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The algebraic structure and Poisson’s integral of snake-like robot systems are studied.

The generalized momentum, Hamiltonian function, generalized Hamilton canonical

equations, and their contravariant algebraic forms are obtained for snake-like robot

systems. The Lie-admissible algebra structures of the snake-like robot systems are

proved and partial Poisson integral methods are applied to the snake-like robot systems.

The first integral methods of the snake-like robot systems are given. An example is given

to illustrate the results.
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INTRODUCTION

The snake-like robot, which is based on the biological characteristics of snakes, constitutes an
important branch of bionic robots [1]. Hirose developed the first snake robot in 1972 [2]. The snake
robot is significantly different from a tracked robot, wheeled robot, and legged robot, being amobile
robot with high redundancy. Because of the multi-joint flexible structure design, a snake robot has
the advantage of multi-gait motion and the ability to adapt to a complex unknown environment,
and can be widely used in disaster rescue, underwater surveys, industrial testing, and other special
environments that traditional robots or humans cannot enter; as a result, increasing attention is
being paid to snake robots [3–6].

In 1946, Gray divided movement gaits into serpentine movement, rectilinear movement,
concertina movement, and sidewinding movement in the study of the biological nature of snakes
[7]. According to this study, there are two starting points to study the motion of the snake-like
robot: One is to observe the movement rule of biological snakes from the perspective of bionics,
and then apply the rule to the snake-like robot to verify its effectiveness and controllability; on the
other hand, the physical models are established according to the actual physical systems, and based
on the physical model a control law is proposed to make snake-like robots move in a serpentine
motion. For example, Tang et al. [8] studied the control methods of snake-like robots in different
environments. Hirose established a serpentine gait kinematics model with linkage structures based
on the observation of biological snake movement processes and bone anatomy [2], Lilijeback et
al. analyzed the position relationship between a snake robot and obstacles, proposed an obstacle
assistant movement gait in planar motion, and built the kinematics and dynamics model for the
snake robot [9, 10]. At present, the serpentine motion of many snake-like robots are realized on
the passive wheel, while the passive wheel provides a non-holonomic constraint for the system of
snake-like robots in dynamics, so it is necessary to analyze and discuss the constraint systems of
snake-like robots. Ostrowski and Burdick [11] and Guo et al. [12] developed the kinematic model
considering the constraint systems of snake-like robots.
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FIGURE 1 | Mechanical structure of snake-like robot.

It is well-known that algebraic structure and Poisson’s theory
for constrained mechanical systems have been developed to
seek invariants of mechanical and physical systems [13, 14].
Mei and Shi [15] have extended this method to non-holonomic
constrained mechanical systems. Fu et al. have studied the
algebraic structure and Poisson’s theory of the relativistic
Birkhoffian system, rotational relativistic dynamical system,
mechanico-electrical coupling system, and f (R) cosmology
system [16–18]. In this paper, we make an effort in this direction
and demonstrate the applications of the algebraic structure and
Poisson’s theory of dynamical systems to snake-like robot system.
This paper gives the algebraic structure and the first integral
methods of snake-like robots. Firstly, the kinematics of the
snake-like robot is analyzed, and then the generalized Lagrange
equations and generalized Hamilton canonical equations of
the snake-like robot systems are given. Secondly, contravariant
algebraic forms of snake-like robot systems are obtained. Thirdly
the Lie-admissible algebraic structure of the snake-like robot is
researched. Fourthly, the Poisson integral methods are applied to
the snake-like robot systems. Finally, an example is studied for a
snake-like robot.

LAGRANGIAN OF SNAKE-LIKE
ROBOT SYSTEMS

In order to facilitate the analysis, the snake-like robot systems are
simplified as a link mechanism, each link rod represents a joint
of the snake-like robot (mechanical structure of snake-like robot
systems are depicted in Figure 1). Then, according to Figure 1,
we can get the analysis as follows: let (xi , yi

)

denote the center
of gravity of each joint (each coordinate is set in the middle of
each link), ϕi is the angle between the link and the horizontal
direction,

(

xh, yh
)

and the θh denote the position of the snake-
like robot and the absolute angle of snake-head, respectively, and

FIGURE 2 | A simplified model of one unit of the snake-like robot.

mh denotes the weight of the head of the robot. Length 2l and
weightm are the same for each link.

We choose qi = ϕi, qn+1 = xh, qn+2 = yh, qn+3=θh,

(i = 1, 2, · · · , n) as the generalized coordinates.
From Figure 1, the relationship between the center of gravity

of each joint
(

xi, yi
)

and the position of the snake head
(

xh, yh
)

can be given by

xi = qn+1 + 2l cos
(

qn+3

)

+ 2l

i−1
∑

k=1

cos
(

qk
)

+ l cos
(

qi
)

,

(i = 1, · · · , n) (1)

yi = qn+2 + 2l sin
(

qn+3

)

+ 2l

i−1
∑

k=1

sin
(

qk
)

+ l sin
(

qi
)

,

so, the generalized velocities of snake-like systems can be given by

ẋi = 7q̇n+1 − 2l sin
(

qn+3

)

q̇n+3 − 2l

i−1
∑

k= 1

sin
(

qk
)

q̇k − l sin
(

qi
)

q̇i,

ẏi = q̇n+2 + 2l cos
(

qn+3

)

q̇n+3 + 2l

i−1
∑

k= 1

cos
(

qk
)

q̇k + l cos
(

qi
)

q̇i.

(2)

We give a simplified model of one unit of the snake-like robot
system as shown in Figure 2.

The constraint equations of the snake-like robot system are
given by

ẋi sin
(

qi
)

− ẏi cos
(

qi
)

= q̇n+3+iR, (3)

where qn+3+i = γi denotes the rotating angle of each unit’s
sideslip, R denotes the turning radius of the unit;

submitting constraints (2) into (3), we can derive

fβ
(

q, q̇
)

= q̇n+1 sin
(

qi
)

− q̇n+2 cos
(

qi
)

− 2l cos
(

qn+3 − qi
)

q̇n+3
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−2l

i−1
∑

k= 1

cos
(

qi − qk
)

q̇k − lq̇i − q̇n+3+iR = 0. (4)

The symbols cos and sin are written as C and S respectively, then
the kinetic energy of the snake-like robot system is given by

T =
1

2

[

mh

(

q̇2n+1 + q̇2n+2

)

+ Jhq̇
2
n+3

]

+
1

2
m

n
∑

i= 1

[

q̇2n+1 + q̇2n+2

+4l2q̇2n+3 + 4l2





(

i−1
∑

k=1

S
(

qk
)

q̇k

)2

+

(

i−1
∑

k= 1

C
(

qk
)

q̇k

)2




+l2q̇22 + 4lq̇n+3

(

q̇n+3C
(

qn+3

)

− q̇n+1S
(

qn+3

))

+4lq̇n+2

i−1
∑

k=1

C
(

qk
)

q̇k − 4lq̇n+1

i−1
∑

k=1

S
(

qk
)

q̇k + 2lq̇n+2C
(

qi
)

q̇i

−2lq̇n+1S
(

qi
)

q̇i + 8l2q̇n+3S
(

qn+3

)

i−1
∑

k= 1

S
(

qk
)

q̇k+8l
2q̇n+3

C
(

qn+3

)

Cq̇k + 4l2q̇n+3q̇2S
(

qn+3

)

S
(

qk
)

+4l2q̇n+3q̇2C
(

qn+3

)

C
(

qk
)

+ 4l2S
(

qi
)

q̇i

i−1
∑

k= 1

S
(

qk
)

q̇k

+4l2C
(

qi
)

q̇i

i−1
∑

k= 1

C
(

qk
)

q̇k
]

+
1

2

n
∑

i= 1

Jyq̇
2
i +Jγ q̇

2
n+3+i,

(i = 1, · · · , n) . (5)

The potential energy of the snake-like robot system is assumed
to be

U=0. (6)

The dissipative functions of the snake-like robot system are
assumed to be given by

D =
1

2
Dxy

n
∑

i= 1

[

q̇2n+1 + q̇2n+2 + 4l2q̇2n+3

+4l2





(

i−1
∑

k= 1

S
(

qk
)

q̇k

)2

+

(

i−1
∑

k= 1

C
(

qk
)

q̇k

)2




+l2q̇22 + 4lq̇n+3

(

q̇n+3C
(

qn+3

)

− q̇n+1S
(

qn+3

))

+4lq̇n+2

i−1
∑

k= 1

C
(

qk
)

q̇k − 4lq̇n+1

i−1
∑

k= 1

S
(

qk
)

q̇k + 2lq̇n+2C
(

qi
)

q̇i

−2lq̇n+1S
(

qi
)

q̇i + 8l2q̇n+3S
(

qn+3

)

i−1
∑

k= 1

S
(

qk
)

q̇k+8l
2q̇n+3

C
(

qn+3

)

i−1
∑

k= 1

C
(

qk
)

q̇k + 4l2q̇n+3q̇2S
(

qn+3

)

S
(

qk
)

+4l2q̇n+3q̇2C
(

qn+3

)

C
(

qk
)

+ 4l2S
(

qi
)

q̇i

i−1
∑

k= 1

S
(

qk
)

q̇k

+4l2C
(

qi
)

q̇i

i−1
∑

k= 1

C
(

qk
)

q̇k
]

+
1

2

n
∑

i= 1

Dyq̇
2
i . (7)

The Routh equation of the snake-like robot system can be
given by

d

dt

∂T

∂ q̇ s

−
∂T

∂qs
= Qs +

n
∑

β=1

λβ

∂fβ

∂ q̇s

(s = 1, · · · , 2n+ 3;β = 1, · · · , n) . (8)

After derivation of the constraints of the snake-like robot system
(4), we have

ḟβ
(

q, q̇
)

=0. (9)

From Equation (8) and (9), the Lagrange multiply λ can be
calculated as

λ = {λ1, λ2, . . . , λn} (10)

Submitting (10) into (8), we can derive

d

dt

∂T

∂ q̇ s

−
∂T

∂qs
= Qs + 3s , (s = 1, · · · , 2n+ 3) (11)

where 3s =
n
∑

β=1

λβ
∂fβ
∂ q̇s

.

The motion equation (12) of the complete system
corresponding to the snake-like robot system (4, 11) can be
given as

d

dt

∂L

∂ q̇ s

−
∂L

∂qs
= Qs

′ + 3s, (12)

where Qs
′ = −

∂Ds
∂ q̇s

+ τ − ∂U
∂qs

are the non-potential force, 3s =

λβ
∂fβ
∂ q̇s

the generalized nonholonomic constraint anti-forces, L =

T − U the Lagrangian of the snake-like robot system.

GENERALIZED HAMILTON CANONICAL
EQUATIONS OF SNAKE-LIKE
ROBOT SYSTEMS

Assume that the generalized momentums of snake-like robot
systems are

p1 =
∂L

∂ q̇1
=

1

2

[(

−4m (n− 1) lS
(

qn+3

)

−2mlS
(

qn+3+q1
))

q̇n+1

+
(

4m (n− 1) lC
(

qn+3

)

+ 2mlC
(

qn+3 + q1
))

q̇n+2

+
(

2m (2+4 (n− 1)) l2Ch1

)

q̇n+3

+
(

8m (n− 1) l2 + 2ml2 + 2Jy
)

q̇1 + · · · +
(

4ml2C1n

)

q̇n
]

, (13)

p2 =
∂L

∂ q̇2
=
1

2

[(

−4m (n− 2) lS
(

qn+3

)

− 2mlS
(

q2
))

q̇n+1

+
(

4m (n− 2) lC
(

qn+3

)

+ 2mlC
(

qn+3 + q1
))

q̇n+2

+
(

2m (2+ 4 (n− 2)) l2Ch2

)

q̇n+3
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+
(

2m (2+ 4 (n− 2)) l2C12

)

q̇1 +
(

8m (n− 2) l2 + 2ml2 + 2Jy
)

q̇2 + · · · +
(

4ml2C2n

)

q̇n
]

, (14)

...
...

...

pn =
∂L

∂ q̇n
=

1

2

[(

−2mlS

(

qn+3 +

n
∑

k= 1

qk

))

q̇n+1

+

(

−2mlC

(

qn+3 +

n
∑

k = 1

qk

))

q̇n+2

+
(

4ml2Ch2

)

q̇n+3 +
(

4ml2C1h

)

q̇1 + · · · +
(

2ml2 + 2Jy
)

q̇n
]

, (15)

pn+1 =
∂L

∂ q̇n+1
=

1

2

[

(2mh + 2mn) q̇n+1 + (0) q̇n+2

+
(

−4mnlS
(

qn+3

))

q̇n+3

+
(

−4m (n− 1) lS
(

qn+3

)

− 2mlS
(

qn+3 + q1
))

q̇1 + · · · +
(

−2mlS

(

qn+3 +

n
∑

k= 1

qk

))

q̇n
]

, (16)

pn+2 =
∂L

∂ q̇n+2
=

1

2

[

(0) q̇n+1 + (0) q̇n+2 +
(

4mnlC
(

qn+3

))

q̇n+3

+
(

4m (n− 1) lC
(

qn+3

)

+ 2mlC
(

qn+3 + q1
))

q̇1 + · · · +
(

−2mlC

(

qn+3 +

n
∑

k= 1

qk

))

q̇n
]

, (17)

pn+3 =
∂L

∂ q̇n+3
=

1

2

[(

−4mnlS
(

qn+3

))

q̇n+1

+
(

4mnlC
(

qn+3

))

q̇n+2 + (2mh + 2mn) q̇n+3 (18)

+
(

2m (2+ 4 (n− 1)) l2Ch1

)

q̇1 + · · · +
(

4ml2Chn

)

q̇n
]

,

pn+4 =
∂L

∂ q̇n+4
= Jr q̇n+4, (19)

...

p2n+3 =
∂L

∂ q̇2n+3
= Jr q̇2n+3. (20)

And introduce the Hamiltonian of the snake-like robot system as

H
(

t, q, q̇
)

= psq̇s − L = psq̇s
(

t, q, p
)

− L
(

t, qs, q̇s
(

t, q, p
))

= H
(

t, q, p
)

, (21)

where p =
{

p1, p2, · · · , p2n+3

}

denotes generalized momentums,
equation (16) can be partially regularized as

q̇s =
∂H

∂ps
, ṗs = −

∂H

∂qs
+ Qs

′ + 3s|q̇s = q̇s
(

t, q, p
)

,

(s = 1, · · · , 2n+ 3) (22)

which is called the generalized Hamilton canonical equation of
snake-like robot systems.

CONTRAVARIANT ALGEBRAIC FORMS OF
SNAKE-LIKE ROBOT SYSTEMS

For snake-like robot systems, we can introduce
contravariant vectors

aµ =

{

qµ

pµ−n

(µ = 1, · · · , 2n+ 3) ,

(µ=2n+4, · · · ,4n+6) ,
(23)

then the Hamiltonian of snake-like robot systems will be written
in the form

H
(

t, qs, ps
)

= H
(

t, aµ
)

. (24)

For generalized Hamilton canonical equation (15) of snake-like
robot systems, we let

(

Qs
′ + 3s

)

|qs = qs
(

t, q, p
)

= 3′
s = −�sk

∂H

∂pk
(

s, k = 1, · · · , 2n+ 3
)

, (25)

where

�sk =











�11 0 · · · 0
0 �22 · · · 0
...

...
. . .

...
0 0 · · · �(2n+3)(2n+3)











, (26)

then Equation (15) can be expressed in the contravariant
algebraic form

ȧµ − Sµν ∂H

∂aν
= 0, (µ, v = 1, · · · , 4n+ 6) (27)

where

Sµν = ωµν + Tµν (28)

ωµν =

(

0(2n+3)(2n+3)

−I(2n+3)(2n+3)

I(2n+3)(2n+3)

0(2n+3)(2n+3)

)

, (29)

Tµν =

(

0(2n+3)(2n+3) 0(2n+3)(2n+3)

0(2n+3)(2n+3) −�kk

)

. (30)

It is obvious that the tensor Sµν is composed of anti-symmetrical
tensor ωµν and symmetrical tensor Tµν .

ALGEBRAIC STRUCTURE OF SNAKE-LIKE
ROBOT SYSTEMS

Firstly, we study the algebraic structure of snake-like
robot systems.

Performing the full derivative of function A (a) along
Equation (27), and this derivative is defined as a product:

Ȧ (a) =
∂A

∂aµ

Sµν ∂H

∂aν

def
= A ◦ H, (µ, v = 1, · · · , 2n+ 3) (31)

this product satisfies the right-hand assignment law, left-hand
assignment law, and scalar law, so we can derive that the snake-
like robot system possesses a compatible algebraic structure.

If the snake-like robot system in Equation (27) possesses the
Lie algebraic structure, then Equation (31) satisfies the anti-
symmetrical property

A ◦ B+ B ◦ A = 0, (32)
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and Jacobi identical equation

[A, [B,C]]+ [B, [C,A]] + [C, [A,B]] = 0. (33)

When considering Equations (28)-(30), Equations (32) and (33)
lead to a condition with respect to Tµν

Tµν + Tνµ = 0 (34)

Tτρ ∂Tµν

∂aρ
+ Tµρ ∂Tντ

∂aρ
+ Tνρ ∂Tτµ

∂aρ
= 0, (35)

(µ, v, τ , ρ = 1, · · · , 4n+ 6).

Further, we have �kk = 0, Qs = 0,
(

s, k = 1, · · · , 2n+ 3
)

. Then
Equation (27) has no Lie algebraic structure, and we have

Conclusion 1: The snake like-robot systems do not have Lie
algebraic structure.

For Equation (31), we define a new product

[A,B]
def
= A ◦ B− B ◦ A, (36)

we can prove that Equation (36) has anti-symmetrical property,
and satisfies the Jacobi identical equation, namely, a new product
with Lie algebraic structure, then Equation (27) has

Conclusion 2: The snake like-robot systems have Lie-
admissible algebraic structure.

THE POISSON’S INTEGRAL METHOD OF
SNAKE-LIKE ROBOT SYSTEMS

The classical Poisson integral method includes setting up the
Poisson condition of the first integral for the Hamilton system,
the Poisson theorem of third integrals is generated from two
known integrals by Poisson brackets. The theoretical foundation
of this method includes equations of motion of systems with
Lie algebraic structure. Because the snake-like robot system has
no Lie algebraic structure, it possesses Lie-admissible algebraic
structure. Therefore, part of the Poisson integral methods can
be applied to snake-like robot systems. Then we have the
following conclusions:

Proposition 1: The necessary and sufficient condition on
which I (aµ, t) = c is the first integral of snake-like robot systems
(27) in that the I (aµ, t) satisfies

∂I

∂t
+ [I,H] = 0, (37)

Proposition 2: H = c is a first integral of snake-like robot
systems (27), if the Hamiltonian of the system does not depend
explicitly on time t, and for3′

s= 0.
Proposition 3: For snake-like robot systems (27), which

possess a first integral I (aµ, t) that contains t, but H and 3′
sdo

not depend explicitly on t, then

∂

∂t

(

∂I

∂t

)

+

[

∂I

∂t
H

]

+
∂3′

s

∂t

∂I

∂aµ
+

∂I

∂aµ

Sµν ∂

∂aν

(

∂H

∂t

)

= 0

(38)

i.e.,

∂

∂t

(

∂I

∂t

)

+

[

∂I

∂t
H

]

= 0. (39)

Namely, ∂I
∂t is the first integral of the snake-like robot system (27),

and ∂I2

∂t2
, . . . , are also first integrals of the snake-like robot system.

Proposition 4: For snake-like robot systems (27), which
possess a first integral I (aµ, t) containing aρ , but H and 3′

sdo

not depend explicitly on aρ , ∂I
∂aρ ,

∂I2

∂aρ2
, · · · , are also first integrals

of the snake-like robot system.

EXAMPLE

We set up a simple snake-like robot which only has one joint,
and choose q1 = ϕ1, q2 = xh, q3 = yh, q4=θh, q5 = γ1 as
generalized coordinates.

The relationship between the center of gravity of the first joint
(

x1, y1
)

and the position of the snake head
(

xh, yh
)

can be given by

x1 = q2 + 2lc
(

q4
)

+ lc
(

q1
)

,

y1 = q3 + 2ls
(

q4
)

+ ls
(

q1
)

, (40)

so, the velocities of snake-like systems can be given by

ẋ1 = q̇2 − 2ls
(

q4
)

q̇4 − ls
(

q1
)

q̇1,

ẏ1 = q̇3 + 2lc
(

q4
)

q̇4 + lc
(

q1
)

q̇1. (41)

The constraints of the snake-like robot system are given by

fβ
(

q, q̇
)

= q̇2s
(

q1
)

− q̇3c
(

q1
)

− 2lc
(

q4 − q1
)

q̇4

−lq̇1 − q̇5R = 0. (42)

We obtain the kinetic energy of the snake-like robot system

T=
1

2
(m+mh)

(

q̇22 + q̇23
)

+
1

2

(

Jh + 2ml2
)

q̇24 +
1

2

(

Jy +
1

2
ml2

)

q̇21 + 2mlq̇4
(

q̇2s
(

q4
)

− q̇3c
(

q4
))

+mlq̇1
[

q̇2s
(

q1
)

− q̇3c
(

q1
)]

+ 2ml2q̇4q̇1
(

q̇4 + q̇1
)

s
(

q4 + q1
)

+
1

2
Jrq̇

2
5, (43)

potential energy

U = 0, (44)

and dissipative function

D =
1

2
Dyq̇

2
1 +

1

2
Dxy

[

q̇22 + q̇23 + 4lq̇24 + l2q̇21 + 4lq̇1
(

q̇2s
(

q4
)

−q̇3c
(

q4
))

+2lq̇1
(

q̇2s
(

q1
)

− q̇3c
(

q1
))

+ 4l2q̇4q̇1 s
(

q4 + q1
)]

. (45)

The Lagrange function of the system is written in the form

L =
1

2
(m+mh)

(

q̇22 + q̇23
)

+
1

2

(

Jh + 2ml2
)

q̇24 +
1

2

(

Jy +
1

2
ml2

)

Frontiers in Physics | www.frontiersin.org 5 June 2021 | Volume 9 | Article 643016

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Jing-Li et al. A P Snake-Like Robot Systems

q̇21 + 2mlq̇4
(

q̇2s
(

q4
)

− q̇3c
(

q4
))

+mlq̇1
[

q̇2s
(

q1
)

− q̇3c
(

q1
)]

+ 2ml2q̇4q̇1
(

q̇4 + q̇1
)

s
(

q4 + q1
)

+
1

2
Jrq̇

2
5. (46)

Taking the generalized momenta of snake-like robot systems

p1 =
(

Jy +ml2
)

q̇1 +ml
(

q̇2s
(

q1
)

− q̇3s
(

q1
))

+ 2ml2q̇4

s
(

q4 + q1
)

,

p2 = mhq̇2 + 2mlq̇4s
(

q4
)

+mlq̇1s
(

q1
)

,

p3 = mhq̇3 − 2mlq̇4s
(

q4
)

−mlq̇1c
(

q1
)

, (47)

p4 =
(

Jh + 4ml2
)

q̇4 + 2ml
(

q̇2s
(

q4
)

− q̇3c
(

q4
))

+ 2ml2q̇1

s
(

q4 + q1
)

,

p5 = Jrq̇5,

using Equation (47), we can obtain the generalized velocities in
the form

q̇1 =
mls

(

q1
)

−
(

Jy +ml2
)

mlc
(

q1
)

(

Jy +ml2
)

mlc
(

q1
) p1,

q̇2 =
2mlc

(

q1
)

+ml s
(

q4 + q1
)

ml
(

Jh + 4ml2s
(

q1
)

+ml
) p2, (48)

q̇3 =

(

Jy +ml2
) (

Jy +ml2
)

ml+ 2ml2 s
(

q4 + q1
)

mlc
(

q1
)

4ml
(

s
(

q1
)

− s
(

q1
)) (

Jy +ml2
) p3,

q̇4 =
mhmls

(

q4
) (

s
(

q1
)

− s
(

q1
))

2ml
p4,

q̇5 =
P5

Jr
.

The Hamiltonian of the snake-like robot system can be
expressed as

H =
1

2

mls
(

q1
)

−
(

Jy +ml2
)

mlc
(

q1
)

(

Jy +ml2
)

mlc
(

q1
) p21

+
mlc

(

q1
)

+mls
(

q4 + q1
)

ml
(

Jh + 4ml2s
(

q1
)

+ml
)p22 (49)

+

(

Jy +ml2
) (

Jy +ml2
)

ml+ 2ml2s
(

q4 + q1
)

mlc
(

q1
)

4ml
(

s
(

q1
)

− s
(

q1
)) (

Jy +ml2
) p23

+
ml
(

Jy +ml2
)

+
(

s
(

q1
)

− s
(

q1
))

Jh + 4ml2s
(

q1
) p24 +

1

2

P5
2

Jr
.

Using Equations (47)–(49), we can obtain

ṗ1=
1

2

mlc
(

q1
)

+
(

Jy +ml2
)

(

Jy +ml2
)

mlc2
(

q1
) p21

+
mls

(

q1
)

+mlc
(

q4 + q1
)

ml
(

Jh + 4ml2s2
(

q1
)

c
(

q1
)

+ml
)p22 +

2ml2c
(

q4 + q1
)

mlc
(

q1
)

4ml
(

c
(

q1
)

− s2
(

q1
)) (

Jy +ml2
)p23

+
ml
(

Jy +ml2
)

+
(

c
(

q1
)

+ s
(

q1
))

Jh + 4ml2c
(

q1
) p24

+
1

2
Dyp1mlc

(

q1
)

+ Dxyp3p4s
(

q4 + q1
)

+ml2p1c
(

q1
)

,

ṗ2 = +
mlc

(

q1
)

+mls
(

q4 + q1
)

ml
(

Jh + 4ml2s
(

q1
)

+ml
)p22

+
ml
(

Jy +ml2
)

+
(

s
(

q1
)

− s
(

q1
))

4ml2s
(

q1
) p24

+Dymlp5p1c
(

q4
)

+ Dxyp3 +mlp2s
(

q1
)

p2,

ṗ3 =
mls

(

q1
)

−
(

Jy +ml2
)

mlc
(

q1
)

(

Jy +ml2
)

mlc
(

q1
)

+

(

Jy +ml2
) (

Jy +ml2
)

ml+ 2ml2s
(

q4 + q1
)

mlc
(

q1
)

4ml
(

s
(

q1
)

− s
(

q1
)) (

Jy +ml2
) p23

+Dymlp5p1c
(

q4
)

+ Dxyp3 + Jh + 4p2ml2s
(

q1
)

+ml,

ṗ4 =
mls

(

q1
)

−mlc
(

q4 + q1
)

ml
(

Jh + 4ml2s
(

q1
)

+ml
)p22

+

(

Jy +ml2
) (

Jy +ml2
)

ml+ 2ml2c
(

q4 + q1
)

mlc
(

q1
)

4ml
(

s
(

q1
)

− s
(

q1
)) (

Jy +ml2
) p23

+Dyml2p′4p1s
(

q1 + q4
)

+ 2mlDxyp2 + Jy +ml2,

ṗ5 = Jrp5 + Dym
2l2p2p1c

(

q4
)

+ Dxyp2p4

+mlp2s
(

q1
)

p2, (50)

We call Equations (48) and (50) the generalized Hamilton
canonical equations of the snake-like robot system.

In which























3′
1=

1
2Dyp1mlc

(

q1
)

+ Dxyp3p4s
(

q4 + q1
)

+ml2p1c
(

q1
)

,

3′
2=Dymlp5p1c

(

q4
)

+ Dxyp3 +mlp2s
(

q1
)

p2,

3′
3=Dymlp5p1c

(

q4
)

+ Dxyp3 + Jh + 4p2ml2s
(

q1
)

+ml,
3′

4=Dyml2p′4p1s
(

q1 + q4
)

+ 2mlDxyp2 + Jy +ml2,

3′
5=Dym

2l2p2p1c
(

q4
)

+ Dxyp2p4 +mlp2s
(

q1
)

p2.

(51)

Let

a1 = q1, a2 = q2, a3 = q3, a4 = q4, a5 = q5,

a6 = p1, a7 = p2, a8 = p3, a9 = p4, a10 = p5, (52)

then Equation (50) can be expressed in the contravariant
algebraic form

ȧµ − Sµv ∂H

∂aν
= 0 (µν= 1 · · · 5, ) (53)

where

Sµv = ωuv + Tuv

ωµν =

(

05×5

−I5×5

I5×5

05×5

)

,Tµν =

(

05×5 05×5

05×5 −�k×k

)

(54)

using Equations (25) and (51), we have























−�11 =
1
2Dya1mlc (a1) + Dxyp3p4s (a4 + a1) + 2s (a4)ml2p1c (a1)

−�22 = Dymlp5p1c (a4) + Dxyp1 +mla4s (a1) a5
−�33 = 2Dymlp5a3c

(

q4
)

+ Dxyp1 + Jh + 4a4ml2s (a1)+ml

−�44 = Dyml2p3a1s (a1 + a4) + 2mlDxyp1 + Jy +ml2

−�55 = Dym
2l2p3p1c (a4) + Dxyp1p4 +mla7s (a1) p2.

(55)
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Substituting Equations (53) and (54) into Equation (27) leads to
the contravariant algebraic form of snake-like robot systems































































































































ȧ1 =
mls(a1)−(Jy+ml2)mlc(a1)

(Jy+ml2)mlc(a1)
p1 + 2ml2s (a4 + a1)mlc (a1) p2

ȧ2 =
2mlc(a1)+mls(a4+a1)
ml(Jh+4ml2s(a1)+ml)

p1

ȧ3 =
(Jy+ml2)(Jy+ml2)ml+2ml2s(a4+a1)mlc(a1)

4ml(s(a1)−s(a1))(Jy+ml2)
p3,

ȧ4 =
mhmls(a4)(s(a1)−c(a1))

2ml
p1,

ȧ5 =
p1
Jr
+2ml2c (a4 + a1)mlc (a1) ,

ṗ1 =
1
2

mlc(a1)+(Jy+ml2)
(Jy+ml2)mlc2(a1)

p1
2 +

mls(a1)+mlc(a4+a1)
ml(Jh+4ml2s2(a1)c(a1)+ml)

p2
2+

2ml2c(a4+a1)mlc(a1)
4ml(c(a1)−s2(a1))(Jy+ml2)

p4
2 + 1

2Dyp1mlc (a1) + Dxyp4p3s (a4 + a1) ,

ṗ2 =
mlc(a1)+mls(a4+a1)
ml(Jh+4ml2s(a1)+ml)

p1
2 +

ml(Jy+ml2)+(s(a1)−c(a1))

4ml2s(a1)
p4

2

+Dymlp5p1c
(

q4
)

+ Dxyp3 +mlp2s (a1) p2,

ṗ3 =
mls(a1)−(Jy+ml2)mlc(a1)

(Jy+ml2)mlc(a1)
+ Dymlp5p1c (a4) + Dxyp3 + Jh

+4p2ml2s (a1) ,

ṗ4 =
mls(a1)−mlc(a4+a1)
ml(Jh+4ml2s(a1)+ml)

p2
2 +

(Jy+ml2)ml+2ml2c(a4+a1)mlca1
4ml(s(a1)−s(a1))(Jy+ml2)

p4
2,

ṗ5 = Dym
2l2p2p1c (a4) + Dxyp3p4 +mlp2s (a1) p3 (56)

From Proposition (2), the Hamiltonian of the system is written
in the form

H =
1

2

mls (a1) −
(

Jy +ml2
)

mlc (a1)
(

Jy +ml2
)

mlc (a1)
p1

2

+
mlc (a1) +mls (a4 + a1)

ml
(

Jh + 4ml2s (a1)+ml
)p2

2 +

(

Jy +ml2
) (

Jy +ml2
)

ml+ 2ml2s (a4 + a1)mlc (a1)

4ml (s (a1) − c (a1))
(

Jy +ml2
) p3

2

+
ml
(

Jy +ml2
)

+ (s (a1) − c (a1))

Jh + 4ml2s (a1)
p4

2 +
1

2

p5
2

Jr
=C1, (57)

and is the first integral.
Using Proposition (1), we can obtain the following integrals:

I1 =

∫

mls (a1) −
(

Jy +ml2
)

mlc (a1)
(

Jy +ml2
)

mlc (a1)
dt (58)

+4ml (s (a1) − c (a1)) s (a4 + a1) p2
2=C2,

I2 =

∫

2ml2s (a4 + a1)mlc (a1)p1 + Dy4ml2s (a1) dt

+
ml2Dxys (a4) p2a5

4ml2s (a1) c (a4 + a1)
+ 2mls (a1) a5p3 = C3, (59)

I3 =

∫

2Dyml2p2s (a4 + a1)mlc (a1)dt

+mlDxy

(

Jh + 4ml2s (a1)+ml
)

= C4. (60)

The first integral I2includes a5.Using Proposition (4), from I2 we
obtain a new integral.

I4=
ml2Dxys (a4) a7

4ml2s (a1) c (a4 + a1)
+ 2mls (a1) p3 = C4. (61)

CONCLUSION

In this paper, we have studied the algebraic structure and
Poisson integral theory of snake-like robot systems. This method
reduces the expression variables of the snake-like robot and
makes the expression more concise. We can also obtain
the algebraic structure and Poisson integral theory of other
soft robots.
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