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In this article, we analyze the time series of minute price returns on the Bitcoin market
through the statistical models of the generalized autoregressive conditional
heteroscedasticity (GARCH) family. We combine an approach that uses historical
values of returns and their volatilities—GARCH family of models, with a so-called
Mixture of Distribution Hypothesis, which states that the dynamics of price returns are
governed by the information flow about the market. Using time series of Bitcoin-related
tweets, the Bitcoin trade volume, and the Bitcoin bid–ask spread, as external information
signals, we test for improvement in volatility prediction of several GARCHmodel variants on
a minute-level Bitcoin price time series. Statistical tests show that GARCH(1,1) and
cGARCH(1,1) react the best to the addition of external signals to model the volatility
process on out-of-sample data.
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1 INTRODUCTION

The first mathematical description of the evolution of price changes in a market dates back to
Bachelier [1] (later rediscovered as Brownian motion, or randomwalk model), Mandelbrot [2] (price
increments are Lévy stable distribution), and truncated Lévy processes [3]. An opposing hypothesis
(later named “Mixture of Distribution Hypothesis”) was introduced by Clark [4], where the non-
normality of price returns distribution is assigned to the varying rate of price series evolution during
different time intervals. The process that is driving the rate of price evolution is proposed to be the
information flow available to the traders. Due to the governing of the information flow, the number
of summed price changes per observed time interval varies substantially, and the central limit
theorem cannot be applied to obtain the distribution of price changes. Nevertheless, a generalization
of the theorem provides a Gaussian limit distribution conditional on the random variable directing
the number of changes [4]. In a different approach, the autoregressive conditional heteroscedasticity
(ARCH) [5] model, originally introduced by Engle, describes the heteroscedastic behavior (time-
varying volatility) of logarithmic price returns relying only on the information of previous price
movements. In addition to the previous values of price returns, its generalized variant GARCH [6]
introduces previous conditional variances as well when calculating the present conditional variance.
GARCH is thus able to account for volatility clustering and for the leptokurtic distribution of price
returns, both the stylized statistical properties of returns. An alternative view comes from the
GARCH-Jump model [7], which assumes that the news process can be represented as ϵt � ϵ1,t + ϵ2,t ,
a superposition of a normal component ϵ1,t � σtzt and a jump-like Poisson component with intensity
λ. The constant intensity was generalized to autoregressive conditional jump intensity λt �
f (λt−1) in [8].

Edited by:
Cuneyt Gurcan Akcora,

University of Manitoba, Canada

Reviewed by:
Jiuchuan Jiang,

Nanjing University of Finance and
Economics, China
Asim Kumer Dey,

The University of Texas at Dallas,
United States

Dorcas Ofori-Boateng,
Portland State University,

United States

*Correspondence:
Nino Antulov-Fantulin

anino@ethz.ch

Specialty section:
This article was submitted to

Social Physics,
a section of the journal

Frontiers in Physics

Received: 19 December 2020
Accepted: 30 April 2021
Published: 21 May 2021

Citation:
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Contrary to other studies about news jump dynamics and
impact on daily returns [8, 9], we will model the volatility and
external signals on a minute-level granularity. On this timescale,
our external signals are not modeled with Poisson-like dynamics,
but added directly as an exogenous observable variable It−1 to
form GARCHX model.

In this article, we compare price volatility predictions of
GARCH(1,1) with those of GARCHX (1,1) to explore how
information is absorbed into the emerging cryptocurrency
market of Bitcoin. The Bitcoin [10] is a cryptocurrency system
operated through the peer-to-peer network nodes, with a publicly
distributed ledger called blockchain [11]. Similar to the foreign
exchange markets, Bitcoin markets [12, 13] allow the exchange to
fiat currencies and back. Different studies on Bitcoin quantify the
price formation [14, 15], bubbles [16, 17], volatility [18, 19],
systems dynamics [20–22], and economic value [23–25]. Various
studies [26–29] have used social signals from social media,
WWW, search queries, sentiment, comments, and replies on
forums, and [30] added information from the blockchain as an
external signal to the GARCH model. Several models from the
GARCH family have been used for modeling and forecasting of
multiple cryptocurrencies [31, 32] on a daily level and IGARCH
was shown to be superior to other models. Twitter data have been
exploited to give successful daily [33] predictions on Bitcoin
volume and volatility using only Twitter volume, and successful
hourly predictions on returns and volatility with the added
Twitter sentiment [34]. We focus this study on understanding
Bitcoin volatility process and the statistical quantification of the
predictive power of the class of GARCH models with exogenous
signals from social media tweets, trading volume, and order book
on a minute level timescale.

2 DATA

We used two types of price definitions, the mid-quote price and
the volume-weighted price, both calculated at a minute level.
Mid-quote price was constructed as the average between the
maximum bid and the minimum ask price on the last tick per
minute, and the volume-weighted average price (VWAP) as the
volume-weighted average of transaction prices per minute.

Sampling prices at such a high frequency brings up the issue of
microstructure effects, such as bid–ask bounce, that introduces
the autocorrelation between consecutive prices. Because of that,
in addition to volume weighted prices, we use mid-quote prices
that have a significantly smaller first order of autocorrelation, as
explained in [35], to strengthen the robustness of the results. An
autocorrelation plot for both types of price returns is shown in the
Appendix.

The Bitcoin prices were obtained from the Bitfinex exchange,
and logarithmic returns were calculated as a natural logarithm of
two consecutive prices. The period we observed spans from April
18th, 2019, to May 30th, 2019, with 58,000 observations in total,
50,000 observations as in-sample, and 8,000 as out-of-sample,
and is shown on Figure 1A. In the table in Figure 1B, we can see
the descriptive statistics of both kinds of logarithmic returns; the
mean values of the returns are very close to zero (8 · 10− 6), with
standard deviations of 9.41 · 10− 4 and 9.94 · 10− 4, both
distributions are negatively skewed and leptokurtic.

Three different datasets for external signals were available as
the external information proxy—a time series of the number of
tweets mentioning cryptocurrency-related news [36], a time
series of Bitcoin trade volumes from Bitfinex market, and a
time series of Bitcoin bid–ask spread, created as a time series
of absolute differences between the maximum bid and the
minimum ask price at every recorded instant, also from
Bitfinex market. The data are collected on a second level and
shown in Figures 2A–C, with the descriptive statistics in
Figure 2D. All three time series were aggregated to the
minute level. The data were not normalized.

3 MIXTURE OF DISTRIBUTION
HYPOTHESIS

The “Mixture of Distribution Hypothesis” models the non-
normality of price returns distribution with the varying rate of
price series evolution due to the different information flow
during different time intervals. Practically, Clark [4]
hypothesizes that this can be observed as a linear
relationship between the proxy for the information flow It
and the price change variance r2t , and suggests trading volume

FIGURE 1 | Volume-weighted and mid-quote logarithmic returns for the Bitcoin market. (A) Time series. (B) Descriptive statistics.
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vt as the proxy. Tauchen and Pitts [37] state a bivariate normal
mixture model which conditions the price returns and trading
volume on the information flow as:

rt � ∑It
i�1

rt,i, rt,i ∈ N (0, σ1). (1)

vt � ∑It
i�1

vt,i, vt,i ∈ N (μ2, σ2). (2)

Both, the price return and trading volume are mixture of
independent normal distributions with the same mixing

variable It , which represents the number of new pieces of
information arriving to market. Conditioned on It , price
changes are distributed as N (0, Itσ1) and the trading volume
is distributed asN (Itμ2, Itσ2), and the model can be rewritten as:

rt � σ1

��
It

√
z1t , z1t ∈ N(0, 1). (3)

vt � μ2It + σ2
��
It

√
z2t , z2t ∈ N(0, 1). (4)

The relationship between price variance and trading volume
immediately follows:

Cov(r2t , vt) � σ1μ2Var(It), (5)

FIGURE 2 | (A) Time series external signal of cryptocurrency-related tweets. (B) Time series of trading volume on Bitfinex market for BTC-USD pair. (C) Time series
of bid–ask spread on Bitfinex market for BTC-USD pair. (D) Descriptive statistics of external signals for Bitcoin market.

FIGURE 3 | (A) Squared volume-weighted price returns–volume correlation. All values of correlation are statistically significant (p-value ≤ 0.001). Permutation
significance check indicates no statistically significant correlation between time-permuted squared price returns and volume series. (B) Squared volume-weighted price
returns–bid–ask spread correlation. All values of correlation are statistically significant (p-value ≤ 0.001). Permutation significance check indicates no statistically
significant correlation between time-permuted squared price returns and volume series.
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and the stochastic term in Eq. 4 shows that the above-proposed
linear relationship is only an approximation.

To start our analysis, we calculated correlation plots for the
relationship between the external signals and the squared VWAP
price returns. The correlation between squared price returns and
volume was calculated for different time lags of the volume time
series, as shown in Figure 3A. Both have a peak when the external
series leads the squared price returns by 1 min. The significant
correlation, that is, normalized covariance between squared price
returns and trading volume indicates an approximately linear
relationship between the volatility and the two proxies for
information flow (see Eq. 3). The result we got using the
bid–ask spread as an external signal can be seen (Figure 3B)
to be analogous to the one obtained for volume.

In Appendix, we plot the same correlation calculation for
cryptocurrency-related tweets (see Figure A2A). We do not
observe a similar correlation (covariance) pattern as for
volume and bid–ask spread signals. Multiple reasons could be
behind this: 1) a large noise in the Twitter signal might be
covering the information flow w.r.t. trading volume signal, 2)
linear dependence might not be enough to capture the
relationship, or 3) Twitter signal might not contain a sufficient
information flow to influence price volatility. If noise is i.i.d., then
“integrated external signal” ~I(t) � ∫t

t−δ Itdt should filter the noise
component. We observe that the stronger correlation pattern is
present after the Twitter series is integrated with δ � 30 min (see
Appendix Figure A2B), which indicates that strong noise is
present in Twitter series.

4 TRANSFER ENTROPY BETWEEN
INFORMATION FLOW AND VOLATILITY
PROXY
To proceed, we move from the linear dependence that is captured
with correlation ρ(r2t , vt) to check the nonlinear dependence
argument between the squared returns and external
information flow It signals (volume, bid–ask spread, and
Twitter) in causal setting r2t � f (It−1, rt−1). In particular, for
the squared price return process {r2t } and external information
proxy process {It}, we calculate transfer entropy (TE) [38].

TEI→ r2 :� H(r2t+1∣∣∣∣r2t ) − H(r2t+1∣∣∣∣r2t , It), (6)

where H(X|Y) :� −∑i,jp(xi, yj)log[p(xi
∣∣∣∣∣yj)] denotes the

conditional Shannon entropy. Transfer entropy is an
information-theoretic measure that is both nonlinear and
nonsymmetric, and it does not require a Gaussian assumption
for the time series [39]. The nonsymmetry allows us to
distinguish the direction of information exchange between
time series, It and r2t . In Figure 4, we present the results for
transfer entropy from external variables to squared returns time
series and conversely. The stationarity of the series was checked
using the ADF test and the hypothesis of the unit root was
rejected at a 1% significance. Results of the transfer entropy
analysis show that values are significant, with the largest one
being the transfer entropy from squared returns to trading

volume. The statistical significance (p-value) of transfer
entropy was estimated by a bootstrap method of the
underlying Markov process [40]. To account for the finite
sample size, we use the effective transfer entropy (ETE) measure:

ETEI→ r2 � TI→ r2 − 1
M

∑M
m�1

TI(m) → r2, (7)

where I(m) is the mth shuffled series of I [41]. We observe a
stronger information transfer from the volume signal and the
bid–ask spread to squared returns than from the Twitter signal to
squared returns. At this point, we conclude that all external
signals show significant dependence toward the proxy for
volatility signal, that is, squared returns.

5 GENERALIZED AUTOREGRESSIVE
CONDITIONAL HETEROSCEDASTICITY
WITH EXTERNAL INFORMATION FLOW
Using the transfer entropy analysis, we have found statistically
significant dependence between historical information proxy and
volatility proxy, but not the actual functional dependence.
Therefore, we now turn to the class of generalized
autoregressive conditional heteroscedasticity models [6] that
will describe the price return process and augment it with the
external information flow proxy signal.

The GARCH(1,1) model conditions the volatility on its
previous value and the previous value of price returns:

rt � μt + εt , εt � σ tzt , zt ∈ N(0, 1). (8)

σ2
t � ω + αε2t−1 + βσ2t−1. (9)

Large α coefficient indicates that the volatility reacts intensely to
market movements, while large β shows that the impact of large
volatilities slowly dies out. The volatilities defined by the model
display volatility clustering and the respective distribution of
price returns are leptokurtic, which agrees with the
observations in the real data.

Motivated by MDH and TE analysis, we formed a GARCHX
model by adding the proxy for the information flow It−1 directly
to the GARCH volatility equation:

σ2
t � ω + αε2t−1 + βσ2

t−1 + cIt−1. (10)

We will compare price volatility predictions of GARCH(1,1) with
those of GARCHX (1, 1) to explore how information is absorbed
into the emerging cryptocurrency market of Bitcoin.

5.1 Volatility GARCHX Process analysis
We turn our attention to the statistical quantification of the
GARCH volatility processes. For fitting the data to a GARCH
process and making out-of-sample estimates, we use the rugarch
library [42] in R, available from CRAN (https://cran.r-project.
org/). Apart from expanding GARCH(1,1) to GARCHX(1,1), we
add the exogenous variable to models eGARCH(1,1),
cGARCH(1,1), and TGARCH(1,1) as well, to check for
improvement in volatility predictions. The conditional
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Barjašić and Antulov-Fantulin Time-Varying Volatility in Bitcoin

https://cran.r-project.org/
https://cran.r-project.org/
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


variance equations corresponding to these models (see Table 1)
are extensions of Eq. 5. eGARCH [43] and TGARCH [44] capture
the asymmetry between positive and negative shocks, giving a
greater weight to the later ones, with the difference between them
being the multiplicative and the additive contribution of
historical values, and cGARCH [45] separates long- and short-
run volatility components.

To get the intuition on how good the GARCH volatility
models are at explaining the volatility, we regress a · σ2t + b
on squared returns r2t [46], where σ2t is the squared GARCH
volatility estimate (out-of-sample). Then, we measure the
coefficient of determination R2, that is, the proportion of
the variance in the dependent variable that is predictable
from the independent variable. We determine the statistical
significance of with the F-test. Additionally, we measure the

Pearson correlation coefficient (PCC) of estimated σ2t and
squared returns r2t , along with its statistical significance,
Figure 5.

However, for a more precise statistical quantification of
the difference between models and their GARCHX
variants, more advanced statistical tests are needed. For
that purpose, we employ predictive negative log-likelihood
(NLLH) [47].

~L � −ln(L(μ1, . . . , μn, σ1, . . . , σn))
� −∑n

i�1
(1
2
ln(σ i) + 1

2
ln(2π) − (ri − μi)2

2σ2i
). (11)

We evaluated predictive negative log-likelihood (NLLH) on the
out-of-sample period. Values of {μi}ni�1 and {σ i}ni�1 are predictions

FIGURE 4 | Transfer entropy (TE) and effective transfer entropy (ETE) between external signals (Twitter, volume, and bid–ask spread) and squared returns (VWAP
and mid-quote price returns). All transfer entropy results are statistically significant (p-value smaller than 0.001), additionally the presence of unit-roots was checked with
augmented Dickey–Fuller test (α � 0.01).

TABLE 1 | GARCH family.

eGARCH

ln(σ2t ) � ω + α[∣∣∣∣∣∣∣εt−1σt−1

∣∣∣∣∣∣∣ − E
∣∣∣∣∣∣∣εt−1σ t−1

∣∣∣∣∣∣∣] + δ εt−1
σ t−1 + β ln(σ2t−1)

cGARCH

σ2t � qt + α(ε2t−1 − qt−1) + β(σ2t−1 − qt−1)
qt � ω + ρqt−1 + θ(ε2t−1 − σ2t−1)

TGARCH

σt � ω + αεt−1 + βσt−1 + ϕεt−11[εt−1 < 0]
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of the model, and {ri}ni�1 is the observed price returns. To show
whether the improvements can be considered significant, we
employed the likelihood ratio test. It takes the natural
logarithm of the ratio of two log-likelihoods as the statistic:

LR � −2ln(L(θ0)L(θ)). (12)

Since its asymptotic distribution is χ2-distribution, a p-value is
obtained using Pearson’s chi-squared test. In Figure 6, we see
from the p-values that the exogenous variables improve the
NLLH significantly for all the models except for eGARCH, for
logarithmic returns are created from VWAP. When mid-quote
prices are used, a significant improvement is observed only for
GARCH and cGARCH.

Note, that for twomodels with fixed parameters, the likelihood
ratio test is the most powerful test at given significance level α, by
Neyman–Pearson lemma.

In order to further test the robustness of the conclusions on
different samples, we perform the bootstrapping. We restrict the
lengths of in-sample and out-of-sample to T � 1000 points each
and sample N � 100 such blocks with replacement from the
original time series. Then, for each block, we fit a model on its in-

sample data segment and calculate predictive out-of-sample
NLLH {~Li}Ni�1.

In Eq. 11, Mi represents a model from the GARCH family
{GARCH, cGARCH, eGARCH, and TGARCH} and Mi,j denotes
its corresponding GARCHX extension, where external signal j ∈
{Volume, Twitter, Bid–ask spread}. ModelsMi andMi,j will have
empirical distribution functions ψMi

(~L) and ψMi,j
(~L),

respectively (see boxplots estimates in Figure 7). We calculate
the Kolmogorov–Smirnov (KS) statistics between corresponding
empirical predictive out-of-sample NLLH distributions:

KSi,j � sup
~L

∣∣∣∣∣ψMi
(~L) − ψMi,j

(~L)∣∣∣∣∣, (13)

and obtain its statistical significance. In Figures 7, 8, we can see
that both GARCH and cGARCH models show significant
improvements with all the external variables and both price
definitions, under the bootstrapping KS-NLLH robustness
check. That is not surprising, as the nonparametric KS test is
not very powerful [48]. However, significant differences for the
GARCH and cGARCH models allow us to confirm that its
predictive power is robust under temporal bootstrapping
conditions. Finally, we take the GARCH volatility process as a

FIGURE 5 | Out-of-sample measures for the GARCH volatility process. In-sample consists of 50,000 points and out-of-sample consists of 8000 points. All PCC
values are statistically significant. R2 statistical significance was checked using F-statistic, and satisfied for all the values.

FIGURE 6 |Results of out-of-sample likelihood ratio test. In-sample consists of 50,000 points and out-of-sample consists of 8,000 points. *Blue palette represents
the p-value smaller than 0.001. NaN—some algorithms had convergence problems.
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representative and perform additional bootstrapping KS–NLLH
robustness checks on two additional segments (March–April
2019 and November–December 2019) and we see similar
results (See Appendix Figure A3).

6 DISCUSSION

Although the theoretical foundations of the effects of information
on markets have been proposed a long time ago [1, 2], they were
further developed in 1970, as “weak”, “semi-strong”, and “strong”
forms of efficient market hypothesis [49]. The mathematical
models of information effects continued to advance in the 70s
as well, by the proposition of the Mixture of Distribution
Hypothesis [4], which states that the dynamics of price returns
are governed by the information flow available to the traders.
Following the growth of computerized systems and the
availability of empirical data in the 80s, more elaborate
statistical models were proposed, such as generalized
autoregressive conditional heteroscedasticity models (GARCH)
[6] and news Poisson-jump processes [7] with constant intensity.
Furthermore, studies from the 2000s generalized the news
Poisson-jump processes by introducing time-varying jump
effects, supporting it with the statistical evidence of time
variation in the jump size distribution [8, 9].

In this article, we have analyzed the effects of information flow
on the cryptocurrency Bitcoin exchange market that appeared
with the introduction of blockchain technology in 2008 [11].
Although the trading volume in the largest cryptocurrency
markets has grown exponentially in the last 10 years, still the
research on their (in)efficiency quantification is ongoing [50, 51].
We have focused on the Bitcoin, the largest cryptocurrency w.r.t.
market capitalization, and used the reliable data of price returns
and traded volume and bid–ask spread from Bitfinex exchange
market [52] on a minute-level granularity. The price returns were
calculated using two different definitions, VWAP and mid-quote,
to account for possible market-microstructure noise. Another
reason, why we have concentrated on the Bitcoin, was the
availability of Twitter-related data [36]. We have used the
social media signals from Twitter, trading volume and bid–ask
spread from the Bitcoin market as a proxy for information flow
together with the GARCH family of [53] processes to quantify the
prediction power for the price volatility.

We started the analysis by employing recently developed
nonparametric information-theoretic transfer entropy measures
[38, 40, 41], to confirm the nonlinear relationship between the
exogenous proxy for information (trading volume, bid–ask spread,
and cryptocurrency related tweets) and squared price returns
(proxy for volatility). Further on, we have made extensive
experiments on the following models: GARCH, eGARCH,

FIGURE 7 | Bootstrap robustness check over N � 100 splitting points with T � 1,000 training points and T � 1,000 test size for GARCH and GARCHX models. The
price is defined as volume-weighted. The nonparametric Kolmogorov–Smirnov test of the equality of the NLLH out-of-sample distributions between the GARCH and
GARCHX models is done. (A) KS test implies a significant difference for both external signals for the GARCH model. (B) KS test implies no significant difference for
external signals for the eGARCH model. (C) KS test implies no significant difference for both external signals for the cGARCH model. (D) KS test implies no
significant difference for external signals for the TGARCH model.
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cGARCH, and TGARCH on the minute-level data of price
returns, Twitter volume, exchange volume data, and bid–ask
spread. Our testing procedure consisted of multi-stage
statistical checks: 1) out-of-sample R2 and Pearson
correlation measurements, 2) out-of-sample predictive
likelihood measurements with the likelihood ratio test on
8,000 points, and 3) bootstrapped predictive likelihood
measurements with the nonparametric Kolmogorov–
Smirnov test. From the predictive perspective of the
nonlinear parametric GARCH model, we have found that
exogenous proxy for information flow significantly improves
out-of-sample minute volatility predictions for the GARCH
and cGARCH [54] models. It is not surprising that the basic
GARCH model is outperforming more advanced models [46,
55] such as eGARCH [43] and TGARCH [44] on out-of-
sample data. Also, a previous study [18] found that the
cGARCH model on the Bitcoin market was performing
the best on in-sample daily returns.

Finally, we have taken the GARCH model and applied the
bootstrapping on two additional segments (March–April 2019
with 38,000 points and November–December 2019 with 52,000
points) and we observe that our observations still hold (see
Appendix Figure A3). For future work, we leave focusing on
other cryptocurrencies and analyzing the cross-market volatility
spillovers, in which different market behavior modes could be
studied separately.
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Copyright © 2021 Barjašić and Antulov-Fantulin. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Physics | www.frontiersin.org May 2021 | Volume 9 | Article 64410210
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APPENDIX

FIGURE A1 | Autocorrelation of price returns. The first-order autocorrelation of mid-quote price returns is significantly smaller than that of volume-weighted price
returns, indicating a smaller level of microstructure noise in mid-quote price returns. Confidence interval.

FIGURE A2 | (A) Correlation between squared price returns and Twitter volume. Permutation significance check indicates no statistically significant correlation
between time-permuted squared price returns and Twitter time series. (B) Correlation between squared price returns and integrated Twitter volume (over a 30-min
moving window). This test is only used to check whether the integrating operator is filtering noise. Correlation between squared price returns and Twitter time series. All
values of correlation are statistically significant (p-value ≤ 0.001).
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FIGURE A3 | Bootstrap robustness check over N � 100 splitting points with T � 1000 training points and T � 1000 points in test size for GARCH and GARCHX
models. The nonparametric Kolmogorov–Smirnov test of the equality of the NLLH out-of-sample distributions between GARCH and GARCHX models is done. (A) KS
test implies a significant difference for all external signals for the GARCHmodel in the period fromNovember 3rd, 2019 to December 9th, 2019 with 52,000 observations.
(B) KS test implies a significant difference for all external signals for the GARCH model in the period from March 18th, 2019, to April 9th, 2019, with 38,000
observations.
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