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Models of disease spreading are critical for predicting infection growth in a population

and evaluating public health policies. However, standard models typically represent the

dynamics of disease transmission between individuals using macroscopic parameters

that do not accurately represent person-to-person variability. To address this issue, we

present a dynamic network model that provides a straightforward way to incorporate

both disease transmission dynamics at the individual scale as well as the full

spatiotemporal history of infection at the population scale. We find that disease spreads

through a social network as a traveling wave of infection, followed by a traveling wave of

recovery, with the onset and dynamics of spreading determined by the interplay between

disease transmission and recovery. We use these insights to develop a scaling theory that

predicts the dynamics of infection for diverse diseases and populations. Furthermore, we

show how spatial heterogeneities in susceptibility to infection can either exacerbate or

quell the spread of disease, depending on its infectivity. Ultimately, our dynamic network

approach provides a simple way tomodel disease spreading that unifies previous findings

and can be generalized to diverse diseases, containment strategies, seasonal conditions,

and community structures.

Keywords: percolation, epidemic, network model, scaling, susceptible-infected-recovered model

INTRODUCTION

Epidemic spreads—such as the 1918 flu, HIV/AIDS, and COVID-19 pandemics—highlight the
critical importance of infectious disease modeling in our everyday lives. Mathematical models can
provide key insights into the process by which disease is transmitted between individuals, help
to forecast how a disease will continue to spread through a population, and assess the efficacy of
different interventions. Developing accurate, computationally-tractable, and generally-applicable
models of disease spreading is therefore of critical importance to public health.

The dynamics of infectious disease spreading are often modeled using compartmental models
[1, 2] that employ the framework of reaction kinetics. For example, in one representation, members
of a population are divided into three intermixed groups: those who are susceptible to infection (S),
currently infected (I), or recovered from infection (R), with transitions from S → I and I → R
occurring at prescribed rates. This standard model, known as the SIRmodel or the SI model in the
absence of recovery, can successfully predict the initial exponential and eventual logistic dynamics
of the total amount of infection in a population for many diseases [3–6]. Thus, the SIR model
provides a useful approach for disease modeling that is well-established.

However, a notable omission of this model is that it does not consider the discrete, spatially-
separated interactions between members of a population. Instead, it assumes a well-mixed
population for which the crucial dynamics of disease transmission between individuals are lumped
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into the basic reproduction number R0, a macroscopic parameter
describing the mean number of secondary transmissions
from each infection. In practice, this quantity is used as a
fitting parameter—limiting projection capabilities when the
interactions between individuals change even slightly [7–12].
A recent example highlighting this deficiency is the spread
of COVID-19 in China: containment policies imposing spatial
barriers and suppressing individual interactions are thought to
have hindered exponential growth of infection, yet this pivotal
effect cannot be captured by the classic SIR model without
invoking additional fitting parameters [13].

To address this issue, sophisticated extensions of this model
have been developed to explicitly incorporate spatial variations
in spreading [2, 14–35]. For example, in one approach, different
subpopulations—each modeled using different SIR dynamics—
are coupled together [2, 36–38]. While powerful, this approach
still employs lumped parameters for each subpopulation that do
not explicitly consider differences between discrete individuals.
Percolation theory provides another powerful way to explore
disease spreading throughout a social network composed of
discrete, spatially-separated individuals, yielding insights into the
onset of disease spreading and the size of disease outbreaks
[16–35, 39]. Nevertheless, models based on this approach also
suffer from limitations: they typically either do not consider
the dynamics of disease spreading and only treat the final
stage of infection, or they also describe the dynamics of
disease transmission using an ad hoc macroscopic parameter
that aggregates the influence of random and uncorrelated
individual interactions. However, transmission is known to
depend sensitively on the full history of infection, on specific
individual behaviors [40] including social distancing [13, 23,
24, 32, 41, 42], and on interactions between different social
networks [39]. Thus, the ability to accurately predict the temporal
evolution of active infections in an overall population, as
well as the full spatiotemporal features of disease spreading,
remains limited.

Here, we build on this previous work to develop an
infection percolation framework to model infectious disease
spreading by applying SIR dynamics to discrete interactions
between members of a population. Our framework explicitly
considers the full spatiotemporal history of infection as well
as individual interactions in describing the spatial variation
and individual dynamics of disease transmission. Simulations
employing this framework show that disease spreads through a
social network as a traveling wave of infection, followed by a
traveling wave of recovery—consistent with previous predictions
obtained using analytical SIR modeling [19, 43, 44]. Analysis
of these waves reveals general features of the total number
of infections, maximal number of active infections, and the
temporal evolution of active infections in a population, and
clarifies how these features are determined by the interplay
between disease transmission and recovery—consistent with the
results of previous percolation simulations [45]. Our framework
therefore provides a simple way to unify different findings
previously obtained using disparate modeling approaches, and
helps to clarify how disease spreading manifests for different
diseases and containment strategies. Finally, as an example of

how our framework can help to go beyond typical models of well-
mixed populations that do not incorporate possible correlations
in individual behavior, we demonstrate how disease spreading is
strongly altered in a spatially heterogeneous social network.

RESULTS

Development of the Dynamic Network
Model
Our approach is inspired by dynamic network modeling of fluid-
driven transport in heterogeneousmedia, which similarly seeks to
predict spatiotemporal features of spreading in complex settings
[46–57]. We represent members of a population, all of whom are
initially susceptible to infection, by sites of a network that are
connected by bonds representing pairwise interactions between
them (section Methods). We describe the intrinsic infectivity
of a given disease throughout this network by the parameter
P∗, where a high value of P∗ characterizes a highly infectious
disease. Crucially, each interaction between individuals ij is
characterized by its own barrier to disease transmission Pth,ij [58];
this threshold explicitly describes the propensity of individual i,
if infected, to transmit the disease to the susceptible individual
j, and depends on individual behaviors such as social distancing
between i and j [13, 23, 32, 42]. Furthermore, if individuals i and j
are infected and susceptible, respectively, the duration of disease
transmission from i to j is given by 1τij; at the population scale,
the mean of all the 1τij can be thought of as the inverse of a
macroscopic disease transmission rate. However, in what follows,
we will describe our results in terms of the time durations, since
our model utilizes the time duration, not rate, in calculations of
different transmission events between individuals.

Previous studies indicate that disease is transmitted between
individuals more rapidly, with shorter 1τij, for stronger
infections P∗ and reduced barriers to transmission Pth,ij [59–69].
We therefore propose the ansatz that disease is only transmitted
if Pth,ij < P∗, with a transmission time 1τij = τ0/f (P

∗ −
Pth,ij), where f monotonically increases from 0 to 1 and τ0 is a
characteristic minimal transmission time. This feature contrasts
with previous percolation-basedmodels, which often assume that
the individual disease transmission times and barriers to disease
transmission are either constant or drawn from two independent
distributions. Instead, by explicit linking the individual 1τij and
Pth,ij, our work provides a way to analyze the competing roles
of individual disease infectivity and susceptibility in influencing
population-scale disease spreading, as we show below.

Finally, as in the classic SIRmodel, we introduce the recovery
duration τr,i after which individual i, if infected, transitions to
a recovered state and can no longer infect other individuals.
The mean of this quantity can be thought of as the inverse of a
macroscopic infection recovery rate. However, in what follows,
we will describe our results in terms of the recovery duration—
again, because our model utilizes the time duration, not rate, in
calculations of different recovery events.

In non-dimensional form, these control parameters—the
infectivity, individual barriers to infection, disease transmission
times, and recovery duration—are then represented by the
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parameters P̃∗ ≡ P∗/Pth,max, P̃th,ij ≡ Pth,ij/Pth,max, 1τ̃ij ≡
1τij/τ0 = 1/f (1 − P̃th,ij/P̃

∗), and τ̃r,i ≡ τr,i/τ0, respectively,
where Pth,max is the maximal value of Pth,ij in the population.
Thus, this framework parses the role of a macroscopic
transmission rate or reproduction number R0 into appropriate
parameters that are globally constant for a particular disease
and parameters that vary by individual, providing a systematic
way to incorporate measurable spreading parameters to model
populations with spatial heterogeneities.

As a first step toward exploring the spatiotemporal features
of disease spreading in this framework, we construct two-
dimensional (2D) simulations implementing these deterministic
rules. We represent the social network as a static square lattice
with Nt = 104 sites, though exploring more complex networks
with small world and scale-free features [20, 70–72] will be an
important direction for future work. The disease is introduced
at the central site at time τ̃ ≡ τ/τ0 = 0. For simplicity, we
take the barriers to disease transmission P̃th,ij to be undirected,

with P̃th,ij = P̃th,ji; however, directed transmission is known
to dramatically change disease spreading in some networks,
and will be useful to explore in future implementations [40].
The P̃th,ij have randomly assigned values that are chosen from

a uniform distribution—and kept fixed for all computations
performed for a given distribution—though we later test other
distributions as well. We describe the individual dynamics of
disease transmission using the simplest linear function, f =
1 − P̃th,ij/P̃

∗, and take recovery to be an intrinsic property of a
given disease, with τ̃r,i set to a constant value τ̃r throughout the
lattice network.

Infection Percolation in a Recovery-Free
Population
We first investigate the recovery-free case with τ̃r → ∞. For
a disease with low infectivity, P̃∗ ≪ 1, only a small subset
of individual interactions lead to transmission; thus, a large
portion of the population becomes inaccessible to infection,
and disease spreading is localized (Supplementary Movie 1)—
reminiscent of subcritical bond percolation. For sufficiently
high infectivity, however, a sufficient number of individual
interactions permit transmission for the disease to spread
throughout the population—reminiscent of supercritical bond
percolation. The example of P̃∗ = 0.6 (Supplementary Movie 2)
is shown at an intermediate time τ̃ = 100 in Figure 1A. For
this infectivity, the disease spreads in a spatially heterogeneous,

FIGURE 1 | Recovery suppresses the onset and dynamics of disease spreading. For a population without recovery: (A) A disease with intermediate infectivity

P̃* = 0.6 spreads in a spatially heterogeneous, ramified pattern, while (B) a disease with higher infectivity P̃∗ = 0.7 spreads in a more compact region. (C) Growth of

infected fraction φ over time τ̃ is hindered for diseases with low infectivity, but exhibits a generic quadratic scaling over time as indicated by the triangle, which

eventually plateaus near unity for diseases with infectivity above a critical value. Infection growth is slower as P̃∗ decreases. (D) Total infected fraction φt exhibits an

abrupt increase above a critical infectivity, P̃c,0 ≈ 0.5, indicating a percolation transition to an epidemic. For a population with recovery after τ̃r = 4: (E) A disease with

intermediate infectivity P̃∗ = 0.6 remains localized and does not spread, while (F) a disease with higher infectivity P̃∗ = 0.7 spreads in a spatially heterogeneous,

ramified pattern. (G) Growth of infected fraction φ over time τ̃ is hindered for diseases with low infectivity, but exhibits a generic quadratic scaling at intermediate times

and linear scaling at longer times as indicated by the triangles, before reaching a peak value φp before dropping rapidly to zero for diseases with infectivity above a

critical value. Infection growth is slower as P̃∗ decreases. (H) Total infected fraction φt and peak infected fraction φp, which represent the total infected fraction at the

end of a given simulation and the maximal infected fraction during the simulation, respectively, both exhibit an abrupt increase above a critical infectivity, P̃c ≈ 0.65,

that is larger than the recovery-free case—indicating that recovery suppresses the percolation transition to an epidemic. Images in (A,B,E,F) are for the same time

τ̃ = 100. All data are for a uniform distribution of individual interaction barriers P̃th,ij ∈ [0, 1]. Each curve in (C,G) and each point in (D,H) represents a separate

simulation, all of which preserve the same lattice network structure of the P̃th,ij and only vary P̃∗ and τ̃r , enabling us to systematically test the influence of these two key

parameters on disease spreading.
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ramified pattern, reminiscent of supercritical bond percolation
near the percolation threshold. This heterogeneous spreading
leads to the formation of discrete clusters of bypassed individuals
who remain uninfected (white in Figure 1A). For diseases of
higher infectivity, disease spreading is more compact: the leading
front of the infected population becomes more smooth, resulting
in fewer and smaller uninfected clusters, as shown for the
example of P̃∗ = 0.7 in Figure 1B and Supplementary Movie 3.
Clearly, disease infectivity strongly influences the spatiotemporal
features of spreading.

To gain further insight into disease spreading, we repeat these
simulations for a broad range of P̃∗, and characterize the infection
growth dynamics by measuring the time-dependent infected
fraction of the population, φ. We again observe a bifurcation in
infection behavior. For low infectivity, the disease spreads slowly
(light curves in Figure 1C), ultimately only infecting a total
fraction φt ≪ 1 (points with P̃∗ < 0.5 in Figure 1D). By contrast,
for sufficiently high infectivity, the disease spreads rapidly with
φ ∼ τ̃ 2 (dark curves in Figure 1C), ultimately infecting nearly
the entire population (points for P̃∗ > 0.5 in Figure 1D). The
abrupt onset of rapid spreading throughout the population at a
critical infectivity P̃c,0 ≈ 0.5 again suggests that disease spreading
can be described as a dynamic process of percolation through
infected bonds, consistent with previous calculations [17, 18, 20–
35, 39]. This suggestion is further confirmed by the value of P̃c,0,
which coincides with the critical probability of bond percolation
on the 2D square lattice [34, 73, 74]. We find no discernible
difference in these results when the simulations are performed
with lattice networks that are up to two orders of magnitude
larger (Supplementary Figure 1), suggesting that our results are
not strongly sensitive to finite-size effects.

Why does infection growth show quadratic scaling in time
for P̃∗ > P̃c,0? At the leading front of the infected population,
new individuals are infected over a range of transmission times
1τ̃ij = 1/(1 − P̃th,ij/P̃

∗) ∈ [1,∞), leading to heterogeneous

disease spreading. However, as P̃∗ increases, a greater proportion
of disease transmission between individuals occurs in the shortest
possible time τ0, corresponding to 1τ̃ij = 1, resulting in more
compact spreading (Figure 1B). Hence, the leading front of the
infected population spreads radially outward on the 2D social
network lattice at a maximal rate of 1 new individual per τ0,
therefore spanning an overall region with a maximal radius of
τ̃ individuals. The maximal infected fraction of the population
is then given directly by the area of this infected region: φ ≈
πτ̃ 2/Nt , consistent with a previous result in percolation theory
[75] and yielding the quadratic scaling shown in Figure 1C. As
this infected region spreads, it eventually reaches the boundary
and spans the entire population at a shortest possible time
of τ̃f ,0 ≈

√
Nt/2 = 71 (SI text)—in good agreement with

the onset of the plateau in φ at τ̃ ≈ 100 for the highest
P̃∗ shown in Figure 1C. As P̃∗ decreases, we expect that the
infected region spreads at a slower rate, as a greater proportion
of disease transmission occurs at 1τ̃ij > 1—also in good
agreement with the variation of the curves in Figure 1C. The
variability in these curves reflects the increasing importance of
the variability in the individual barriers; different simulations
employing different choices of the randomly-chosen P̃th,ij would

yield slightly different dynamics. However, in all cases, we expect
that decreasing P̃∗ leads to slower transmission as a greater
proportion of disease transmission occurs at 1τ̃ij > 1.

Infection Percolation in a Population With
Recovery
How do these results change when infected individuals
can recover? To address this question, we perform the
same simulations as in Figures 1A–D, but with τ̃r = 4.
This modification markedly alters disease spreading. For
P̃∗ = 0.6, the spread of disease is quickly quenched by
recovery [31], and only a few individuals are ever infected
(Figure 1E, Supplementary Movie 4). Thus, even above the
critical infectivity for percolation in the recovery-free case, P̃c,0 ≈
0.5, recovery gives rise to subcritical spreading behavior. For a
higher infectivity of P̃∗ = 0.7, the disease does continue to
spread, eventually reaching the boundaries of the population as
in supercritical bond percolation. However, unlike the recovery-
free case, it does so in a spatially heterogeneous, ramified pattern
(Figure 1F, Supplementary Movie 5). Close inspection of the
spatiotemporal pattern of infection and recovery reveals the
underlying cause: recovery of infected individuals before they
can transmit the disease shields clusters of individuals who
would have otherwise been infected, as exemplified by the large
uninfected region in the top right of Figure 1F, which was
heavily infected in the recovery-free case shown in Figure 1B.
Together, these results hint that recovery suppresses infection
percolation. The competition between infection and recovery
also drastically alters the time evolution of the infected fraction
φ. For low infectivity, recovery is sufficiently fast to quench the
spread of disease (light curves in Figure 1G). As a result, the
total fraction of the population ever infected φt ≪ 1 (points
with P̃∗ < 0.65 in Figure 1H). By contrast, for sufficiently high
infectivity, the disease initially spreads rapidly, first with φ ∼ τ̃ 2

as in the recovery-free case and then with φ ∼ τ̃ 1 (dark curves
in Figure 1G). As time progresses φ eventually reaches a peak
value φp before dropping rapidly to zero as the entire population
recovers. Both φt and φp increase precipitously above the critical

infectivity P̃c ≈ 0.65 > P̃c,0 (Figure 1H), again indicating that
recovery suppresses infection percolation. Again, the variability
in the curves in Figure 1G reflects the variability in the individual
barriers; different simulations employing different choices of the
randomly-chosen P̃th,ij would yield slightly different dynamics.

However, in all cases, we expect that decreasing P̃∗ leads to slower
transmission as a greater proportion of disease transmission
occurs at 1τ̃ij > 1.

To further explore the competition between infection and
recovery, we inspect the spatiotemporal patterns of both using
simulations performed at several different values of P̃∗ and τ̃r ,
with snapshots all taken at τ̃ = 75 shown in Figure 2. For a
large value of τ̃r = 10, the critical infectivity for percolation
is P̃c ≈ 0.6; for P̃∗ slightly above this value, disease spreading
is heterogeneous, with recovered individuals again shielding
clusters of individuals who would have otherwise been infected
(Figure 2A). For even higher P̃∗, disease spreading becomes
more compact (Figures 2B,C). Moreover, the leading front of
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FIGURE 2 | The competition between infection and recovery determines the onset and pattern of disease spreading. For a population with a longer recovery duration

τ̃r = 10.0, (A) a disease with lower infectivity P̃∗ = 0.7 spreads in a ramified pattern, while diseases with higher infectivities P̃∗ = 0.9 and 1.1 (B,C) spread in a more

compact manner. The leading front of the infected population is trailed by an inner region of recovery, leading to the formation of a circular traveling pulse of infection.

For a shorter recovery duration of τ̃r = 3.0, (D,E) the threshold infectivity for appreciable disease spreading is larger, and (E,F) the pulse of infection is thinner. These

effects are even more pronounced for the shortest recovery duration of τ̃r = 2.1, as shown in (G–I). The thick green line indicates the transition to infection percolation.

All images are shown for the same time τ̃ = 75 and all data are for a uniform distribution of individual interaction barriers P̃th,ij ∈ [0, 1] preserving the same lattice

network structure of the P̃th,ij throughout, thus demonstrating how varying P̃∗ and τ̃r influences disease spreading.

the infected population is trailed by an inner compact region
of recovery, leading to the formation of a wide circular pulse

of infection that travels outward through the population (dark

blue region in Figures 2B,C). This feature is notably similar to
the traveling pulses of infection predicted by extensions of the
classic SIR model [19, 43, 44]—highlighting the ability of our
framework to reproduce previously-reported continuum-scale
phenomena. We observe similar behavior at smaller values of τ̃r ,
but shifted to increased values of P̃∗ (Figures 2D–I): recovery
can increasingly quench the spread of disease as it becomes
faster relative to infection transmission. As a result, the critical
infectivity for percolation, P̃c, shifts to higher values (thick green
line in Figure 2), further confirming that recovery suppresses
infection percolation. Recovery also strongly impacts the number

of infected individuals: as τ̃r decreases, the thickness of the pulse
of infected individuals decreases (compare Figures 2C,F,I).

These results demonstrate the key influence of recovery on
disease spreading; we therefore examine the underlying model
further to develop and test analytical relations that confirm the
internal consistency of our simulations. We first focus on the
observation that faster recovery can quench the spread of disease.
At the leading front of the infected population, new individuals
are infected only when the infection transmission time 1τ̃ij =
1/(1−P̃th,ij/P̃

∗) is shorter than the recovery time τ̃r ; otherwise, an
infected individual recovers from the disease before they are able
to transmit it to a neighbor. Thus, only individual interactions
with P̃th,ij < P̃∗(1 − τ̃−1

r ) can transmit disease. For a disease
to continually spread throughout the population, a sufficient
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number of these interactions must permit disease transmission,
as given by the critical probability of bond percolation P̃c,0; that
is, infection percolates only when P̃c,0 < P̃∗(1− τ̃−1

r ). The critical
infectivity in a population with recovery is then directly given by
the relation

P̃c =
P̃c,0

1− τ̃−1
r

, (1)

which increases with τ̃r : faster recovery suppresses infection
percolation. This dependence is in good agreement with the shift
in the critical infectivity shown in Figures 1D,H and by the thick
green line in Figure 2.

To further confirm the internal consistency of our
simulations, we explore values of τ̃r spanning nearly two
orders of magnitude. For each simulation, we vary the disease
infectivity P̃∗ and identify the critical infectivity P̃c at which
the total fraction of the population ever infected φt abruptly
increases, similar to the curves shown in Figures 1D,H.
Consistent with our expectation, all the data for different τ̃r show
similar growth when plotted as a function of the shifted P̃∗ − P̃c
(Figure 3A). Moreover, the variation of the critical infectivity P̃c
with τ̃r shows excellent agreement with Equation 1 (dashed line,
Figure 3A inset).

Finally, we test the generality of this relation by exploring two
other distributions of P̃th,ij: a normal distribution, representing
a population with random and uncorrelated interactions whose

variation is distributed about a single mean value, and a
bimodal distribution, representing a population with distinct
high-risk and low-risk subpopulations arising from, for example,
differences in compliance with public health interventions. Our
central findings that the onset and dynamics of disease spreading
are regulated by the interplay between disease transmission and
recovery are consistent across the different distributions tested.
Specifically, for all the distributions tested, we observe a similar
abrupt increase in φt with P̃∗ above a critical infectivity P̃c, with
excellent alignment of all the data for different τ̃r (Figures 3A–C).
In all cases, the value of P̃c determined shows close agreement
with Equation (1) (Figures 3A–C insets). A bimodal population
in which half of the contacts between members maintain high
barriers to transmission while the other interspersed connections
do not—such as through strong or weak social distancing,
respectively—has P̃c slightly less than this relation, indicating that
it is slightly more susceptible to infection.

General Scaling of Infection Growth
Dynamics
We next focus on the observation that, for high P̃∗, the leading
front of the infected population is trailed by an inner region
of recovery. At the leading front of the infected population,
the shortest possible disease transmission time is again 1τ̃ij =
1; therefore, the leading front spans an overall region with a
maximal radius of τ̃ individuals, as in the recovery-free case. For

FIGURE 3 | Amount of infection shows a general dependence on disease infectivity across populations with different recovery durations and distributions of individual

interaction barriers. (A–C) Data for the total infected fraction φt align when plotted as a function of the shifted disease infectivity P̃∗ − P̃c; insets show that the critical

infectivity P̃c is given by the relation in Equation (1) (dashed lines). (D–F) Data for the rescaled peak infected fraction φ̃p ≡ φp/(φp)max show reasonable alignment when

plotted as a function of the shifted disease infectivity P̃∗ − P̃c; insets show that the theoretical φ(τ̃p) calculated using Equation (2) (dashed lines) provides a reasonable

approximation to the maximal peak fraction (φp)max determined for P̃∗ = 2. Intriguingly, all the datasets appear to approximately converge as τ̃r increases. All three

distributions span P̃th,ij ∈ [0, 1]; the normal distribution is centered at 0.5 and has standard deviation = 0.25, while the bimodal is constructed from two normal

distributions centered at 0 and 1, both with standard deviation = 0.25. Each point represents a separate simulation, all of which preserve the same lattice network

structure of the P̃th,ij for a given distribution and only vary P̃∗ and τ̃r , enabling us to systematically test the influence of these two key parameters on disease spreading.
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short times τ̃ < τ̃r , these individuals have not yet recovered;
hence, we expect that φ ≈ πτ̃ 2/Nt again in this regime,
in agreement with the short-time quadratic scaling shown in
Figure 1G as well as the recovery-free quadratic scaling shown
in Figure 1C. At longer times τ̃ ≥ τ̃r , infected individuals begin
to recover, forming an inner region of recovery. The leading
front of this region spreads at the same rate as the leading front
of the infected population; however, it only spans a maximal
radius of τ̃ − τ̃r individuals. The maximal infected fraction of
the population is then given by the area between the leading
fronts of the infected and recovered populations: φ ≈ π[τ̃ 2 −
(τ̃ − τ̃r)

2]/Nt = πτ̃ 2r (2τ̃ /τ̃r − 1)/Nt , yielding the measured
intermediate-time linear scaling (Figure 1G). Furthermore, as
the infected region spreads, it eventually reaches the boundary,
followed by the growing region of recovery τ̃r later. We therefore
expect that the infected fraction φ will peak at a time τ̃p ≈

√
Nt/2

before dropping rapidly and reaching zero at τ̃f ≈
√
Nt/2 + τ̃r ,

corresponding to τ̃p ≈ 50 and τ̃f ≈ 75, respectively, for τ̃r = 4 (SI
text)—in good agreement with the results shown in Figure 1G.
Together, these calculations yield a general expression for the full
time evolution of the infected fraction of a population in the limit
of high P̃∗ well above the threshold Pc, in excellent agreement
with the data shown in Figure 1G:

φ(τ̃ ) ≈
{

πτ̃ 2/Nt when τ̃ < min(τ̃r , τ̃p)
[

πτ̃ 2r (2τ̃ /τ̃r − 1)
]

/Nt when τ̃r ≤ τ̃ ≤ τ̃p
(2)

As P̃∗ decreases, we again expect that the infected region spreads
at a slower rate, prolonging τ̃p—also in good agreement with the
different curves shown in Figure 1G.

Equation (2) also provides an approximation of the peak
infected fraction, φp = φ(τ̃p), in the limit of high P̃∗; for
the case of τ̃r = 4, we estimate φp ≈ 0.1, consistent
with the data shown in Figure 1G. To further examine this

relation, we analyze the results of all the simulations described
in Figure 3 with varying τ̃r . For each simulation, we determine
the maximal value of φp, (φp)max, at P̃

∗ = 2, the highest value
tested. Consistent with our expectation, φp = φ(τ̃p) calculated
using Equation (2) (dashed line, Figure 3D inset), provides a
reasonable approximation to the measured (φp)max (data points,

Figure 3D inset). Furthermore, all the data for φ̃p ≡ φp/(φp)max

show reasonable alignment when plotted as a function of the
shifted P̃∗− P̃c (Figure 3D), with some deviation for the smallest
τ̃r likely arising from geometric effects not taken into account in
our simple estimate of φp = φ(τ̃p). We again test the generality
of these results by exploring their applicability to a normal
distribution and a bimodal distribution of P̃th,ij; the results are
closely similar in all three cases (Figures 3D–F). Taken together,
all of the results shown in Figures 1–3 support the validity of our
scaling relations.

As a final exploration of these relations, we use all of our

simulations to directly test the general expression for the infected

fraction φ given by Equation (2). All of the data collapse onto this
scaling curve for all values of τ̃r and distributions of P̃th,ij tested
(Figures 4A–C). Furthermore, the peak in φ and its eventual
drop to zero occur at values of τ̃ /τ̃r close to the predicted values
τ̃p/τ̃r ≈

√
Nt/2τ̃r and τ̃f /τ̃r ≈

√
Nt/2/τ̃r + 1, respectively.

Thus, the close agreement between all the data and the theoretical
prediction confirm the internal consistency of our simulations
with the scaling relations. We note that the analytical expression
represents the solution for the high infectivity limit with high
P̃∗; however, as indicated by the data in Figures 1G, 4A–C,
it provides a good approximation for the spreading dynamics
of a broad range of diseases with P̃∗ & Pc. Intriguingly,
similar quadratic power-law scalings have been reported for the
initial regional epidemic spreads of COVID-19 [13], though
explaining the full dynamics of this pandemic involves additional
complexities that we do not consider here.

FIGURE 4 | Total fraction of active infections in a population shows general dynamics across populations with different recovery durations and distributions of

individual interaction barriers. (A–C) Growth of rescaled infected fraction φ̃ ≡ φ(τ̃ )/φ(τ̃r ) with rescaled time τ̃ /τ̃r shows general quadratic to linear scaling as indicated

by the triangles, followed by a drop to zero at τ̃f/τ̃r ≈
√

Nt/2/τ̃r + 1. Data shown are for the largest disease infectivity tested, P̃∗ = 2. Distributions of individual

interaction barriers and colors indicating different recovery durations τ̃r are the same as in Figure 3. Each point represents a separate simulation, all of which preserve

the same lattice network structure of the P̃th,ij for a given distribution and only vary τ̃r .
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Extension to Spatially Heterogeneous
Networks
While our simple implementation thus far considered
distributions of P̃th,ij that were homogeneously mixed over
the social network lattice, our framework allows for spatially
heterogeneous networks to be constructed to model disease
spreading in specific community structures [8, 9, 76]. As
an example of this idea, we test disease spreading from the
boundary between two stratified subpopulations, each on
a separate lattice with a different mean P̃th,ij, representing
differences in susceptibility to infection that can arise from
differences in containment strategies or in socioeconomic factors
[3, 8–10]. Depending on the viral infectivity P̃∗, we find that
stratification can either markedly exacerbate or hinder the overall
amount of infection, and the total amount of infection in each
subpopulation, compared to the homogeneously-mixed case
(Figure 5). Specifically, for diseases of intermediate infectivity,
disease spreading is stronger in the stratified population—the
total infected fraction φt is two orders of magnitude larger than
in the homogeneously-mixed case—due to the earlier onset of
infection percolation in the more susceptible subpopulation.
However, for diseases of higher infectivity, disease spreading
is slightly stronger in the homogeneously-mixed population;
in the stratified case, the less susceptible subpopulation buffers
against continued spread of disease. These results exemplify
how our framework provides a way to directly assess the
critical role played by community structure in the spread of
disease. More extreme forms of heterogeneity—for example with
small-world connections between subpopulations, or power law
distributions in susceptibility—can easily be incorporated within
this framework, and will be an interesting direction for future

research. For example, as suggested in previous work [44], we
anticipate that long-range connections between regions with
disparate susceptibilities will increasingly fragment traveling
waves of infection.

DISCUSSION

The framework presented here provides a direct way to merge
the temporal dynamics underlying the classic SIR model with a
network representation of all the discrete interactions between
members of a population. We demonstrate this principle using
2D lattice simulations implementing a simplified form of this
framework. Our simulations reveal that, for diverse diseases and
populations, disease spreading can be understood as a process
of infection percolation through a social network. By testing
different recovery durations and distributions of individual
interaction parameters, we find that the onset and dynamics
of spreading are determined by the interplay between disease
transmission and recovery at the scale of individual interactions.
This finding thus builds on the rich body of previous work
exploring disease spreading through the lens of percolation
theory [16–35].

Guided by these insights, we develop a scaling theory that
yields general predictions for the total number of infections,
maximal number of active infections, and the temporal evolution
of active infections in a population. Importantly, our scaling
theory clarifies how these predictions can be applied to different
diseases, with varying infectivities P̃∗ and recovery durations
τ̃r , and different populations, with varying distributions of the
individual barriers to interaction P̃th,ij e.g., due to different
implementations of containment strategies like social distancing.

FIGURE 5 | Spatial heterogeneity strongly alters disease spreading. (A) Homogeneously-mixed population i.e., the distribution of P̃th,ij ∈ [0, 1] is bimodal, constructed

from two normal distributions centered at 0 and 1, both with standard deviation = 0.25, and with P̃th,ij values randomly distributed through the lattice network. In this

case, the disease slowly spreads through the population in a spatially heterogeneous manner. (B) Stratified population with the exact same overall distribution of

P̃th,ij ∈ [0, 1], but with the individuals comprising the normal distributions centered at 0 (more susceptible) and 1 (less susceptible) isolated to the bottom and top

halves of the lattice network, respectively. In this case, disease spreading is dramatically worsened; the total amount of infection is larger than the

homogeneously-mixed case. Moreover, disease spreading is stronger in the more susceptible subpopulation and is weaker in the less susceptible subpopulation.

Images show the case of a disease with infectivity P̃∗ = 0.525, a population with recovery duration τ̃r=10, and time τ̃ = 100. (C) Variation of the total infected fraction

φt with the disease infectivity P̃∗ for both populations. For diseases of intermediate infectivity, P̃∗ = 0.425 to 0.55, disease spreading is stronger in the stratified

population. For diseases of higher infectivity, P̃∗ = 0.55 to 0.85, disease spreading is stronger in the homogeneously-mixed population. Each point represents a

separate simulation, all of which preserve the same lattice network structure of the P̃th,ij for either the homogeneously-mixed or stratified case and only vary P̃∗.

Dashed line indicates P̃∗ = 0.525, corresponding to the images in (A,B).
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Our simulations represent a first step toward implementing
this framework. Thus, we have necessarily made a number of
simplifying assumptions that can be relaxed in future extensions
of this work. For example, our simulations consider a social
network represented by a static, 2D, square lattice—while in
reality, social networks are dynamic and have more complex
structures. While previous work suggests that the assumption
of a static network may not greatly alter disease spreading
[34], our framework can be implemented on dynamically-
changing networks using a time-dependent matrix of individual
interactions (P̃th,ij). Furthermore, while previous work suggests
that disease spreading is well-approximated by spreading on a
2D network covering the Earth’s surface [22, 77, 78], networks
of different dimensionality d can also be implemented—which
would result in a more general form of Equation (2) with
φ ∼ τ̃ d at short times and φ ∼ τ̃ d−1 at longer times.
Previous work also suggests that social networks can have
broadly-distributed degree distributions [20, 72], small world
connections [70, 71], or multiple layers [39] unlike the fixed 2D
connectivity of our lattice; moreover, disease transmission can
occur among groups, not just pairs of individuals, which would
require consideration of a network with higher-order interactions
[79]. Incorporating these features into our framework will be
a valuable direction for future work. Indeed, the random long-
range connections that arise in small-world networks could
disrupt the traveling waves of infection and recovery we observed
in our simple network, or even seed new traveling waves of
infection and recovery, potentially leading to richer dynamics.
Our treatment of individual interactions can also be extended in
future work. For example, the barriers to disease transmission
P̃th,ij need not be undirected, and the recovery durations τ̃r,i
need not be constant throughout the network. Furthermore,
our representation of the disease transmission function f =
1 − P̃th,ij/P̃

∗ represents the simplest linear function, and can
instead be replaced by a more complex form that incorporates
the sophisticated dynamics of transmission specific to different
diseases [80].

Our framework could also enable straightforward assessment
of the efficacy of different public health policies. For example,
the implementation of strong social distancing results in an
increase in Pth,max, leading to a reduction in P̃∗ and hence a
reduction in the peak infected fraction of the population, φp

(Figures 3D–F)—consistent with previous work [10, 13, 81].
Alternatively, the development of better treatments shortening
the recovery duration τ̃r also leads to a reduction in the maximal
peak infected fraction of the population, (φp)max (Figures 3D–F,
insets); it also hastens the transition to slow linear scaling
and eventual decline of infection growth (Figures 4A–C)—again
consistent with previous work [41, 82]. The influence of other
factors that are documented to impact disease spreading—
e.g., seasonality of infectivity [11, 12, 83–87], heterogeneity in
community susceptibility [8, 9], and targeted vaccination [10]—
can also be evaluated through appropriate modifications to P̃∗

and P̃th,ij. For example, targeted vaccination yielding perfect
immunity is typically implemented by removing nodes from the
network [10, 88]; in our framework, this could equivalently be
accomplished by setting Pth,ij > P∗, therefore preventing further

infection of a node, while imperfect immunization [89, 90] could
alternatively be implemented through smaller increases in Pth,ij.

METHODS

Implementation of the Network Model
We implement the dynamic network model in MATLAB. To
define each 2D square lattice of 100 by 100 individuals (“nodes”),
we specify node locations and an adjacency matrix characterizing
the connectivity of the network. To ensure only one horizontally-
oriented border between the two subpopulations in the stratified
population shown in Figure 5, we employ a periodic boundary
condition in the horizontal direction by connecting the first
and last nodes in each row for all simulations; the nodes at
the top and bottom boundaries do not have such conditions,
ensuring that the vertical direction is non-periodic. For the bonds
between nodes (“edges”), we randomly assign the values of the
interaction barrier P̃th,ij ∈ [0, 1] from a given distribution, as
specified in the main text. Each simulation has a specified disease
infectivity P̃∗ and recovery duration τ̃r . From the values of P̃th,ij
and P̃∗, we compute the discrete infection transmission times
1τ̃ij = 1/(1− P̃th,ij/P̃

∗) for each edge. The simulations shown in
Figures 1, 2, 3A,D, 4A are for the exact same lattice with the exact
same configuration of P̃th,ij taken from a uniform distribution.
Similarly, the simulations shown in Figures 3B,E, 4B are for
the exact same lattice with the exact same configuration of P̃th,ij
taken from a normal distribution, and the simulations shown in
Figures 3C,F, 4C are for the exact same lattice with the exact
same configuration of P̃th,ij taken from a bimodal distribution.

To perform each simulation, we use a modified invasion
percolation algorithm based on the method described by Masson
et al. [91]. We start at τ̃ = 0 by introducing the disease at the
central node of the lattice, with all the other nodes specified as
being susceptible (S). Then, for the next and each successive time
step of the simulation, we use a binary tree structure to sort all
edges in contact with infected nodes and find themost susceptible
edge ij—the edge with the minimal infection transmission time
1τ̃ij. The next node to become infected, j, is then the node that
is connected to the infected region through this most susceptible
edge. This target node is then specified as being infected (I), and
its time of infection is specified by adding the time increment1τ̃ij
to the overall elapsed time τ̃ . We also decrease the remaining
transmission times for all edges in contact with infected nodes
by this time increment. New edges made available for infection
by node j are added to the binary tree; because the tree was
mostly sorted in the last step, subsequent sorts are time-efficient.
We incorporate recovery by identifying all infected nodes for
which at least τ̃r has elapsed since infection, setting its infection
transmission time to all nodes connected to it as being equal to
∞, and specifying the node as being recovered (R).
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