface flows (the final smoothed version) as derived using the DAVE4VM code.

FIGURE 6 | Magnetic energy (Top) and kinetic energy (Bottom) evolution of
the MHD system as driven by the photospheric flows. The black lines represent
the values of the volume-integrated energies. The blue line in the top panel
shows the time integration of the total Poynting flux on the bottom surface
from the simulation. The red line shows the accumulated magnetic energy
from directly the observation data, i.e., the same one shown in Figure 4.

magnetograms (DAVE4VM). We use the SHARP data with
cadence of 12 min and pixel size of 1 arcsec (by rebinning the
original data with pixel size of 0.5 arcsec), and first of all, we

fill the data gap using a linear interpolation in the time domain
to generate a complete time series of 3 days from 00:00 UT on
2014 September 8 to 24:00 UT on September 10 with cadence of
12 min. Then we input the time series of vector magnetogram
(rebinned as 1 arcsec per pixel) in the DAVE4VM code. A key
parameter needed by the DAVE4VM code is the window size, and
here we use 19 pixels, following [35] and [36]. After obtaining the
surface velocity, we first reset those in the weak-field region (with
total magnetic field strength below 100 G) as zero, because there
are large errors and unresolved scales in these regions. Figure 4
shows evolution of the Poynting flux dE/dt, which is defined by

dE

dt
=

1

µ0

∫

S

[

(B2x + B2y)vz − (Bxvx + Byvy)Bz
]

dxdy, (6)

where S is the photospheric surface, and its time accumulation
Eacc, as computed by using the surface flow (vx, vy, vz) and the
magnetic field. It can be seen that, except the data gap intervals4,
the magnetic energy is continually injected in the corona through
the photosphere, and in the 3 days, it gains∼ 5× 1032 erg.

Before being input into the model, the flow data are also
needed to be smoothed. We smoothed the time series of flow
maps in both the time and space domains, with a Gaussian
FWHM of 6 h (i.e., 30 time snapshots) and 8 arcsec, respectively,

4During the data gaps the Poynting flux is found to become negative adruptly,
which might be a result of our simple linear interpolation in filling the gaps of the
magnetograms. More optimized method for filling the data gaps will be considered
to recover a more consistent evolution of Poynting flux.
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FIGURE 7 | Evolution of the magnetic field lines (shown in different view angles in the left and middle columns) and their comparison with observed coronal loops
observed in EUV wavelength of 94 Å by SDO/AIA (right column). The field lines are shown in the same format in Figure 3. An animation of the magnetic field evolution
is attached for this figure.

which is finally input to the data-driven model. Figure 5 shows
4 snapshots of the surface velocity after smoothing. The speed
of the flow is generally a few hundreds of meters per second
and the main feature is a clear and persistent rotation of the
main sunspot. Note that during the 3 days the basic configuration
of the photospheric magnetic flux distribution is rather similar
with only somewhat dispersion. So the magnetic energy injection
should come mainly from the transverse rotational flows. In

addition to the rotational flow, we can see very evident diverging
flow existing persistently near the boundary of the sunspot.

5. DATA-DRIVEN SIMULATION

We input the surface velocity at the bottom boundary to drive
the evolution of the model, by starting the simulation from
the solution obtained from the time point of t = 58 in the
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relaxation phase (see Figure 2) as described in section 3. Here
to save computing time, the cadence of the input flow maps,
which is originally 12 min, was increased by 68.6 times when
inputting into the MHD model. As a result, an unit of time in
the simulation, ts, corresponds to actually ts × 68.6 = 7200 s,
i.e., 2 h, in the HMI data. Compressing of the time in HMI data
is justified by the fact that the speed of photospheric flows is
often a few 100 m s−1. So in our model settings, the evolution
speed of the boundary field, even enhanced by a factor of 68.6,
is still smaller by two orders of magnitude than the coronal
Alfvén speed (on the order of 103 km s−1), and the quick
reaction of the coronal field to the slow bottom changes should
not be affected. The implementation of the bottom boundary
conditions is the same as that for the deeper relaxation phase
described in section 3. That is, on the bottom surface, we
solved the Equation (5) to update all the three components of
magnetic field with the flow field prescribed by those derived
in section 4, while the plasma density and temperature are
simply fixed. In the driven-evolution phase, the kinetic viscosity
is also used as the smaller one ν = 0.051x2/1t, which
corresponds to a Reynolds number of 10 for the length of a grid
cell 1x.

We show an approximately 2-day (a duration of 26 ts or 52 h
in reality) evolution of the MHD system as an example, while the
further evolution associated with an eruption and the physical
mechanisms will be left for future study. Figure 6 presents the
global energy evolutions. It can be seen the magnetic energy
(the black line in the top panel) increases monotonously as
driven by the surface flows. By the end of our simulation, it
reaches approximately 1.8 times of the initial potential energy,
and thus the total magnetic energy obtained in this driving phase
is (1.8 − 1.4) × E0 ≈ 4.8 × 1032 erg. On the other hand, the
kinetic energy (bottom panel of Figure 6) keeps below the level
of 1 × 10−3E0 with a mild increase, which indicates that the
system remains a stable, quasi-static evolution. In the top panel of
Figure 6 we also plots the time integration of total Poynting flux
(the blue line), using the magnetic field and the flow field on the
bottom boundary of the simulation, which is the energy injected
into the volume from the bottom boundary through the surface
flow. If our boundary condition is accurately implemented,
the energy injected from the bottom surface should match the
magnetic energy obtained in the computational volume, since
other energies are negligible if compared with the magnetic
energy. As can be seen, the trend of magnetic energy evolution
(the black line) matches rather well that of the energy input
by the surface flow (the blue line), albeit a small numerical
error that increases slowly the total magnetic energy, which
is also seen in the relaxation phase as shown in Figure 2. It
is worthy noting that the magnetic energy evolution is also
in good agreement with the accumulated magnetic energy as
derived from directly the observation data (the red line, which
is the same value shown in Figure 4 but multiplied by a factor
of 0.052 because the field input to the model is multiplied
by 0.05) as calculated in section 4, which suggests that our
data-driven model can reliably reproduce the magnetic energy
injection into the corona through the photospheric motions. The
small difference between the observation-derived and simulated

FIGURE 8 | Evolution of magnetic flux distribution on the bottom surface in
the simulation, shown for 4 snapshots of the same times shown in Figure 5.

energies might be due to the smoothing of the velocity since it
filters out the small-scale flows that also contribute to the total
Poynting flux.

Figure 7 (and its attached animation) shows the 3D magnetic
field lines and their evolution in comparison with SDO/AIA
image of coronal loops in the 94 Å wavelength which highlights
the hot, core coronal loops in the AR. Overall, we can see a
slow stressing of the field lines mainly through the sunspot
rotational flow. It renders the core field lines to form a more
and more coherent S shape, which resembles the observed
sigmoid structure in the core of the AR. The increase of non-
potentiality can also be seen from the increase of the force-
free factor α in the core region. Figure 8 shows evolution of
the surface magnetic flux distribution (see also the animation
attached to Figure 7). The four snapshots are taken for the
same times given in Figure 5, and thus comparing Figure 8

with Figure 5 shows the difference between the simulated
magnetograms and the observed ones. In addition to the
rotation of the main sunspot, an evident feature is the
enhancement of the field strength along the PIL. This is owing
to the divergence flow from the edge of the sunspot, which
continually convect the magnetic flux to the PIL. Such pileup
of magnetic flux near the PIL, however, is not seen in the
observed magnetograms (Figure 5), which rather show field
decaying. Such decaying of magnetic flux is likely due to the
global turbulent diffusion of photospheric magnetic field by
granular and supergranular convection [37] and other small-scale
turbulence and flux cancellations in the photosphere, which is not
being recovered by the DAVE4VM code and thus not reproduced
in our simulation.
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6. CONCLUSIONS

This paper is devoted to the description of a new approach of
data-driven modeling of solar AR magnetic field evolution, in
which, we have for the first time utilized directly the photospheric
velocity field from DAVE4VM to drive a full-MHD model. To
setup the initial conditions, we used a special MHD relaxation
approach with sufficiently small kinetic viscosity to construct a
true MHD equilibrium based on a single vector magnetogram.
Then we derived the photospheric surface flows from a time
series of observed magentograms based on the DAVE4VM
method. The surface flows were finally inputted, again in time
sequence, to the bottom boundary of the MHD model to self-
consistently update the magnetic field at every time step, which is
implemented by solving directly themagnetic induction equation
at the bottom boundary using finite difference method.

We applied this data-driven model to study the magnetic field
evolution of AR 12158 with SDO/HMI vector magnetograms.
The initial MHD equilibrium is calculated using magnetogram
observed for 00:00UT on 2014 September 8, and a 2-day duration
of the AR evolution is then simulated using the data-driven
MHD model. Overall, the evolution is characterized by a slow
stress of the field lines mainly through the rotational flow of
the AR’s leading sunspot, which makes the core field lines to
forms an coherent S shape consistent with the sigmoid structure
as seen in the AIA images. Such evolution proceeds in a quasi-
static way since the kinetic energy of the system remains less
than its magnetic energy by three orders of magnitude, while
the magnetic energy increases monotonously as driven by the
surface flow, and reaches approximately double of the initial
potential energy by the end of the simulation. The magnetic
energy obtained in the simulation during the surface driving
phase matches closely the accumulated magnetic energy as
calculated directly from the original vector magnetogram with
the DAVE4VM derived flow field.

With the surface flow specified at the bottom boundary,
the magnetic field can be updated self-consistently by solving
the induction equation at the surface boundary. However,
our simulation shows that discrepancy arises between the
simulated magnetic field at the bottom surface with the original
magnetograms. That is, in the simulation, magnetic flux are
significantly enhanced along the PIL, owing to the divergence
flow from the edge of the sunspot, whereas in the observed
magnetograms such pileup of magnetic flux near the PIL is not
seen, which rather shows field decaying. In the next step, we
will try to use some ad-hoc flux cancellation near the PIL, for

which a straightforward way is to increase the value of ηstable in
Equation (5), such that the flux diffusion speed is comparable to
that of the flux pileup. In the future, we will consider to include
the global diffusion of photospheric magnetic field by granular
and supergranular convection to simulate more realistically the
magnetic field evolution. On the other hand, the discrepancy
might result from errors in the vector magnetograms, since
these errors can introduce spurious flows with the DAVE4VM
code and thus influences our simulation. To elucidate this,
we will test our model with error-free magnetograms from
recent convective flux-emergence simulations [e.g., 38–40] as the
ground-truth data.

Our ultimate purpose is to use the model to study how the
coronal field, as driven by the slow photosphericmotions, reaches
a unstable state and runs into eruption. From this, we will be
able to investigate in details the topology of the evolvingmagnetic
field leading to the eruption, to see whether it forms a magnetic
flux rope and becomes ideally unstable [e.g., 41, 42], or, a simply
sheared arcade with a interally-formed current sheet to trigger
flare reconnection [43], which would be helpful for resolving
the long-standing debates on the triggering mechanism of solar
eruptions [44].
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