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This contribution is a review of the deep and powerful connection between the large-
scale properties of critical systems and their description in terms of a field theory.
Although largely applicable to many other models, the details of this connection are
illustrated in the class of two-dimensional Abelian sandpile models. Bulk and boundary
height variables, spanning tree–related observables, boundary conditions, and
dissipation are all discussed in this context and found to have a proper match in
the field theoretic description.
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1 INTRODUCTION

In statistical mechanics, critical points are very special points in the space of external parameters
which control the state of a system. At such a point, the system is scale-invariant, and its
thermodynamic functions and correlations are characterized by critical exponents and power
laws. In many cases, physical systems have a finite number of critical points, most often only
one. Typical examples include the endpoint of the liquid–gas coexistence line or the Curie point for
ferromagnetic materials. In these cases, a system is brought to its critical point by tuning very
precisely a few external parameters to their critical values.

In nature, however, power laws are commonplace and can be found in a large variety of different
phenomena, like avalanches, earthquakes, solar flares, droplet formation. In all these cases, it is
certainly not clear what parameters should be tuned, and even if they are perfectly tuned, it is unlikely
that they would stay so over large periods of time. To solve this apparent paradox, Bak, Tang, and
Wiesenfeld suggested in the 80s that the external parameters would tune themselves dynamically:
even if the system is not initially in a critical state, its own dynamics will ineluctably drive it to
criticality and maintain it in that state [1]. This attractive idea has led to the concept of self-organized
criticality (SOC).

To support this idea, these authors proposed the sandpile model as a prototypical example of a
system which shows a form of self-organized criticality. Since then, many other models showing SOC
have been proposed, as abundantly illustrated in this volume and in introductory books and
reviews [2–5].

The present review will be exclusively concerned with specific versions of two-dimensional
sandpile models, formulated by Dhar [6], called Abelian sandpile models. Even though there are
among the simplest and easiest sandpile models to handle, they show a large spectrum of interesting
and difficult problems which have attracted considerable attention, in both the physical and
mathematical communities. From the point of view taken here (like their scaling limit and the
emerging conformal field theory), they are, to our knowledge, the only ones to have been studied. Yet,
compared to many other equilibrium statistical models, a fair statement is that our present
understanding of them is still very poor.

Our primary purpose is two-fold, namely, to give the unfamiliar reader an introduction of why
and how the neighborhood of a critical point can be described by a Euclidean field theory, which, at
first sight, appears to be a rather obscure statement, and also to show how this description can be
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worked out in practical terms. The second part will be illustrated
in sandpile models, which lend themselves very well to this kind
of analysis: they are simple enough that one can follow the steps in
a clear and transparent way, yet they are rich enough to show the
difficulties one sometimes has to face but also the elegance and
the power of the approach. Understanding how of a field theory
emerges from a stochastic lattice model enables to gain a
probabilistic and intuitive view of what a field theory is in this
context.

It turns out that the field theories which appear when
analyzing critical systems are conformal field theories. The
simple reason for this is that their large conformal symmetry
integrates the fact that critical systems have a local scale
invariance. Conformal theories in two dimensions have been
tremendously successful since the 80s and have led to a deep
understanding of the two-dimensional critical phenomena. It is
certainly not our purpose to give an introduction to conformal
field theories, and we will not go very deep into its technicalities,
referring to the vast literature. We restrict to their most basic
features, in the hope that these will be sufficient and useful to
understand how conformal theories are so well suited for
our study.

Section 2 starts with a brief review of the Abelian sandpile
models, where the most basic features of the models are recalled.
Section 3 is a general description, valid beyond the sandpile
models, of what is called the scaling limit, which allows
establishing the connection between the large-distance regime
of a critical system and the associated field theory. A brief tour of
conformal theories, and specifically logarithmic conformal
theories, is presented in Section 4. The application of the
conceptual ingredients is illustrated in the next three sections.
Section 5 focuses on the bulk observables in the sandpile models,
computes the first correlators, and explains how these should be
understood in terms field theoretic quantities. Boundary
conditions and boundary observables are examined in Section
6 as well as the way they should be thought of in conformal
theories. Section 7 discusses a dissipative variant of the sandpile
models and their description by a massive field theory, and also
some universality aspects of the sandpile models. The last section
summarizes the present status of the conformal theory at work in
sandpile models.

The present text has some overlap with [7]. The latter was
more concerned with the sandpile models as being described
specifically by a logarithmic conformal field theory. Intended to a
potentially wider readership, the present review is more devoted
to the general connection between critical systems and field
theories, illustrated in a specific class of models. The two are
somehow complementary and, if combined, may provide a more
complete overview.

2 ABELIAN SANDPILE MODELS

The models we discuss are discrete stochastic dynamical systems.
Their microscopic variables are attached to the vertices of a finite
connected graph Γ � (V,E) (with V the set of vertices, or sites, and
E the set of simple, unoriented edges) and evolve in discrete time

as a random process. We label the vertices of Γ by Latin indices
i, j, . . . and denote the microscopic variables by hi. These are called
height variables and simply give the height of the sandpile at
vertex i (i.e., count the number of sand grains at i); they are
integer-valued, with hiP1. A height configuration C is a set of
height values {hi}i∈V.

We are not quite ready to define the dynamics. For reasons
that will become clear in a moment, we need to extend Γ by
adding one special vertex, noted s and called the sink, as well as a
number of edges connecting s to the vertices of a non-empty
subset D ⊂ V . Vertices in D are called dissipative or open, while
those in V ∖D are conservative or closed. If Γ* � (V*, E*) denotes
the extended graph in an obvious notation, we define zi to be the
coordination number of i in Γ (the number of edges in E incident
to i, or the number of its nearest neighbors in Γ) and, similarly, zi*
its coordination number in Γ*. Thus, zi* � zi if i is closed and
zi*> zi if i is open. Finally, we say that a site i of V is stable1 if its
height satisfies 1#hi#zi*. A height configuration is stable if all
sites are stable. Clearly, the number of stable configurations is
equal to ∏i∈Vzi*.

The discrete, stochastic dynamics of the sandpile model is
defined as follows. Assume that Ct � {hi} is a stable configuration
at time t. The stable configuration Ct+1 is obtained from the
following two steps.

1) Deposition: One grain of sand is dropped on a random site
j of V, selected with probability pj, producing therefore a
new configuration Cnew with heights hi

new � hi + δi,j. If
hnewj #zj*, then Cnew is stable and defines Ct+1; if not, we
proceed to step (ii).

2) Relaxation: If hnewj > zj* (it is in fact equal to zj* + 1), we let
the site j topple: its height is decreased by zj*, each of its
neighbors in Γ receives one grain, and the remaining zj* −
zj grains go to the sink. After this, one or more neighbors
of j in Γmay become unstable, in which case they topple in
the way explained above for the site j. The toppling process
is pursued for all unstable sites until a stable configuration
is obtained. That configuration defines Ct+1.

It is useful to introduce the toppling matrix Δ as it will play an
important role in what follows:

Δi,j �
⎧⎪⎨⎪⎩

zi* for i � j,
−1 if i and j are neighbours (i.e. connected),
0 otherwise,

(1)

for i, j ∈ V . The sand redistribution occurring when a site j
topples can then be written as the update hi → hi − Δj,i for all
i ∈ V . The matrix Δ is like a Laplacian on Γ, with mixed boundary
conditions dictated by the open and closed sites, which induce,
respectively, Dirichlet and Neumann boundary conditions (see
Section 6).

The above dynamics is well-defined. We see that the total
number of sand grains is conserved under the toppling of a closed

1There is no need to keep track of the number of sand grains in the sink, and so we
do not assign it a height variable.
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site, whereas a nonzero number of grains are transferred to the
sink under the toppling of an open site. The existence of at least
one open site guarantees that the relaxation process terminates
after a finite number of topplings and motivates the necessity of
the extension of the graph Γ by the sink site. Moreover, if several
sites are unstable during the relaxation process, the order in
which they are toppled does not matter. More generally, one may
define the operator ai for each i ∈ V , whose action on a stable
configuration returns the stable configuration resulting from the
relaxation process after the deposition of a sand grain at i. One
can then prove that the operators ai commute [6], explaining the
qualifier “Abelian” used to designate the models satisfying this
property.

The dynamics described above is a discrete Markov chain on a
finite configuration space: at each time step, one applies the
operator ai with probability pi (it is the only stochastic element of
the dynamics), going from Ct to Ct+1 � aiCt. An important
question concerns the invariant measures, since they control
the behavior of the model in the long run.

If there is no strong reason to favor certain sites, one takes all
probabilities pi equal (uniform distribution). In this case,2 Dhar
[6] has shown that there is unique invariant measure PΓ, which is
uniform on its support. In the Markov chain terminology, the
configurations in the support of PΓ are called recurrent; the others
are called transient. Being in the support of the unique invariant
measure means that the recurrent configurations are those which
are in the repeated image of the operators ai. The transient ones
either never appear (depending on the initial configuration) or
cease to appear after some finite time.

If indeed the unique invariant measure is uniform, the
situation appears to be deceptively simple. Not so. What
makes the sandpile models nontrivial, fascinating, and rich is
the support of the invariant measure. A generic recurrent
configuration is really complicated because the height values
are delicately correlated over the entire graph. In the general
case, there is no simpler criterion characterizing the recurrent
configurations than the following. Let C be a stable configuration,
and let CF be its restriction to a subgraph F ⊂ Γ (F can be assumed
to be connected). We say that CF is a forbidden subconfiguration
if each vertex of F has a height smaller or equal to the number of
its neighbors in F. It can be shown [8] that a forbidden
subconfiguration cannot be in the repeated image of the
dynamics (of the operators ai). It follows that a configuration
is recurrent if and only if it contains no forbidden
subconfiguration. The simplest example of a forbidden
subconfiguration is when F contains just two neighboring
vertices with height values equal 1. The criterion also implies
that the maximal configuration with heights hi � zi* is recurrent
since a vertex i with height hi > zi cannot be in a forbidden
subconfiguration. It is also clearly in the image of the iterated
dynamics since it can be reached from any other stable
configuration by an appropriate sequence of ai’s.

The characterizing condition for recurrence shows that the
heights of a recurrent configuration are not at all independent.

They are not only correlated locally (think of two neighboring 1’s)
but also globally because asserting that a given configuration is
recurrent generally requires scanning the entire graph. For
instance, the configuration having hi � zi for all i is not
recurrent and possesses no other forbidden subconfiguration
than the whole configuration itself. Moreover, the recurrent
status is very sensitive to local changes and can be lost or
gained by the change of a single height (for the configuration
just discussed, the increase by one unit of the height at a single
open site makes it recurrent). However, the increase in any height
in a recurrent configuration preserves the recurrence.

The burning algorithm [8] (see also the review [5]) provides a
convenient way to test whether a given stable configuration is
recurrent. In addition to providing a completely automatic
procedure, more importantly, it establishes a bijection between
the set of recurrent configurations on Γ and the set of rooted
spanning trees on Γ*, rooted at the sink site s. Let us recall that a
spanning tree is a loopless connected subgraph (V*, F) ⊂ Γ* �
(V*, E*) with F ⊂ E*. This bijection is important and useful as
most of the actual calculations use the spanning tree formulation.
Interestingly, there is no canonical bijection between the two sets
in the sense that there are in fact many burning algorithms (the
detailed definition requires a certain prescription that is largely
arbitrary), each giving rise to a different bijection. This freedom in
the choice of a definite algorithm, a sort of huge gauge symmetry,
has remained unexploited so far.

If the notion of recurrence remains somewhat elusive in the
generic case, simple arguments lead to a remarkably simple and
general formula for the number of recurrent configurations [6],
naturally identified as the partition function Z since the invariant
measure is uniform:

Z � #{recurrent configs} � detΔ, (2)

for Δ the toppling matrix introduced in (1). It is a standard result
in combinatorics (Kirchhoff’s matrix-tree theorem) that det Δ
also counts the number of spanning trees on Γ (see Section 5.7 for
a proof). The previous formula usually implies that the recurrent
configurations form an exponentially small fraction of the set of
stable configurations (whose number is equal to ∏i Δi,i). On a
large grid in Z2, for instance, for which the density of dissipative
sites goes to 0 in the infinite volume limit, the effective number of
degrees of freedom per site in a recurrent configuration is roughly
3.21 (as compared to 4 in a stable configuration), meaning that

detΔxe
4G
π N � (3.21 . . .)N , with N the total number of sites and G

the Catalan constant.
The definition of recurrence implies that all the operators ai

map recurrent configurations to recurrent configurations,
implying that once the dynamics has brought the sandpile into
a recurrent configuration, all subsequent configurations are
recurrent. Therefore, the invariant measure is appropriate to
study the long-term behavior of the sandpile.

The sandpile models summarized above have raised a large
number of interesting and difficult questions. In the context of
this review, most if not all of them focus on the stationary regime
and study the statistical behavior of the sandpile when it runs over
the recurrent configurations. In other words, all the probabilities2The result holds in the more general case where pi ≠ 0 for every i.
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we are interested in are induced by the invariant measure PΓ. The
use of PΓ is what makes most of the calculations fairly hard3

because as noted earlier, that measure is nonlocal in terms of the
(local) height variables (equivalently the recurrence criterion is
nonlocal).

We should remark that the measure PΓ fully depends on all the
minute details which are necessary in order to completely specify
the sandpile model under study. Not only the graph Γ itself but
also the number and relative positions of closed and open
vertices, and the values of the local thresholds zi* affect the
invariant measure. Many features which directly depend on
these data will change if any of these parameters is modified,
like the number of recurrent configurations, the structure of the
sandpile group,4 the geometric structure of the identity
configuration,5 or the average height at a given site for
instance. All these features are mathematically interesting and
challenging (hence interesting) but very sensitive to the
underlying details.

One should however expect that more robust features would be
shared by sandpile models that are “close enough.” The same
situation prevails for other statistical models which, although
having different microscopic descriptions, are considered to be
essentially equivalent and grouped together to form a single
universality class. Models belonging to the same universality class
have identical behaviors “in the large,” a point of view made
technically more precise by the renormalization group analysis.

In order to identify these common behaviors, one should not look
at small scales as these are more likely to be determined by the local
details. The probability that two vertices next to each other have a
height 2, for instance, is not really interesting; in addition, it is a pure
number, different for each different model. Robust behaviors are
expected to be found at large scales as they are much less affected by
the microscopic details. One convenient method to access the large-
distance behaviors is by taking the scaling limit. (Readers familiar
with the scaling limit and the ideas of the renormalization group can
safely go straight to the next sections.)

3 THE SCALING LIMIT AND CONTINUUM
FIELD THEORIES

The simple idea underlying the scaling limit is this: if we want to
concentrate on the large-scale behavior of a system, let us look at it
from far away! The further away we look at the system, the larger our
horizon is and the larger the distances we keep in sight. At the same

time, when looking from a distance, the details get blurred and
disappear: one can no longer recognize the type of graph, and its
connectivities are no longer visible. What we see seems to become
independent of the microscopic details of the model.

Rather than stepping back, an equivalent but more convenient
way to proceed is to shrink the discrete structure (graph or grid or
lattice) on which the microscopic variables live. This will involve a
(real) small parameter ε such that the graph can be embedded in
εZd (or another shrinked regular lattice). For smaller and smaller
ε, fixing a macroscopic distance �x � ε �m ∈ εZd amounts to probe
larger and larger scales �m in terms of lattice units and at the same
time, allows to keep a macroscopic distance r � ∣∣∣∣ �x∣∣∣∣ under control.
The scaling limit corresponds6 to take ε → 0.

We note that since the scaling limit is a way to focus on
asymptotically large distances, we have to make sure that the
system does have such asymptotic distances! Indeed the scaling
limit requires that we also take the infinite volume limit, by
allowing the system to remain finite but of increasing size, the
growth being at least of order 1/ε.

The scaling limit has interesting consequences. The first most
apparent one is that the substrate of the rescaled model goes to a
continuum, either Rd or a part of Rd , which may be bounded.7 This
is the first sign that a continuum description ought to emerge in
the scaling limit. This is confirmed by a second observation: the
microscopic variables—the heights in the sandpile models—, which
were attached to the vertices of a graph, or a grid, should, in some
sense, converge to variables defined on a continuum. If indeed this is
expected to happen, exactly what happens is quite subtle. To realize
this, one may note that all the microscopic variables attached to sites
contained in a ball of radius o(1/ε) will actually collapse to the same
point in the scaling limit. Thus, every point in the continuum is the
convergence point of an infinite number of vertices in the original
discrete setting. The infinity of microscopic variables carried by these
vertices will supposedly mix and fuse to generate some kind of degree
of freedom located at a single point in the continuum.What is then the
nature of the emerging continuum degree of freedom at that point,
and how is it related to the lattice variables supposed to collectively
generate it? The conceptual answer is provided by the renormalization
group. It roughly goes as follows.8

The scaling limit, as explained at the beginning of this section,
was carried out in one stroke: all distances are scaled by ε, which is
then taken to 0. This limit was only designed to show how the
large-distance behaviors can be assessed but is too rough to
answer the question raised in the previous paragraph. The
renormalization group is much better designed conceptually as
it organizes the scaling limit scale by scale and keeps track, at each
scale, of the degrees of freedom present in the system.

Let us suppose that we start with a statistical model defined on
very large graph, or, to simplify and fix the ideas, on an infinite

3A notable exception concerns the linear or almost linear graphs, for which the
recurrence property usually takes a simpler form and allows for a larger number of
explicit results (see f.i., [9, 10]).
4We have mentioned that the operators ai generate an Abelian algebra. But when
acting on recurrent configurations, they are invertible and therefore generate an
Abelian group, called the sandpile group. The sandpile group, of order equal to
detΔ, has been determined for a number of finite graphs.
5Recurrent configurations form an Abelian group under the site-wise addition of
the heights, followed by relaxation. This group is isomorphic to the sandpile group.
In particular, one of the recurrent configurations is the identity in the group and
shows remarkable geometric patterns [11–14].

6For the scaling to be nontrivial, some external parameters may need to be
appropriately scaled with ε. One example of this is discussed in Section 7.1.
7It is bounded if all the linear sizes of the finite systems in the sequence defining the
infinite volume limit grow exactly like 1/ε.
8Among the many books and reviews on the renormalization group in statistical
mechanics, see, for instance, the book by Cardy [15].
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lattice. We fix a convenient scale Λ > 1, partition the lattice into
boxes of size Λ, and shrink the lattice by a factor Λ. Each box is
now of linear size 1 and contains of the order of Λd microscopic
variables. Within each box, we associate an effective, coarse-
grained degree of freedom which takes into account the overall
behavior of the microscopic variables inside the box (it could be,
f.i., their average value), and we then compute the sum over the
microscopic variables conditioned by the values of the coarse-
grained variables. The result is a statistical model for the coarse-
grained variables, defined on a lattice similar to the original one.
Once this is done (!), we iterate the process by defining a second
generation of coarse-grained variables out of those of the first
generation, and so on.

After the first iteration, each group of roughly Λd microscopic
variables has collapsed to a single coarse-grained variable of the
first generation; the statistical model obtained for these can be
interpreted as the original model in which the fluctuations of scale
smaller than Λ have been integrated out. The second iteration
yields a statistical model for the coarse-grained variables of the
second generation, each of which has integrated the fluctuations
of Λ2d microscopic variables over scales smaller than Λ2, and so
on, for the next iterations. In this way, each iteration, also called
renormalization, yields a model where more small-scale
fluctuations have been integrated out, and whose large-scale
behavior should be identical to that of the original model,
since the large-scale fluctuations have been preserved.

The continuum degrees of freedom we were asking about are
what the coarse-grained variables of higher and higher generation
should converge to when the number of iterations goes to infinity.
Each of them is indeed what is left of the infinite collection of the
microscopic variables that were located around it. Because the
coarse-grained variables of one generation are representative of
those of the previous generation, the continuum degrees of
freedom should similarly carry the same characteristics as the
original microscopic variables. In particular, the long-distance
correlations should be identical, at dominant order.

The continuum degrees of freedom emerging in the scaling
limit are called fields. Unlike their lattice ancestors, they usually
take continuous values. Fields are all what remains when the
short-ranged degrees of freedom have been integrated out: they
form the complete set of variables which are relevant as far as the
long-distance properties of the original model are concerned. It
means that only the lattice degrees of freedom which have long
range correlations, namely, with diverging correlation lengths,
will survive the scaling limit and eventually give rise to a field; all
the others progressively disappear in the renormalization process.

The microscopic variables in terms of which the discrete
statistical model is defined usually give rise to fields, but they
are not the only ones. Any lattice observable, that is, any function
of the microscopic variables, can potentially give rise to a field in
the scaling limit9 so that one is typically left with an infinite

number of different fields. Each field has its own specific
properties and should be interpreted as the scaling limit of
one particular lattice observable (it may also happen that
different lattice observables converge to fields with the same
characteristics).

One last question must be addressed. The original statistical
model was not only defined by its microscopic variables but also
by a probability measure on the configuration space. That
measure, which is a joint distribution for the
(nonindependent) random microscopic variables, is usually
given by a Gibbs measure and written, up to normalization, as
P(C) ∼ exp (−H[C]), where H is the Hamiltonian of the system,
that is, some given function of the microscopic variables which
determines the relative probability of a configuration C. What is
the equivalent of the Gibbs measure for the fields?

According to the discussion above, one starts from the original
model and its Hamiltonian H0 ≡ H. The first renormalization
yields the coarse-grained variables of the first generation and a
corresponding Hamiltonian H1, computed (at least in principle)
by summing exp(−H0) over the microscopic variables inside the
boxes. Similarly, the kth iteration will produce a Hamiltonian Hk,
defining the statistical model for the coarse-grained variables of
the kth generation. The appropriate measure for the fields should
therefore be something like the formal limit limk→∞exp(−Hk).
Physicists like to denote this formal object by exp(−S), where S,
called the action, is a certain functional of the fields.

Thus, if the description of a statistical model is given, in the
discrete lattice setting, in terms of a set of microscopic variables
(h1i , h

2
i , . . .) and a Hamiltonian H(h1i , h

2
i , . . .), it is given in the

scaling limit by a set of continuous fields (ϕ1( �x), ϕ2( �x), . . . ) and
an action S[ϕ1, ϕ2, . . .]. The pair {(ϕ1( �x), ϕ2( �x), . . . ), S} is referred
to as a continuum field theory.10 More precisely, specifying a set of
fields and their action S is only one way to present a field theory; it
is also the most comfortable one because it allows to compute the
correlators of the various fields, at least in principle.

Needless to say, working out the successive renormalizations
along with the Hamiltonians H0, H1, . . . is a formidable task that
is, for all practical purposes, impossible to carry out explicitly,
except on extremely rare occasions (and for tailored examples).
As a consequence, the field theory describing the large distances
of a statistical model cannot be obtained in a deductive way.

The situation however is not hopeless. Experience, heuristic
arguments, or results obtained on the lattice can often give
definite hints about the nature of the seeked field theory. More
importantly, and even if one has no clue of what the correct field
theory is, the relevance of a trial field theory, perhaps suggested by
an educated guess, can be firmly tested by comparing correlation
functions. If the lattice microscopic variable hi�x

ε
(at site i)

converges in the scaling limit to the field ϕ(x), it must be true
that the scaling limit of the lattice correlators is equal to field
theoretic correlators, as follows:

lim
ε→0

ε−nΔ hx1
ε
hx2

ε
. . . hxn

ε〈 〉
lattice

� 〈ϕ(x1) ϕ(x2) . . . ϕ(xn)〉FT, (3)

9For instance, the energy density in the Ising model, namely, the product of two
neighboring spins, gives rise to a field that is different from the one obtained from
the spin variable itself. Later, we will give examples of this in the sandpile models
(cluster variables).

10One should add “Euclidean” field theory because it is formulated on a Euclidean
space Rd .
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where the exponent Δ is determined so that the limits on the left
hand side exist: as shown below, it will eventually be related to the
scale dimension of the field ϕ to which the lattice variable hi
converges. The previous identity must be satisfied for all n-point
correlators, but also for any correlator of any number of lattice
observables provided that for each observableO(i) around the site
i inserted in the lattice correlator, the corresponding field Φ(x) to
which it converges is inserted in the field theoretic correlator:

lim
ε→0

ε−∑i
Δi 〈O1(x1

ε
)O2(x2

ε
) . . . On(xn

ε
)〉

lattice

� 〈Φ1(x1)Φ2(x2) . . . Φn(xn)〉FT. (4)

So, we can write the convergence of a lattice observable to a field
as the formal identity:

lim
ε→0

ε−Δ O(x
ε
) � Φ(x), (5)

meant to be valid inside correlators.
If both types of correlators can be separately computed, the

potential infinity of identities similar to the previous one will put
very strong constraints on the field theory proposed and allow to
validate it or, on the contrary, to discard it. Themore identities we
are able to test, the higher the level of confidence we gain for the
conjectural field theory.

At this stage, we seem to be running in a vicious circle: we want
to test the proposed field theory by comparing its correlators with
the lattice quantities, but we cannot compute the field correlators
if we do not know the field theory! If one thinks of a field theory as
being given by a set of fields and an action S, this is indeed a
serious problem because the action cannot be easily guessed, and
even worse, there are many cases for which one has no clue as to
what the action is. However, the action is just one convenient
(and usually not simple) way to compute correlators. One could
think of other ways to determine correlators, and one of them is
the presence of symmetry: enough symmetry allows determining
the correlators. It is precisely the principle underlying the
conformal field theories, which therefore provides a field
theoretic framework where no action is necessary. They are
discussed in the next section.

Knowing the details of the field theory describing the long-
distance properties of a statistical model is at the same time
extremely powerful and immensely complicated. On the one
hand, it is indeed powerful because it captures the very
essential behavior of the statistical model without being
cluttered with the many irrelevant lattice effects which make
the lattice model so much more complex. On the other hand, it is
also immensely complicated because every single element in the
lattice model which affects the long distances must have a match
in the field theory. Such elements include,

• of course, the bulk observables as discussed above;
• the boundary conditions, the changes of boundary

conditions, and the boundary observables;
• the nonlocal observables (like disorder lines in the Ising

model);

• the algebra of all the observables;
• the specific effects arising when the lattice is embedded in

topologically nontrivial geometries (cylinder, torus, etc.);
• the symmetry, finite or other, that may be present in the

model,

and possibly many others. All this represents a huge amount of
information that must be present and known in the field theory, and
which can be only very rarely contemplated in full. A renown exception
is when we consider critical statistical models, as we do here, which are
in addition formulated on two-dimensional domains (d � 2).

4 CONFORMAL FIELD THEORIES

Critical systems are primarily characterized by a scale invariance.
The correlation lengths of the observables surviving the scaling
limit diverge in the infinite volume limit so that there is no
intrinsic length scale left: the fluctuation patterns appear to be the
same at all scales. As a consequence, the correlation functions of
those observables decay algebraically rather than exponentially.
The large-distance 2-point correlator of a typical lattice
observable Oi located around the site i takes the following form:

〈Oi Oj〉 � A

|i − j|2Δ + . . . , (6)

where A is a normalization, Δ is the exponent controlling the
decay, and the dots indicate lower order terms.

The field theory emerging in the scaling limit inherits the scale
invariance. Further assuming translation and rotation
symmetries, the scale invariance is enhanced to the invariance
under a larger group, namely, the group of conformal
transformations, that is, the coordinate transformations which
preserve angles.11 In d dimensions, the conformal
transformations include the transformations mentioned above,
namely, the translations (d real parameters), dilations (1
parameter), and rotations (d(d − 1)/2 parameters), and the so-
called special conformal transformations (or conformal
inversions) which depend on an arbitrary vector �b (d
additional parameters) take the following general form:

�x′
| �x′|2 �

�x

| �x|2 +
�b 5 �x′ � �x + |x|2 �b

1 + 2 �b · �x + | �b|2 | �x|2. (7)

Together these transformations form a finite Lie group isomorphic
to SO(d + 1, 1). They are all global conformal transformations
because they are defined everywhere on Rd ∪ {∞} and bijective.
In dimension d > 2, a conformal transformation defined locally can
be extended to a global transformation.

Typical spinless (i.e., rotationally invariant) fields transform
tensorially under conformal transformations as follows:

Φ( �x) → zx′i
zxj

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
Δ/d

Φ( �x′), (8)

11The material recalled in this section is completely standard; useful references
include Ref [16] (rather comprehensive) and [17] (more focused on critical
statistical systems).
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for some number Δ. Fields transforming that way under global
conformal transformations are called quasi-primary. Global
conformal invariance then fixes the average value of a quasi-
primary field,

〈Φ( �x)〉 � 0, if Δ≠ 0, (9)

(a constant for Δ � 0 by translation invariance) and the 2-point
correlator of two quasi-primary fields is given as follows:

〈Φ1( �x1)Φ2( �x2)〉 �
⎧⎪⎪⎨⎪⎪⎩

A12

| �x1 − �x2|2Δ1
if Δ1 � Δ2,

0 if Δ1 ≠Δ2.

(10)

Specializing (8) to a dilation, �x′ � α �x, we have Φ( �x)→ αΔ Φ(α �x)
so that Δ can be identified with the dimension of the field Φ (in
units of inverse length).

Global conformal invariance also completely determines the
correlator 〈Φ1( �x1)Φ2( �x2)Φ3( �x3)〉 of three (and not more) quasi-
primary fields as follows:

〈Φ1( �x1)Φ2( �x2)Φ3( �x3)〉
� A123

| �x1 − �x2|Δ1+Δ2−Δ3 | �x1 − �x3|Δ1+Δ3−Δ2 | �x2 − �x3|Δ2+Δ3−Δ1
.

(11)

We see that the lattice 2-correlator (6) is consistent with the
convergence of the observable Oi to a quasi-primary field Φ( �x) of
dimension Δ upon setting i � �x/ε since the matching identity (3)
is satisfied as follows:

lim
ε→0

ε−2Δ 〈O �x1/εO �x2/ε〉lattice � A

| �x1 − �x2|2Δ � 〈Φ( �x1)Φ( �x2)〉FT. (12)

We note that all subdominant terms in the lattice correlator (6)
drop out when taking the limit ε→ 0, confirming once more that
a field theory captures the large-distance behavior of a critical
lattice model.

What has been just recalled is valid in any dimension dP 2
but is only the beginning of the story for d � 2. The global
conformal group discussed above remains but is more
conveniently presented in complex coordinates as the SL(2,C)
group of Möbius transformations w � az+b

cz+d, for a, b, c, d ∈ C

satisfying ad − bc � 1.
The two-dimensional world has however many more

conformal transformations in store. Indeed, it is a well-known
fact that any analytic map w(z) of the complex plane is conformal.
Surely, an analytic function requires an infinite number of
parameters to fix it (f.i., the coefficients of its Laurent
expansion in some neighborhood) so that the conformal
“group” is certainly infinite-dimensional. The term group is
not really appropriate because the composition of analytic
maps is generally not defined everywhere on the complex
plane: unless it is a Möbius transformation, an analytic map is
either not defined everywhere or its image is not the whole
complex plane. For instance, the map w � L

2πi log z maps the
complex plane to a cylinder of circumference L. The discussion of
the two-dimensional conformal group is thus usually carried out
at the level of its algebra, for which infinitesimal transformations
of the form w � z + ϵ zn+1 are considered. The corresponding

generators satisfy the famous infinite-dimensional Virasoro
algebra,

[Lm, Ln] � (m − n)Lm+n + c
12

m(m2 − 1)δm+n,0, m, n ∈ Z,

(13)

a central extension of the Witt algebra. The real number c is the
central charge and is one of the most important data of a two-
dimensional conformal field theory (CFT). The modes L0 and
L±1, whose algebra is unaffected by the central charge, are the
infinitesimal generators of the Möbius group, with L−1 and L0
corresponding to translations and dilations, respectively. As it
turns out, a second commuting copy of the Virasoro algebra, with
modes Ln, can formally be considered for the conformal
transformations of the antiholomorphic variable z.

It is not our purpose to give an introduction to the CFT, but
one can easily conceive the huge difference between a finite
symmetry algebra and an infinite one. A field theory that is to
be invariant under an infinite algebra is immensely more
constrained and therefore much more rigid, leaving the hope
that one should be able to say a lot more about it. It is indeed
the case.

For one thing, the field content of a CFT must be organized
into representations of the Virasoro algebra, which are all infinite
dimensional, and this opens up the possibility that an infinite
number of fields be in fact accommodated in a finite number of
representations (such CFTs are called rational). In this respect,
the primary fields are particularly important. They are the
strengthened version of quasi-primary fields in the sense that
they transform tensorially under any conformal transformation.
A primary field is an eigenfield of L0 and L0 with real eigenvalues
h and h and, more importantly, is annihilated by all positive
modes Ln>0, Ln>0. It is in particular characterized by a total weight
Δ � h + h (its eigenvalue under L0 + L0, the real dilation
generator) and is, of course, quasi-primary. The action of any
string of negative Virasoro modes Ln<0, Ln<0 on a primary field
produces infinitely many new fields, called descendant fields,
which include all derivatives of the primary field, since L−1 �
zz and L−1 � zz act as derivatives on any field. All of them are
eigenfields of L0 and L0. Together, they form a highest weight
representation of the Virasoro algebra whose structure is similar
to highest weight representations of simple Lie algebras, the
primary field playing the role of the highest weight state.

Like in higher dimensions, the forms of the 1-, 2-, and 3-point
of quasi-primary fields are completely fixed by their invariance
under Möbius transformations. They are more easily written in
complex coordinates (zij � zi − zj) as follows:

〈Φ(z, z)〉 � A δh,0δh,0, (14)

〈Φ1(z1, z1)Φ2(z2, z2)〉 � A12

zh1+h212 z h1+h2
12

δh1 ,h2δh1 ,h2, (15)

〈Φ1(z1, z1)Φ2(z2, z2)Φ3(z3, z3)〉
� A123

zh1+h2−h312 zh1+h3−h213 zh2+h3−h123 z h1+h2−h3
12 z h1+h3−h2

13 z h2+h3−h1
23

. (16)
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These forms suggest that the conformal weights hi, hi are positive
so that the correlators decrease with the separation distances, as
seems natural from a physical point of view. We will nonetheless
encounter physical fields with negative weights, for which the
correlators have a different meaning.

Occasionally, we will consider chiral correlators for which we
only retain the dependence in the zi variables of the full
correlators (equivalently the action of the holomorphic modes
Ln). Chiral correlators are appropriate for observables living on a
boundary, like the real line bordering the upper-half plane, since a
boundary is one-dimensional. In this case, only one copy of the
Virasoro algebra remains so that the fields are characterized by a
single conformal weight. Chiral correlators are also useful to
compute the correlators of bulk variables on surfaces with
boundaries (see Section 6).

The precise structure of a Virasoro highest weight representation
(c, Δ) based on a primary field of weight Δ is crucial. In the good
cases, it determines the properties of the primary field (and of its
descendants) by fixing its correlators with itself or with other fields.
The 2-point correlator of a primary field has the form (15) since it is
quasi-primary, and the same is true for the 3-point correlator. To go
beyond, the global conformal invariance is not enough.12 It turns out
to be often the case that the structure of a Virasoro highest weight
representation implies that the correlators 〈Φ(z, z) . . . 〉 involving
the primary fieldΦ obey differential equations. Four-point functions
can be routinely computed in this way. All correlators can then be
determined, at least in principle, without knowing anything of a
possible Lagrangian realization of the underlying field theory
(through its action).

The miracle of 2-dimensional CFTs can be paraphrased in the
following way: to completely solve a CFT, that is, compute all its
correlation functions, and thereby to know everything there is to
know of the large-distance limit of a critical model; it is sufficient to
know enough of the Virasoro representations making up that CFT.
This methodology has been immensely successful since the mid-80’s
and has led to a profound understanding of the many aspects of
critical models listed at the end of the previous section. The Ising
model is the prominent example of a model that can be treated that
way, but the same is true of more general statistical models involving
local interactions between the microscopic variables.

More recently, models showing some form of nonlocality have
been examined at the conformal light. Sandpile models are in this
class, since, as we have seen earlier, the height variables are in strong
interaction over the entire domain to form global recurrent
configurations. Other models with nonlocal interactions and/or
nonlocal degrees of freedom include percolation, critical polymers,
and more general loop models. It may sound surprising, but the
conclusion seems to be that the conformal approach is still relevant.
However, the CFTs underlying these models are more complex
essentially because the representations of the Virasoro algebra that
appear have a far more complicated structure. These special CFTs are

called logarithmic conformal field theories (LCFTs). What follows is a
very basic introduction to the salient features of the LCFT; various
reviews and applicationsmay be found in the special issue [18]. Let us
also mention [19] which reviews the extension to the LCFT of the
calculational tools used in CFT.

For the highest weight representations discussed above, the
operators L0, L0 are diagonalizable. LCFTs have the distinct
feature to include Virasoro representations for which L0 and L0
are no longer diagonalizable, but instead contain (infinitely many)
Jordan blocks of finite rank. To have a rough idea of what these
representations look like, one can think of a highest weight
representation for which the highest weight is not a single
primary field, but a pair of fields (Φ, Ψ), of which only Φ is
primary. The action of L0 on them would be typical of a rank 2
Jordan cell as follows:

L0Φ � hΦ, L0Ψ � hΨ + λΦ, (17)

where Ψ is called the logarithmic partner of the primary field Φ
and a similar action of L0 (with h). Under the action of the
negative Virasoro modes, the Jordan block structure will propagate
among the descendant fields. The presence of Jordan blocks is a
sort of minimal ingredient to make a representation logarithmic;
many mathematical complications can and do arise (see, f.i., [20]).
Higher rank Jordan blocks can also appear.

A immediate consequence of the presence of Jordan blocks
explains the use of the word “logarithmic”: the correlators of fields
in an LCFT contain logarithmic terms in addition to the power
laws encountered before. For instance, the 2-point correlators of
the logarithmic pair {Φ, Ψ}, both of weights (h, h), read

〈Φ(z1, z1)Φ(z2, z2)〉 � 0,

〈Φ(z1, z1)Ψ(z2, z2)〉 � B

(z1 − z2)2h(z1 − z2)2h
,

(18a)

〈Ψ(z1, z1)Ψ(z2, z2)〉 � C − 2λB log |z1 − z2|2
(z1 − z2)2h(z1 − z2)2h

. (18b)

For rank r Jordan blocks, the 2-point correlators would involve up
to (r − 1)th powers of logarithms. The parameter λ is not intrinsic
as it can be observed in the normalization of Φ or of Ψ; likewise,
the logarithmic partnerΨ is defined up to a multiple ofΦwithout
affecting the defining relations (17). The chiral version of the
above 2-point functions reads

〈Φ(z1)Φ(z2)〉 � 0, 〈Φ(z1)Ψ(z2)〉 � B

(z1 − z2)2h
, (19a)

〈Ψ(z1)Ψ(z2)〉 � C − 2λB log(z1 − z2)
(z1 − z2)2h

, (19b)

It should not be too surprising that Jordan blocks and logarithms
go hand in hand. Under dilation by a factor α, a logarithmic term
transforms inhomogeneously log z→ log z + log α, reflecting the
inhomogeneous action of the dilation generator L0 on Ψ. Under a
finite dilation w � αz, the transformation laws of Φ and Ψ read

Φ′(w,w) � |α|−Δ Φ(z, z),
Ψ′(w,w) � |α|−Δ Ψ(z, z) − λ log |α|2 Φ(z, z)}.{ (20)

12A general 3-point correlator 〈Φ1(z1)Φ2(z2)Φ3(z3)〉 is a function of three
complex numbers; if all three fields are quasi-primary, that function can be
determined by trading z1, z2, and z3 for the three complex parameters of a
general Möbius transformation.
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One may check that the form of the correlators (18) is indeed
invariant under the replacement Φ(z, z)→Φ′(w,w) and
Ψ(z, z)→Ψ′(w,w). Let us also note that the scaling (5) must
be redefined for the lattice observables described by logarithmic
fields since it involves a dilation by a factor 1/ε, to which the
field responds by an inhomogeneous term.

Despite all the efforts spent, LCFTs are generally much less
understood than their non-logarithmic cousins, although a
number of general features are known. On the statistical side,
few models have been thoroughly studied as their nonlocal
features make it hard to carry out exact calculations on the
lattice. On the field theoretic side, it is not known what a
generic LCFT looks like. The simplest of all (but nontrivial)
and probably the only LCFT to be fully under control is the
symplectic fermion theory with central charge c � −2, also called
the triplet theory. It has been introduced in [21] and then
investigated in greater detail in [22, 23]. It has the following
Lagrangian realization in terms of a pair of free, massless,
Grassmannian scalar fields θ, ~θ,

S � 1
π
∫

dzdz zθz ~θ , z � zz , z � zz. (21)

Several fields in this theory form logarithmic pairs, like the identity I
and the composite field θ~θ. We note that (18) then implies the
somewhat unusual relation 〈I〉 � 0, which indeed follows, using the
rules of integration overGrassmannian variables, from the fact that the
above action does not depend on the constantmodes of θ and ~θ. Since
this is a free scalar theory, all correlators of fields that are local
(i.e., product of derivatives) in θ, ~θ are polynomials in the derivatives of
theGreen function (the kernel of the inverse Laplacian−4zz ) given in
complex coordinates by G(z, w) � −log ǀz − wǀ.

To finish, let us note that the statistical models which have a non-
diagonalizable transfer matrix (when there is a proper one) are the
natural candidates for being described by LCFTs in their scaling regime.
Indeed, such a transfer matrix gives rise to a non-diagonalizable
Hamiltonian, which itself is the lattice version of the field theoretic
operator L0 + L0. As said above, the non-diagonalizability of L0, L0 is
the hallmark of LCFTs. The logarithmic minimal models form an
infinite series of such lattice models [24].

The rest of this review is devoted to discussing the variables of the 2-
dimensional sandpile models which have been successfully (i.e., with
enough confidence) identified in the corresponding LCFT. These
elements reveal some facets of the field theory at work in sandpile
models: the big and complete picture is well out of reach for the
moment.

5 BULK VARIABLES

The height variables are certainly the first and most natural
variables to look at as they are the microscopic variables in
terms of which the models are defined. The introduction we
gave in Section 2 was for the Abelian sandpile on an arbitrary
graph. If large-distance properties should be rather robust against
local modifications of a graph, they are not expected to be the
same on a graph with a high degree of connectivity (the extreme

example being the complete graphs), a regular graph with a
moderate degree of connectivity or a graph with a strong
hierarchical structure (like Cayley trees). Most of the results
reviewed here are obtained when the graph is a rectangular
portion of the square lattice Z2; varying the size of the grid is
an easy way to approach the infinite volume limit, and this choice
ensures that conservative sites away from the boundary have
height variables taking the same number of values (namely, 4).
The triangular and honeycomb lattices, for which the number of
height values is, respectively, 6 and 3, will be briefly discussed as
well in order to address universality issues (see Section 7.2).

In most cases, the only dissipative sites will be located on the
boundary,13 except when we discuss the insertion of isolated
dissipation. With one exception, we will exclusively consider
open and closed boundary conditions, by which we mean that
whole stretches of boundary sites are either dissipative or
conservative, respectively. The choice of boundary conditions not
only has an effect at finite volume but also in the infinite volume limit
if some of the boundaries are kept at finite distance (e.g., on the
upper-half plane or on a strip of finite width, see Section 6).

On a finite grid Γ, the heights assigned to the vertices form
stable configurations, but only the recurrent ones have a nonzero
(and uniform) weight with respect to the invariant measure PΓ. So
far, we have no clear idea of what a generic recurrent configuration
looks like. Answers to questions like “What is the proportion of
sites having height 1, height 2, . . .?” can certainly help figure out.
Also, the heights must be correlated within a recurrent
configuration. Can one characterize these correlations? Are they
exponential or power-lawed? The computation of multisite height
probabilities answers these questions and helps understand the
statistics of recurrent configurations.

To be definite, let us consider Γ as an L ×M rectangular grid in
Z2, with open boundary conditions: the non-boundary sites are
conservative and have a maximal height value equal to
zi* � zi � 4, whereas the boundary sites have a maximal height
value chosen to be zi* � 4> zi (boundary and corner sites dissipate
1 resp. 2 grains of sand under toppling; both types are connected
to the sink). Thus, the toppling matrix is four times the identity
minus the adjacency matrix of the grid, and the height at every
site takes values in {1, 2, 3, 4}. In this section, all boundaries are
sent off to infinity in the scaling limit so that the domain
converges to R2; in that limit, all multisite probabilities are
fully invariant under translations.

5.1 One-Site Height Probabilities
As a warm up for what has to come, we ask the following: what is
the probability PΓ(hi � a) that in a recurrent configuration, a
given site i has height equal to a, between 1 and 4? Because we are
interested in the infinite volume limit of these numbers, we take i
to be deep in the middle of the grid, well away from the
boundaries.

If we pause for a while and ponder over that simple question,
we feel a bit at a loss on how to handle it because the only means

13For rectangular grids Γ ⊂ Z2, the notion of boundary is clear: when Γ is embedded
in Z2, the boundary sites are those which are connected to sites of Z2 not in Γ.
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we have is the general criterion of recurrence, namely, the
nonexistence of forbidden subconfigurations. Let us start with
the height 1.

Since the total number of recurrent configuration is equal to
det ΔΓ (see Section 2), we can write

PΓ(hi � 1) � #{recurrent configs with hi � 1}
detΔΓ

. (22)

For hi � 1 to be in a recurrent configuration C, the height of none
of its neighbors N, E, S, or W can be equal to 1 (as they would
form a forbidden subconfiguration). Following the clever trick
proposed in [25], we consider a new grid ~Γi by deleting from Γ the
vertex i and the four edges incident to it. We also define from C a
new configuration ~C on ~Γi by setting

~hj � { hj for j ∉ {i,N,E, S,W},
hj − 1P1 for j ∈ {N,E, S,W}. (23)

Looking back at the criterion of recurrence for an arbitrary graph,
it is not difficult to see that a configuration C with hi � 1 is
recurrent on Γ if and only if ~C is recurrent on ~Γi. We thus obtain

PΓ(hi � 1) � detΔ ~Γi
detΔΓ

� det[Δ~Γi ⊕ 1ii]
detΔΓ

, (24)

where the matrix in the numerator has been extended by a one-
dimensional diagonal block labeled by the vertex i, without
changing the value of the determinant. One then can write

Δ~Γi ⊕ 1ii � ΔΓ + B(i), (25)

with B(i), the defect matrix is given by

B(i)k,k′ �
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
−3 1 1 1 1
1 −1 0 0 0
1 0 −1 0 0
1 0 0 −1 0
1 0 0 0 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, k, k′ ∈ {i,N,E, S,W},

(26)

and B(i) is zero everywhere else. We obtain

PΓ(hi � 1) � det[ΔΓ + B(i)]
detΔΓ

� det[I + Δ−1
Γ B(i)]. (27)

It reduces to the computation of a finite determinant since B(i)
has finite rank. In the infinite volume limit (both L,M→∞), this
probability converges to a constant P1 (by translation invariance).
As the matrix ΔΓ becomes the discrete Laplacian on Z2 in that
limit,14 standard results yield [25]

P1 ≡ lim
|Γ|→∞

PΓ(hi � 1) � 2(π − 2)
π3

x 0.073 63. (28)

It also means that a recurrent configuration has an average of
about 7% of sites with a height equal to 1.

What about higher heights? We know for sure that the
inequalities P4 >P3 >P2 >P1 hold because adding one grain of
sand to a recurrent configuration, at a site where hi � a, yields a
recurrent configuration if a < 4. However, to actually compute
these numbers, can one use the same trick as for the height 1? The
answer is definitely negative: no local modification of Γ like what
we did above will allow computing the corresponding
probabilities. To understand this, we turn to the description in
terms of spanning trees.

As was briefly mentioned in Section 2, the burning
algorithm yields a one-to-one correspondence between a
recurrent configuration and a spanning tree rooted at the
sink site s and growing into the interior of Γ. In a given
spanning tree T , a site j is called a predecessor of i if the
unique path in T from j to the root passes through i. Let us also
denote by Xk(i) the fraction of all spanning trees for which the
site i has k predecessors among its nearest neighbors, for
0# k# 3. A careful analysis of the burning algorithm shows
the following [26]:

PΓ(hi � a) � PΓ(hi � a − 1) + Xa−1(i)
5 − a

, 1# a# 4. (29)

For a � 1, we see that PΓ(hi � 1) is related to X0(i), namely, the
fraction of spanning trees on Γ for which the site i is a leaf. All
such trees can be obtained from arbitrary spanning trees on ~Γi by
adding one edge between one neighbor of i and i itself (four
different possibilities). Thus, both points of view coincide and
lead to the same local modification Γ→ ~Γi.

The next case is PΓ(hi � 2), related to X1(i). Here, the
situation is dramatically different because the condition that i
has only one predecessor among its nearest neighbors is highly
nonlocal. The reason for this is that there are two manners for a
neighbor of i to be a predecessor of i in a given tree. The first one is
that the tree includes the edge between the two sites so that the
neighbor of i is directly connected to i. In the second manner, the
tree contains a potentially long chain of edges that forms a path
between the two sites. The first one is a local connection and is
easy to check, and the second one is nonlocal and more difficult.
The same remark applies to the fractions X2(i) and X3(i) and
makes the calculation of the corresponding probabilities much
more complicated.

In fact, this first natural and simple-looking question we
have raised, namely, the value of P(hi � a), turned into a fairly
long warming up exercise as it took about twenty years before
the completely explicit probabilities could be found. By using a
rather heavy graph theoretical technology, Priezzhev [26]
obtained the first expressions for P2,P3, and P4, but these
were given in the form of multivariate integrals. The problem
was reconsidered in [27], where the following explicit values were
conjectured:

P2 � 1
4
− 1
2π

− 3
π2

+ 12
π3

x 0.173 90, (30a)

P3 � 3
8
+ 1
π
− 12
π3

x 0.306 29, (30b)

14The reader will legitimately point out that the Laplacian on Z2 has a zero mode
and is therefore not invertible. A closer look at the determinants (27) however
reveals that they only depend on differences of the inverse matrix entries, which are
perfectly well-defined.

Frontiers in Physics | www.frontiersin.org June 2021 | Volume 9 | Article 64196610

Ruelle Sandpile Models in the Large

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


P4 � 3
8
− 1
2π

+ 1
π2

+ 4
π3

x 0.446 17. (30c)

A few years later, three independent proofs were given. The first
one was based on a relation with the probability of a loop-erased
random walk (LERW) to visit a fixed nearest neighbor of its
starting point, which was then computed in terms of dimer
arrangements [28]. The second proof also used the relation
with LERW passage probabilities but within a much more
general approach [29]. Finally the third one [30] carried out
the direct computation of the multiple integrals left open in [26].
Let us mention that the technique developed in [29] to enumerate
the so-called cycle-rooted groves (which generalize spanning
trees to spanning forests with marked points) currently
provides by far the most efficient way to compute height
probabilities, reducing the calculation of P2,P3 to just a few
lines (see Ref [31]). Most of the height correlators presented
below have been computed using this technique. Also noteworthy
in this context is the work [32] which presents a direct and
elementary derivation of the average height 〈h〉 � ∑a aPa on
planar lattices (from the formulas above, it is equal to 25

8 on Z2)
without computing the individual height probabilities.

Ironically, the four numbers Pa are not very useful for a
comparison with a field theory because they will have to be
subtracted in correlators (see below). And indeed, some of the
correlators have been determined exactly before the 1-site
probabilities Pa were found.

Even though the explicit expressions for Pa’s have the same
level of simplicity, the far larger complexity of the combinatorial
problem posed by the calculation of PaP2 hints at a striking
difference of nature between the height 1 and the higher heights:
the height 1 is essentially local, and the others are nonlocal. This
will soon be confirmed.

5.2 Height Cluster Probabilities
Cluster height probabilities are a rather obvious generalization of
one-site probabilities, by which we ask for the probability that a
specific connected subconfiguration occurs in recurrent
configurations, away from the boundaries and in the infinite
volume limit. Examples of height clusters are shown below.

The three clusters on the left belong to the family of weakly
allowed subconfigurations, or minimal height clusters, first
introduced in [25], which contains the cluster made of a
single height equal to 1. They are minimal subconfigurations
in the sense that if one decreases any of its heights by 1, the
clusters become (or contain) forbidden subconfigurations. As
was done in the previous subsection for single height 1, their
occurrence probabilities around position i can be computed by
cutting off appropriate lattice sites and edges. They take the
form of finite determinants PS(i) � det[I + Δ−1

Γ BS(i)], where
the defect matrix Bs(i) depends on the cluster S considered
[25, 33].

The three clusters on the right of (31) are not minimal and
generalize the simple cluster made of a single height larger or
equal to 2. Their level of complexity is comparable to the latter
and is best computed using the methods of [29]. Explicit
calculations become fairly tedious as the size of the cluster
increases.

5.3 Height Correlations
In terms of the subtracted height variables,15

ha(i) ≡ δh(i),a − Pa, (32)

the n-point correlation functions are given by

σa1 ,a2 ,...,an(i1, i2, . . . , in) � E[ha1(i1) ha2(i2) . . . han(in)]. (33)

These are the functions we are primarily interested in for a future
comparison with a conformal field theory. To make the
comparison sensible, we have to take the infinite volume limit
and the limit of large separations ǀik − ilǀ → +∞. In addition, to
avoid the boundary effects—they will be studied later on, all
insertion points ik are to stay (infinitely) far from the boundaries.
In practice, one first replaces ΔΓ by the Laplacian Δ on Z2 and
then expand the Green matrix (i.e., the inverse Laplacian) for
large separations.

The computation of correlations of heights 1 (or indeed any
weakly allowed subconfigurations, see below) poses no particular
problem. The argument used in Section 5.1 leading to consider
new configurations ~C on a locally modified lattice ~Γ is simply
repeated for the neighborhood of each cluster. Thus, the
probability to find a height h(i1) � 1 at site i1, a height h(i2) �
1 at site i2, and so on, is equal to

PΓ(h(i1) � 1, h(i2) � 1, . . . ) � det[ΔΓ + B(i1) + B(i2) + . . . ]
detΔΓ

� det[I + Δ−1
Γ {B(i1) + B(i2) + . . . }].

(34)

The correlators σ1,1, . . .,1 are obtained by taking appropriate
subtractions and the limits discussed above.

The first few n-point correlators can be easily computed for
arbitrary configurations of insertion points [31, 33]. By
construction, the 1-point function vanishes, σ1(i1) � 0 (the
relation (9) is indeed the main motivation for the subtraction).
The 2-point function is found to be (i1 − i2 � �r � reiφ)

σ1,1(i1, i2) � −P
2
1

2r4
− 4(π − 2)[1 + (π − 2) cos 4φ]

π6 r6
+ . . . (35)

where the dots stand for lower order terms.
This first result is instructive for several reasons. First, for large

separation distances, the dominant term indicates that the correlation
decay is algebraic, which shows that the model is critical and makes
room for a conformal field theoretic description. Second, choosing the
scale dimension Δ � 2, the scaling limit (12) indeed retains the first
term only, the form of which is the expected one (note that the

15In order to make contact with fields, we slightly change the notation hi → h(i) for
the height at site i.
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second term, like all other subdominant ones, has only the
lattice rotation invariance and is therefore not expected to
survive the scaling limit). And third, the dominant term is
negative, indicating an anticorrelation between heights 1. This
is consistent with the fact that the presence of many heights 1
in a configuration makes it more likely to be nonrecurrent.
Interestingly, the calculation can be carried out in Zd , with the
result that the correlation decays like r−2d, giving a dimension
Δ � d [25].

The mixed correlator of a height 1 and a height 2, 3, or 4 is harder.
They have first been obtained in [34, 35] by using classical graph
theoretic techniques, and then reconsidered and extended in Ref [31]
using the results of Ref [29]. Whatever the method used, one
has to evaluate the fractions ~Xk(i1) of spanning trees, as defined
in Section 5.2, but on a lattice modified around the site i2
where height 1 is located. This modification affects the
toppling (Laplacian) matrix and its inverse and,
consequently, the whole computation, heavily based on
these two matrices. The result for a height 1 and a height 2
reads, at dominant order,

σ2,1(i1, i2) � −P
2
1

2r4
{log r + (c + 3

2
log 2 + 16 − 5π

2(π − 2))} + . . . (36)

where c � 0.577216. . . is the Euler constant. The first subdominant
correction is of order r−6 and contains a nontrivial angular
dependence, like in (35), but also a log r term [31]. The
expressions of σ3,1 and σ4,1 are similar, with different coefficients.

The expressions σa,1 for a > 1 definitely establish the
logarithmic character of the CFT underlying the sandpile
model. The expressions (35) and (36) are strongly reminiscent
of those in (18) but do not quite match. If in the scaling limit,
heights 1 and 2 were to converge to a logarithmic pair {h1(z),
h2(z)}, one would think that σ1,1 and σ2,1 ought to go over to the 2-
point functions 〈h1(z1)h1(z2)〉 and 〈h2(z1)h1(z2)〉, respectively.
However, conformal invariance implies that the former vanishes
identically, whereas the latter is not logarithmic. We could think
of computing σ2,2 to see what comes out, but large-distance
correlators with several heights strictly larger than 1 are far
beyond our present computational capabilities. Let us add that
the calculation of σa,b(i1, i2) for a, b > 1 does not merely reduce to
the evaluation of numbers like Xa−1,b−1(i1, i2) which would
generalize the numbers Xa−1(i) defined earlier and enumerate
the spanning trees with fixed numbers of predecessors among the
nearest neighbors of i1 resp. i2. Indeed, the possibility that
neighbors of i1 are predecessors of i2, or vice versa,
substantially complicates the matter. Details on how to
perform the correct counting have been given in [31].

To reconcile the previous lattice results and the LCFT
predictions, we pause for a while to examine the effects of a
seemingly unrelated observable.

5.4 Isolated Dissipation
In the previous section, the calculation of height probabilities
started on a finite grid Γ, where the only dissipative sites are
boundary sites. We did not pay too much attention to exactly
which boundary sites are dissipative; in fact, since the infinite

volume limit sends the boundaries off to infinity, there is no
need to know precisely which boundary conditions are
used (this is what we meant when we said that ΔΓ becomes
the Laplacian on Z2). We show now that the situation changes
if we make some of the bulk sites dissipative [36]. It is not
difficult to understand why this is so in terms of spanning
trees. We remember that dissipative sites are sites that are
connected to the sink, the root of the trees, from which the
branches of the tree are growing. Therefore, the existence of
dissipative sites in the bulk makes it possible that branches
grow from the middle of the grid, thereby affecting the
macroscopic structure of the spanning trees.

To make a bulk site i1 dissipative, one simply has to connect it
to the sink. In the notations of Section 2, this amounts to increase
the value zi1*, for instance, from zi1 � 4 (on Z2) to 5 (a higher value
would not make much difference). In turn, this changes by 1 the
diagonal entry (ΔΓ)i1,i1 of the toppling matrix, that is, ΔΓ → ΔΓ +
Di1, with (Di1)i,j � δi,i1δj,i1. More generally, the new toppling
matrix ~Δn ≡ ΔΓ + Di1 + Di2 + . . . + Din defines a new model in
which several bulk sites ik are dissipative. As a consequence, the
height variables at these sites take values in the set {1, 2, 3, 4, 5}.

A simple and natural way to evaluate the effect of
inserting isolated dissipation is to consider the change in the
number of recurrent configurations, by computing the ratio
det ~Δn/detΔΓ, first at finite volume and then in the infinite
volume limit.

We start by inserting dissipation at the single site i, far from
the boundaries. The ratio is easy to compute since the defect
matrix Di has rank 1,

det ~Δ1

detΔΓ
� det(I + Δ−1

Γ Di) � 1 + (Δ−1
Γ )i,i. (37)

It is a finite number at finite volume but diverges in the infinite
volume limit, no matter where the site i is located. The divergence
reflects the fact that the extra value hi � 5 allows enormously more
recurrent configurations in the modified model.16

The same divergence is present in the ratio det ~Δn/detΔΓ,
which suggests to change the normalization and compare the
effect of inserting n dissipative sites with respect to the situation
where there is only one dissipative site, that is, to consider instead
the ratio det ~Δn/det ~Δ1, which is perfectly well-defined. Let us also
remark that in the infinite volume limit, the denominator does
not depend on the location of the (only) dissipative site so that the
ratios are fully symmetric in the insertion points ik and
translation invariant.

The first two ratios read, with r � ǀi1 − i2ǀ for n � 2,

det ~Δ1

det ~Δ1

� 1,
det ~Δ2

det ~Δ1

� 1
π
log r + 2c0 +O(r−2), (38)

16We note that the inverse ratio detΔΓ/det ~Δ1 is equal to Prob[all hj # 4] �
Prob[hi # 4] � 1 − Prob[hi � 5] where the probabilities are evaluated in
the modified model. The divergence mentioned in the text therefore implies
that hi � 5 with probability 1.
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where c0 � 1
2π (c + 3

2 log 2) + 1. If we denote by ω(z, z) the field
that describes, in the scaling limit, the insertion of dissipation at a
bulk site, the previous two equations would imply

〈ω(z, z)〉 � 1, 〈ω(z1, z1)ω(z2, z2)〉 � 1
π
log |z1 − z2| + 2c0.

(39)

Interestingly, they exactly match the last two equations of (18),
with the logarithmic pair {Φ, Ψ} identified with {I,ω}, both fields
having the weights h � h � 0 (the identity field is primary).
Moreover, the logarithmic term in the 2-point correlation fixes
the coefficient λ of the logarithmic pair (I,ω) equal to λ � − 1

4π so
that L0 ω � L0 ω � − 1

4π I. The relation 〈I〉 � 0, as noted for the
free symplectic fermion theory, is here understood as being given
by the inverse of the divergent quantity in (37).

The lattice calculation of det ~Δ3/det ~Δ1, corresponding to the
insertion of three dissipative sites, is not difficult and yields the
following 3-point correlation, with zij ≡ zi − zj,

〈ω(1)ω(2)ω(3)〉 � 3c20 +
c0
2π

log |z12z13z23|2

+ 1
16π2

[log |z12|2 log ∣∣∣∣∣∣∣z13z23z12

∣∣∣∣∣∣∣2 + cyclic]. (40)

It is fully consistent with the general 3-point correlators of
fields in a logarithmic pair [19]. Many additional checks have
been carried out [36] which all confirm the consistency of the
above field assignment. It has been shown [27] that the bulk
dissipation field can be realized in terms of symplectic free
fermions as

ω(z, z) � 1
2π

θ~θ + c0, (41)

in the sense that the correlators of this composite field, computed
in the symplectic fermion theory, reproduce the above
expressions.

5.5 Height Correlations Continued
The multisite height probabilities computed in Section 5.3
were obtained by taking the limit over a sequence of grids of
increasing size. Because of the dissipation along the
boundaries, the probabilities are well-defined for each finite
grid and properly converge. On the field theoretic side, the
CFT supposedly describing the scaling limit is defined right
away on the infinite continuum and does not know about the
dissipation of the finite systems. To make the CFT connect
with the lattice description, we have to insert by hand the
required dissipation in the correlators. Since on the lattice side,
the boundary dissipation is pushed off to infinity when we take
the infinite volume limit, the previous section suggests that we
insert the additional field ω(∞) in the correlators. Thus, the
proposal, first made in Ref [27], is that a lattice n-point height
correlator is described in the scaling limit by an (n+1)-point
field correlator as follows:

σa1 ,a2 ,...,an(i1, i2, . . . , in) #########→scalim 〈ha1(z1) ha2(z2) . . .han(zn)ω(∞)〉.
(42)

It turns out that the proposed field correlations exactly reproduce
the form of the lattice results obtained in Section 5.3. If {Φ,Ψ} are
fields of weights h � h forming a logarithmic pair such that
(L0 − h)Ψ � (L0 − h)Ψ � λΦ, one finds with Δ � 2h [27] the
following equations:

〈Φ(z1, z1)Φ(z2, z2)ω(∞)〉 � A

|z12|2Δ,

〈Φ(z1, z1)Ψ(z2, z2)ω(∞)〉 � B − λA log |z12|2
|z12|2Δ ,

(43a)

〈Ψ(z1, z1)Ψ(z2, z2)ω(∞)〉 � C − 2λB log |z12|2 + λ2A log2|z12|2
|z12|2Δ .

(43b)

Comparing with equation (18), we see that the insertion of
dissipation at infinity through ω(∞) allows a nonzero value of
A and solves the problem encountered in Section 5.3.

From the dominant terms in equations (35) and (36) for the
lattice correlations σ1,1(i1, i2) and σ2,1(i1, i2), we infer that the
(subtracted) bulk lattice height 1 and height 2 variables converge
to fields h1(z) and h2(z) that form a logarithmic pair of weight Δ �
2. Moreover, if we assign them the same normalization as their
lattice companions (A � −P2

1
2 ), we find the parameter of the

logarithmic pair (h1, h2) equal to λ � −1
2. The explicit results

for σ3,1(i1, i2) and σ4,1(i1, i2) [35] show that the fields h3(z) and
h4(z) are also logarithmic partners of h1(z), albeit of different
normalizations and for different values of λ. As noted in Section
4, it means that they can be written as linear combinations17 of
h1(z) and h2(z) with known coefficients,

ha(z) � αah2(z) + βah1(z),
α1 � 0, α2 � 1, α3 � 8 − π

2(π − 2), α4 � − π + 4
2(π − 2),

(44)

and other values for βa [27]. These field assignments predict that
the lattice correlation of heights larger or equal to 2 behaves
asymptotically as follows:

σa,b(i1, i2)x −αaαb
P2
1

2
log2r
r4

+O(log r
r4
), a, bP 2. (45)

Because α4 is the only negative coefficient among αa, the height
variables are all anticorrelated, except the height 4 which has a
positive correlation with the other three heights. Numerical
simulations have successfully confirmed the behavior (45) [27].
A lattice proof however remains one of the greatest challenges in
the sandpile models.

The lattice 2-point correlators discussed above correspond to 3-
point functions in the CFT. They are therefore completely generic,
depending only on the weights of the fields involved and a few

17The four height fields ha(z) also satisfy the trivial identity h1(z) + h2(z) + h3(z) +
h4(z) � 0.
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assumptions about their global conformal transformations. Higher
correlators are not generic and depend on finer details of the nature of
the fields and of the specific CFT at work, in particular its central
charge. In this regard, the first hint for the value of the central charge
was given in Ref [8] by looking at the finite-size corrections of the
partition function (i.e., the number of recurrent configurations); the
analysis yields the value c � −2.

The simplest higher correlators to consider on the lattice are
the 3- and 4-point height 1 correlators. They have been computed
in Ref [33] with the following results. Since the height 1 variable
has weight Δ � 2 in the scaling limit, one would expect the
dominant contribution to the 3-point correlator to be
homogeneous of degree −6 in the separation distances.
Surprisingly, the first nonzero term has degree −8,

σ1,1,1(i1, i2, i3) � 0 + . . . (46)

implying that its scaling limit, corresponding to the CFT 4-point
function 〈h1(z1) h1(z2) h1(z3)ω(∞)〉, vanishes identically.

The lattice 4-point correlator has the expected dominant
degree −8,

σ1,1,1,1(i1, i2, i3, i4) � P4
1

8
{ 1

|z12 z34|4 +
1

|z13 z24|4 +
1

|z14 z23|4

− 1

(z12 z34 z13 z24)2 −
1

(z13 z24 z14 z23)2

− 1

(z14 z23 z12 z34)2 + c.c.} + . . . (47)

and is much more instructive: it is precisely the expression we
obtain for the 5-point CFT correlation function
〈h1(z1) h1(z2) h1(z3) h1(z4)ω(∞)〉 if we assume that the height
1 field h1(z) is a primary field of dimensions (h, h) � (1, 1) in a
CFT with central charge c � −2 and that it satisfies a certain
degeneracy condition at level 2. This last condition furnishes a
differential equation [16], from which the correlator can be fully
determined, the result being exactly the function (47)! From this
result, one can actually infer that the previous correlator
〈h1(z1) h1(z2) h1(z3)ω(∞)〉 must vanish if it is to be
symmetrical in the three insertion points [31].

The lattice 3-point correlators σa,1,1(i1,i2,i3), aP 2, have been
computed more recently in [31]. For simplicity, the three points were
assumed to be aligned horizontally in the plane, with real separations
xij. The following result was obtained to dominant order:

σa,1,1(i1, i2, i3) � αa
P3
1

8
1

x321x
3
31

+ . . . , (aP 2), (48)

where the coefficients αa are those given in (44). In addition to
being very simple, this expression is surprisingly non-
logarithmic. Because its scaling limit should be given by
〈ha(z1) h1(z2) h1(z3)ω(∞)〉, it is particularly important to
understand it from the CFT point of view. Indeed, the
computation of such a correlator requires additional
information on the height fields haP2 as logarithmic partners
of h1. Since h3 and h4 can be regarded as linear combinations of h1
and h2, it is sufficient to consider h2.

Inspired by the conformal representations appearing in the
bosonic sector of the symplectic theory [22], the following
proposal has been made in Ref [27] regarding the conformal
nature of h2(z, z). A more complete account will be presented in
Section 8.

The field h2(z, z) is not primary since it transforms into h1(z, z)
under dilations. It is also not quasi-primary because its L1 and L1
transforms generate two new fields ρ(z, z) and ρ(z, z), respectively,
withweights (0,1) and (1,0).Moreover, the field ρ(z, z) is left primary,
and its L1 transform is equal to κI; likewise, ρ(z, z) is right primary,
and its L1 transform is also equal to κI. All this results in the following
transformation law of h2(z, z) under a general conformal
transformation z→w(z) and z→w(z) as follows:

h2(z,z) �
∣∣∣∣∣∣∣dwdz

∣∣∣∣∣∣∣
2[h2(w,w)+ log∣∣∣∣∣∣∣dwdz

∣∣∣∣∣∣∣
2

h1(w,w)]
+1
2
(d2w
dz2

/dw
dz
) dw
dz

ρ(w,w)

+ 1
2
dw
dz
(d2w
dz2

/dw
dz
)ρ(w,w)

+κ
4
(d2w
dz2

/dw
dz
)(d2w

dz2
/dw
dz
), κ�−P1

4
. (49)

This conformal transformation law of h2 is sufficient to compute
correlators involving h2, but substantially complicates the
calculations. Using this transformation and the left and right
level 2 degeneracies of h1(z, z), the required correlator can be
nonetheless determined. The result reads [31]

〈h2(z1) h1(z2) h1(z3)ω(∞)〉 � P3
1

16
1

|z12z13|2 [
1

z13z12
+ 1
z12z13

].
(50)

When the three points zi are aligned horizontally, it exactly
reproduces the lattice result (48) for a � 2. The cases a � 3, 4
follow by multiplying by the proper coefficient αa since
〈h1(z1) h1(z2) h1(z3)ω(∞)〉 � 0.

5.6 Minimal Height Cluster Correlations
The calculation of occurrence probabilities of minimal
subconfigurations has been briefly discussed in Section 5.2.
Their correlations can be computed very much like those of
heights 1 by using a defect matrix. The calculation of mixed 2-
point correlators for about a dozen different minimal
subconfigurations has been reported in Ref [33]. It turns out
that each such cluster S can be specified by a triplet (a, b1, b2) of
real numbers.

We define as before subtracted variables

hS(i) � δS(i) − PS, (51)

where δS(i) denotes the event “a minimal subconfiguration S is
found around site i” and PS(i) � E[δS(i)] is the probability of such
an event. The mixed correlator of two such variables takes the
form
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σS,S′(i1, i2) � E[hS(i1) hS′(i2)]
� − 1

2r4
{aa′ + (b1b1′ − b2b2′) cos 4φ} + . . . (52)

We see that the dominant contribution retains an angular
dependence, which in this case is not surprising since the
minimal clusters are generally not rotationally invariant. As a
matter of illustration, the cluster reduced to a single height 1 is
characterized by the triplet (a, b1, b2) � (P1, 0, 0), while for the
second one in equation (31), one has

In the scaling limit, the subtracted cluster variables give
rise to the fields hS(z), whose mixed correlators are given by
the terms displayed in equation (52). Interestingly, it has
been observed [33] that these fields have a realization in terms
of the symplectic free fermions, which is discussed at the end
of Section 4. Indeed, one may check that the explicit fields
given by

hS(z, z) � −{a(zθ z ~θ + z θ z~θ) +(b1 + ib2) zθ z~θ
+(b1 − ib2) z θ z ~θ}, (54)

reproduce the above 2-point correlators, as well as the higher
order correlators computed in Ref [33], provided the dissipation
field ω, proportional to θ~θ, is inserted in the correlators, as
explained earlier. In particular, the height 1 field h1(z, z) is
recovered upon setting a � P1 and b1 � b2 � 0. Let us
note a generic field hS(z, z) is a linear combination of
three fields with different conformal weights, namely,
(1,1), (2,0), and (0,2) and therefore different conformal
transformations; the last two are responsible for inducing
an angular dependence in the correlators. The field
realization (54) has been proved in a much greater
generality in Ref [37]: any lattice observable based on a
conservative local bond modification18 converges in the
scaling limit to a field of the form (54).

On general grounds, this should not be surprising. On the one
hand, the multisite probabilities for minimal clusters can be
computed by using defect matrices which implement the local
bond modifications. On the other hand, defect matrices always
yield contributions that are given by finite determinants of
discrete Green matrix entries. In the limit of large separations,
the determinants converge to polynomial expressions in the
Green function and its derivatives. It is therefore not a
complete surprise that the associated fields can be constructed
out from the symplectic free fermions θ, ~θ. Indeed, because the 2-point

correlators of θ, ~θ are given by the Green function, the correlators of
any fields that are local in θ, ~θ and their derivatives are necessarily
polynomials in the Green function and its derivatives (Wick’s
theorem). We expect this observation to extend to all the
observables that correspond to local perturbations of the toppling
matrix. Isolated dissipation and minimal cluster variables are among
them; the arrow variables discussed in the next section are in this class
too. These general remarks apply to the massive extension of the
sandpile model (see Section 7.1).

What about the height 2, 3, and 4 variables? Can they also be
accommodated in the free symplectic fermion theory? As
explained earlier, these three variables cannot be handled with
finite rank perturbations of the toppling matrix because they
involve nonlocal constraints on the nearest neighbors (some of
them should not be predecessors). Using the technique developed
in Ref [29], the 1-site probabilities PaP2 can be efficiently
computed. Surprisingly, the details show that the explicit
values are given in terms of a few entries of the lattice Green
matrix (at short distances), which explains why the values of PaP2

quoted in (30) are not much more complicated than for P1. This
is no longer the case for large-distance correlations σaP2,1(i1, i2).
The analysis of Ref [31] shows that those correlators are expressed
in terms of sums of the product of Green matrix entries over a
path connecting i1 to i2 and thus in terms of quantities that are
not local in the Green matrix. It supports the view that the
height fields haP2 do not belong to the free symplectic fermion
theory. A detailed analysis of this question has been carried out
in Ref [27] and has reached the same conclusion. Section 8
below summarizes this somewhat strange situation.

5.7 Spanning Tree–Related Variables
A recurrent configuration of the sandpile model can be specified
as a set of height values or as a spanning tree; the former has the
local heights as natural variables, the latter has local connectivities
as natural variables, namely, the existence or absence of specific
bonds in the spanning tree.

We recall that a spanning tree is a connected subgraph with no
loop which contains all vertices, including the sink. The latter is
chosen to be the root of the tree, implying that there is a unique
path connecting any vertex to the root and therefore any vertex
to any other vertex. A rooted spanning tree can then naturally
be oriented by deciding that the edges of the tree all point
toward the root. As a consequence, in any rooted spanning
tree, there is exactly one outgoing edge at each vertex but the
root; there may however be more (or less) ingoing edges (a
vertex with no ingoing edge is a leaf). A site j is then a
predecessor of i if the unique path from j to i is
consistently oriented (equivalently if the unique path form j
to i does not pass through the root). As we have seen, the
question of being predecessor is a nonlocal problem, even if i
and j are close to each other, even nearest neighbors [38].

Connectivities between neighboring sites can be handled in
much the same way as height 1 or minimal height cluster
variables. To see this, we must first understand why the
determinant of the toppling matrix on a graph counts the number
of spanning trees on that graph. In the perspective of this section, we
generalize the matrix by assigning arbitrary weights to the oriented

18The qualifier “conservative” means that the defect matrix that implements the
bond modifications has zero row and column sums. The defect matrix used in
Section 5.1 to compute the height 1 probability does not have this property. It can
however be replaced by another one that does have it [33]. An example of a
nonconservative bond modification is given in Section 5.7.
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edges of the graph Γ* � (V*, E*). We define xij as the weight carried
by the edge from the vertex i to the vertex j (xij � 0means that there is
no edge from i to j), and we set, for i, j ∈ V ,

Δi,j �
⎧⎨⎩ yi � xi* +∑j≠ i

xij for i � j,

−xij for i≠ j,
(55)

In the context of the sandpile model, the difference xi* � yi −∑j≠ i xij can be viewed as the weight of the oriented edge from i to
the sink * so that the conservative vertices have this difference
equal to 0 (no connection to the root).

IfN � ǀVǀ is the number of vertices in the graph, let us write the
determinant of Δ as a sum over the permutations σ of the
symmetric group SN, which we partition according to the
number k of proper cycles they contain, that is, the cycles of
length strictly larger than 1 as follows:

detΔ � ∑
σ ∈SN

εσ Δ1,σ(1)Δ2,σ(2) . . .ΔN ,σ(N)

� ∑[N/2]

k�0
(−1)k ∑

σ has k
proper cycles

Δ+
1,σ(1) . . .Δ+

N,σ(N) (56)

where the matrix Δ+ is Δ without the minus signs in the non-
diagonal part. The second equality follows by combining the signs
in the non-diagonal entries of Δ with the parity of σ: every cycle of
length ℓP2 in a permutation σ brings a sign (−1)ℓ− 1 coming from
the parity εσ and another sign (−1)ℓ from the product of non-
diagonal entries of Δ, resulting in an overall sign −1 per proper
cycle. A cycle of length ℓ � 1, corresponding to a vertex left
invariant by σ, brings no sign.

The term k � 0 is simply equal to∏i yi as the only permutation
with no proper cycle is the identity. In combinatorial terms, the
product∏i yi is the weighted sum over all configurations of N
arrows, where each vertex has exactly one arrow pointing to
one of the other vertices or to the root, each configuration
being weighted by the product of the weights carried by the
arrows. The generic term k ≠ 0, apart for the sign (−1)k, is a
weighted sum of arrow configurations which contain at least k
oriented loops. Indeed, the k cycles contained in a fixed σ give rise
to k loops, and the arrows attached to the vertices left invariant by σ
are unconstrained and possibly form more loops.

By using the inclusion–exclusion principle, one can see
that the above alternating sum has the effect to subtract from
the term k � 0 the weights of all the arrow configurations
which contain at least one loop [26, 39]. Thus, det Δ is the
sum over the oriented spanning trees on Γ*, each tree being
weighted by the product of the weights of the oriented edges
present in the tree (Kirchhoff’s theorem). These oriented
trees are also rooted spanning trees because one vertex at
least must have its arrow oriented to the sink (a configuration
of N arrows on N vertices necessarily contains a loop). When
all weights xij are equal to 0 or 1, det Δ is simply the number of
spanning trees.

Let us come back to the question of local connectivities on a
rectangular grid in Z2 and compute the probability that the
outgoing arrow from the site i is oriented to its right

neighbor. This amounts to compute the fraction of spanning
trees with such an arrow given as follows:

P→(i) � P(right arrow at i) � {# trees with right arrow at i}
detΔ ,

(57)

where Δ is the discrete Laplacian. We take i to be a conservative,
non-boundary site.

According to the general discussion above, in order to force an
arrow from i to its right neighbor E, one could simply set to 0 the
weights between i and its three neighbors S, W, and N. It is however
computationally more efficient to set the weight from i to its right
neighbor to x and take the limit x→ +∞ so as to give the edges to the
other three neighbors a relative weight equal to 0. This implies that we
define a newmatrix ~Δ which coincides withΔ, except on two entries,
namely, ~Δi,i+̂e1 � −x and ~Δi,i � x + 3. As before, we write ~Δ � Δ +
B→(i) for the defect matrix B→(i) which is zero everywhere, except on
the two sites i, i + ê1, where it reduces to ( x−1

0
1−x
0 ). Since x is in any

case large, we can simply set that part of B→(i) to ( x
0
−x
0 ). From

Kirchhoff’s theorem, we obtain

P→(i) � lim
x→+∞

1
x
det[I + Δ− 1B→(i)], (58)

which reduces to a 2-by-2 determinant. In the infinite volume
limit, one finds P→(i) � 1

4, as expected. If we want to have the
arrow at i oriented to its neighbor j, other than E, we use similar
defect matrices B↑, B↓, B←, which look the same as B→ but with the
nonzero 2-by-2 block ( x

0
−x
0 ) placed on the sites i and j. The four

orientations of the arrow at i yield the same result 1
4.

Multipoint arrow probabilities can be computed in the now
usual way, placing appropriate defect matrices at the different
sites. For instance, the probability to find a right arrow at two sites
i1 and i2 is given as follows:

σ→,→(i1, i2) � lim
x→+∞

1
x2

det[I + Δ− 1{B→(i1) + B→(i2)}]. (59)

In the infinite volume limit and for a large distance, the
following two-point probabilities are found at dominant order:

σ→,→(i1, i2) − 1
16

� 1
16π2

(z + z)2
|z|4 + . . . (60a)

σ↑,↑(i1, i2) − 1
16

� − 1
16π2

(z − z)2
|z|4 + . . . (60b)

σ→,↑(i1, i2) − 1
16

� − i
16π2

z2 − z2

|z|4 + . . . (60c)

Looking for symplectic fermion realizations of fields ρ→ and
ρ↑ which reproduce these two-point correlators, one quickly
sees that these have to include two parts with respective
weights (1,0) and (0,1), leading in a natural way to the
following forms:

ρ→(z, z) �
1
2π
(θ z~θ + θ z ~θ), ρ↑(z, z) �

i
2π
(θ z~θ − θ z ~θ),

(61)
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in agreement with the fact that ρ↑(z, z) is formally the rotated
form of ρ→(z, z) (under z → −iz). The first two correlators are
indeed related by rotation. This observation also suggests that the
other two orientations are described by fields which are the
opposite of the previous two, ρ←(z, z) � −ρ→(z, z) and
ρ↓(z, z) � −ρ↑(z, z). Explicit calculations confirm it.

In a similar way, probabilities that edges belong to a random
spanning tree, irrespective of their orientation, can be computed.
The probability that a single, fixed edge belonging to a tree is the
sum of the probabilities to find it in either of the two possible
orientations, and is thus equal to 1

2.
Likewise, the probability to find m edges in a tree is the sum

of the probabilities to find them in all possible orientations and
so is the sum of 2m probabilities of m oriented edges. That sum
can however be obtained in one go by replacing the block

( x
0
−x
0 ) used for the oriented edges by ( x

−x
−x
x ) and dividing as

above the determinant by xm. Because two arrows with
opposite orientations cannot occupy the same edge (as they
would form a loop), the summation over the 2m terms is
correctly realized.

Correlations of unoriented edges should decay faster than
those of oriented edges because the sum of the two orientations is
zero, in view of the relations ρ← � −ρ→ and ρ↓ � −ρ↑, at least at the
order that was dominant for the oriented edges (r−2). Indeed,
explicit calculations yield a r−4 decay:

σ↔,↔(i1, i2) − 1
4
� σh,h(i1, i2) − 1

4
� − 1

16π2

(z2 + z2)2
|z|8 + . . .

(62a)

σ↔,h(i1, i2) − 1
4
� 1
16π2

(z2 − z2)2
|z|8 + . . . (62b)

From these correlators, the associated fields ϕ↔ and ϕhmust have
components with conformal weights (2,0), (1,1), and (0,2).
One finds the same form as the fields associated to the
minimal clusters, in agreement with a previous remark since
the defect matrix ( x

−x
−x
x ) is conservative. More precisely, the

following fermionic expressions reproduce the above
correlations:

ϕ↔(z, z) �
1
2π
(zθ z ~θ + z θ z~θ + zθ z~θ + z θ z ~θ)

� (z + z )ρ→ − 1
2π
(θz2~θ + θ z

2~θ), (63a)

ϕh(z, z) �
1
2π
(zθ z ~θ + z θ z~θ − zθ z~θ − z θ z ~θ)

� i(z − z )ρ↑ − 1
2π
(θz2~θ + θ z

2~θ). (63b)

In fact, given that an unoriented edge is a sum of two oriented
edges with opposite orientation, or, from what we said above, a
difference of two oriented edges with the same orientation, one
would expect that the fields describing a horizontal resp. vertical
unoriented edge are proportional to the horizontal resp. vertical
derivative of the fields describing the oriented edges, namely,
ϕ↔ ∼ (z + z )ρ→ and ϕh ∼ i(z − z )ρ↑. It turns out not to be quite
the case.

6 BOUNDARIES, BOUNDARY
CONDITIONS, AND BOUNDARY
VARIABLES
Formulating the sandpile model on a surface with boundaries is
important to see how they affect the statistics of the model. The
multisite correlations discussed in the previous section are likely
to be modified by the presence of a boundary, and by the
associated boundary conditions. Moreover, the microscopic
variables on a boundary or very close to it will surely have a
different behavior from their bulk versions. In the field theoretic
description, the boundary fields have to be properly identified,
and the way changes of boundary conditions are implemented
must be clarified. All this adds to the known set of bulk fields a
number of boundary-related fields and offers the opportunity to
further test the consistency of their identification by computing
mixed correlations combining both types of variables.

Surfaces with boundaries arise in the thermodynamic limit when
some of the boundaries of the finite system are not sent off to infinity,
unlike the situation considered in the previous section. The simplest
case is when only one boundary of the rectangular grid is kept at
finite distance, leading to a domain converging to the upper-half
plane H � {(x, y) ∈ R2: yP0}. There is only one boundary to care
about, and the invariance under horizontal translations is preserved.

From our earlier discussion of conservative vs. dissipative sites,
we have already defined two possible boundary conditions: open
and closed. Let us recall that the boundary condition is open resp.
closed if the boundary sites are dissipative resp. conservative. As
before, a boundary open site has zi* � 4, while a boundary closed
site has zi* � zi � 3. In the scaling limit, it endows H with a
homogeneous boundary condition, open or closed. We also can
(and will) consider inhomogeneous boundary conditions, by
alternating open and closed stretches on a single boundary.

In terms of height variables, the open boundary condition is
equivalent19 to fix all the boundary heights to 4, whereas the
closed condition amounts to constrain the boundary heights not
to take the value 4. The fixed boundary condition with boundary
heights equal to 1 is not possible (two neighboring 1’s form a
forbidden subconfiguration); the fixed boundary conditions with
boundary heights equal to 2 and/or 3 should be possible but seem
to be difficult to handle in practice.

Two more boundary conditions, defined in the spanning tree
description and previously called windy boundary conditions will
be discussed at the end of this section (as we will see, they are not
so far from the possibility just mentioned, namely, that of having
height variables being equal to 2 or 3). No other boundary
condition has been considered so far, though it would be very
surprising that no other exist.20

19Indeed, the burning algorithm implies that the boundary sites, all with a height
equal to 4, will burn at the first step of the burning process. The sites on the next
layer all have zi* � 4, corresponding to the open condition.
20Of course, we talk here of no other universality class of boundary conditions.
Many boundary conditions may differ in the way they are microscopically defined
on the lattice and nevertheless renormalize to the same continuum boundary
condition in the scaling limit.
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6.1 Bulk VariablesWith Homogeneous Open
or Closed Boundary
In this section, we would like to reconsider the multisite
height probabilities but on a domain with a boundary, the
upper-half plane (UHP) being the simplest case. The principle
underlying the calculations on the UHP stays the same as on
the full plane. The most essential difference is that the
toppling matrix becomes in the thermodynamic limit the
Laplacian matrix on the discrete UHP with the appropriate
boundary condition, open or closed. In this section, we
consider homogeneous boundary conditions only.

To be specific, we choose the boundary row of sites to be
located on the horizontal line y � 1 so that the discrete UHP
we consider is {(x, y) ∈ Z2

∣∣∣∣ yP1}. For either boundary
condition, the Laplacian matrix Δop or Δcl is minus the
adjacency matrix of the discrete UHP plus a diagonal
matrix, everywhere equal to 4 for the open condition, equal
to 4 and 3, respectively, for the bulk and boundary sites for the
closed condition. By the method of images, the Green matrices
Gop/cl � (Δop/cl)−1 can be easily computed in terms of that on
the full plane as follows:

Gop
(x1 ,y1),(x2 ,y2) � G(x1 ,y1),(x2 ,y2) − G(x1 ,y1),(x2 ,−y2), (64a)

Gcl
(x1 ,y1),(x2 ,y2) � G(x1 ,y1),(x2 ,y2) + G(x1 ,y1),(x2 ,1−y2), (64b)

for y1 and y2 > 0. As anticipated, we verify that Gop satisfies the
Dirichlet condition, namely, it is odd under the reflection through
the line y � 0 and therefore vanishes on it, and thatGcl satisfies the
Neumann condition, namely, it is even under the reflection
through the line y � 1

2, inducing a vanishing normal derivative
in the scaling limit. The calculations of the previous section can
then be generalized to the UHP geometry by using these Green
matrices. For height 1 and for the cluster variables, one merely has
to use the appropriate Green matrix. For higher heights, the
presence of a boundary makes the calculations more complicated
because the combinatorics involved is heavier.

The simplest case is the 1-site height probability P
op/cl
1 (y) to

find a height equal to 1 at a distance y from the boundary. It can
be computed by using eq. (27), where Δ−1

Γ is replaced, in the
infinite volume limit, by one of the two Green matrices given
above. This was historically the first calculations of boundary
effects in sandpile models [40], with the result

σop
1 (y) � P

op
1 (y) − P1 � P1

4y2
+ . . . ,

σcl1 (y) � Pcl
1 (y) − P1 � −P1

4y2
+ . . .

(65)

The analogous results for higher heights were obtained
somewhat later [27, 41] and were the first to firmly
establish their logarithmic nature. They take the following
form, valid for aP1,

σopa (y) � 1
y2
(ca + da

2
+ da log y) + . . . ,

σcla (y) � − 1
y2
(ca + da log y) + . . .

(66)

up to terms of orderO(y−4 log y), which have since been explicitly
computed [31], as they enter the calculations of σop/cla,1 given below.
The coefficients are explicitly known and are shown in Table 1.
One may check that the relations (44) expressing h3 and h4
linearly in terms of h1 and h2 are confirmed. The distinctive change
of sign between the two boundary conditions and the fact that forfixed
a, both are controlled by the same constants ca and da and the equality
d2 � c1 are striking. As will be explained below and in one of the next
sections, all three features will follow from the CFT picture.

Let us mention that these lattice calculations have been carried
out on another lattice realization of the UHP, namely, on the
diagonal upper-half plane {(x, y) ∈ Z2

∣∣∣∣ y > x}, for which the
method of images allows to explicitly compute the Green
matrices for the two boundary conditions. As expected, the
dominant terms are exactly the same as above in terms of the
Euclidean distance between height 1 and the diagonal boundary,
while the subdominant terms are different [31].

The 2-site height correlators in the bulk of the UHP, at sites
i1 � (x1, y1) and i2 � (x2, y2), and which involve the same
subtractions as before,

σop/cla,1 (x; y1, y2) � P
op/cl
a,1 (i1, i2) − Pop/cl

a (i1)P1

− Pa P
op/cl
1 (i2) + Pa P1,

(67)

have been computed in [31] when the two sites are far from the
boundary and far fromeach other, again using the technique developed
in [29]. They depend on three real variables, the horizontal distance x�
x1−x2 between the two sites and their vertical positions y1 and y2. For
simplicity however, the lattice calculations have been carried out for
two vertically aligned sites, that is, for x � 0.

Defining the two bivariate functions,

P(u, v) � 1
8u2v2

− 1

(u − v)4 −
1

(u + v)4 ,

Q(u, v) � 1

(u − v)4 −
1

(u + v)4,
(68)

the results for a � 1, 2 take the following form, at dominant order:

σop
1,1(0; y1, y2) � σcl1,1(0; y1, y2) � P2

1

2
P(y1, y2) + . . . , (69a)

σop/cl
2,1 (0; y1, y2) � P2

1

2
[P(y1, y2)(log y1 + c + 5

2
log 2)

+Q(y1, y2) log
∣∣∣∣∣∣∣∣y2 + y1
y2 − y1

∣∣∣∣∣∣∣∣]+ Hop/cl(y21 , y22)
y21 y

2
2 (y21 − y22)4 + . . . ,

(69b)

where Hop(u,v) and Hcl(u,v) are homogeneous polynomials of
degree 4 in u, v, with explicitly known coefficients. The results for

TABLE 1 |Numerical coefficients for one-site height probabilities on the UHP, with
~c � c + 5

2 log 2. They satisfy the relation ∑a ca � ∑a da � 0.

a = 1 a = 2 a = 3 a = 4

ca
P1
4 � π−2

2π3
π−2
2π3 ~c + 34−11π

8π3
8−π
4π3 ~c + −88+5π+2π2

16π3 −π+4
4π3 ~c + 36+9π−2π2

16π3

da 0 P1
4 � π−2

2π3
8−π
4π3 − π+4

4π3
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a � 3, 4 take the same formwith different coefficients and confirm
once more the linear relations (44).

Let us discuss these results in the CFT picture, using what we
already know about the height fields ha(z, z). For a homogeneous
boundary condition like here, boundary CFT prescribes
to compute bulk correlators on the UHP by viewing a field
ϕ(z, z) with conformal weights (h, h) as the product ϕh(z)ϕh(z)
of two chiral fields of weights h and h, respectively, located at the
points z and z (the latter being in the lower-half plane) [42]. A
correlation function of n bulk (non-chiral) fields on the UHP can
then be computed as a correlation of 2n chiral fields on the full
plane; the correlation appropriate for the boundary condition
under consideration is accordingly selected in the solution space
of these 2n-correlators.

The above prescription must however be adapted in the case of
logarithmic fields because the chiral factorization is not consistent
with the non-diagonal action of L0. Indeed, let us consider a
logarithmic pair (Φ(z, z),Ψ(z, z)). If we factorize the logarithmic
partner as Ψ(z, z) � ψh(z)ψh(z), we find from the action of L0,

L0Ψ � (L0ψh)ψh � (hψh + λ ϕh)ψh � hΨ + λ ϕhψh, (70)

That the chiral factorization of the primary partner is Φ � ϕhψh.
The same argument with L0 shows that an equally good
factorization is Φ � ψhϕh.

Let us first see how this works for σopa (y). Their dominant
terms, made explicit in relations (65) and (66), should correspond
to 〈ha(z, z)〉op. Note that unlike the correlations on the plane
discussed in Section 5, we do not insert dissipation at infinity
since the whole boundary is open and therefore dissipative. From
the prescription recalled above, these 1-point functions should
have the general form of chiral 2-point functions. If ψ and ϕ
denote chiral versions of the height 2 and height 1 fields,
respectively, with h � h � 1, the chiral factorizations of
the height fields h1 and h2 read h1(z, z) � ψ(z)ϕ(z) and
h2(z, z) � ψ(z)ψ(z). The CFT formalism gives the general
forms (19) as follows:

〈h1(z, z)〉op � 〈ϕ(z)ψ(z)〉 � B

(z − z)2,

〈h2(z, z)〉op � 〈ψ(z)ψ(z)〉 � C − 2λB log(z − z)
(z − z)2 .

(71)

With the value λ � −1
2 noted in Section 5, these forms exactly

reproduce the lattice results (66), including the relation d2 � c1 � B.
For σcla (y) and since the closed boundary is not dissipative, we

insert by hand dissipation at infinity so that σopa (y) should be
given by 〈ha(z, z)ω(∞)〉cl. Using the same chiral factorization as
above leads to a 3-point function. The selection of a physically
sensible solution leads to the same general form as for the open
boundary condition [27].

The conformal calculations required to account for σopa,1 are
only technically more involved. The needed chiral correlators are
〈ϕ(z1)ψ(z1)ϕ(z2)ψ(z2)〉 for a � 1 and 〈ψ(z1)ψ(z1)ϕ(z2)ψ(z2)〉 for
a � 2. Both can be computed from the primary nature of the chiral
field ϕ, as established in Section 5, by solving a second-order
differential equation and selecting the appropriate solution. As

the details are given in [31], we merely give the results, valid for
any relative positions of the two heights, z1 � (x1, y1) and z2 �
(x2, y2)

〈h1(z1, z1)h1(z2, z2)〉op � P2
1

2
{ 2

(z1 − z1)2(z2 − z2)2

− 1∣∣∣∣z1 − z2
∣∣∣∣4 −

1∣∣∣∣z1 − z2
∣∣∣∣4},

(72)

and

〈h2(z1, z1)h1(z2, z2)〉op
� P1

32y21y
2
2

t4 − 2t3 + 4t − 2

(1 − t)2

×[3(3π − 10)
2π3 − P1(log y1 + c + 5

2
log 2)]

+ P2
1

64y21y
2
2

[t3(t − 2)
(1 − t)2 (log(1 − t) + y1

2y2
) − t2

1 − t
],

t � − 4y1y2∣∣∣∣z1 − z2
∣∣∣∣2. (73)

One can check that setting x1 � x2 exactly reproduces the lattice
results σop1,1(0; y1, y2) and σop2,1(0; y1, y2) reported above.

The analogous calculation for the closed boundary has
been carried out in the case a � 1, yielding the same
expression as for the open boundary. No calculation
however has been successful for a � 2 as it involves a
nontrivial 5-point chiral correlator (in this case, the
dissipation field ω must be added).

Similar calculations with isolated bulk dissipation, instead of
height variables, have been considered in [36]; it was found in all
cases that the CFT predictions compare successfully with the
lattice results.

6.2 Changing the Boundary Condition
We have considered so far two different boundary conditions, the
open and closed conditions. This allows addressing a
fundamentally new issue, namely, how to think of a change of
boundary condition, both on the lattice and in the emerging field
theory. Like in the previous section, we consider the UHP.

We have seen that the calculation of correlations on the UHP,
of height or dissipation variables, involves the use of the
appropriate Laplacian (toppling) matrix and its inverse. On
the lattice, the way we can change the boundary condition at a
boundary site i is thus fairly clear: since an open boundary site has
Δi,i � zi* � 4 and a closed one has Δi,i � zi* � 3, we simply lower
by 1 the diagonal entry Δi,i to close an open site, and we increase it
by 1 to open a closed site (as we did in Section 5.4 to introduce
dissipation at bulk sites). We do it either way for n consecutive
boundary sites to change the boundary condition on an interval
I of length n, that is, we do the following change on the toppling
matrix Δ → Δ ± DI, where DI implements the diagonal shifts
described above.
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Let us examine the effect of closing n consecutive sites in an
otherwise open boundary. We decide to measure this effect as
in Section 5.4, namely, by comparing the number of recurrent
configurations before and after the closing of n sites. So, we
want to compute the ratio Zop(n)/Zop. At finite volume, the
two partition functions can be computed as determinants of
the corresponding toppling matrices on rectangular grids,
with say four open boundaries in the case of Zop, and with n
closed sites inserted on the lower boundary for Zop(n). As
usual, we can readily write the infinite volume limit of the
ratio as follows:

Zop(n)
Zop

� detΔop(n)
detΔop � det[Δop − DIn]

detΔop � det[I − GopDIn]
� det[I − Gop]i,j∈ In, (74)

where (DIn)i,j � δi,j for i, j ∈ In is zero elsewhere, and
In � {(ℓ, 1) : 1#ℓ#n} is the set of sites being closed. Using the
relation (64a) expressing Gop in terms of the Green matrix on the
full plane Z2, the matrix in the determinant reads

(I − Gop)i,j∈ I � (δℓ,ℓ′ − G(ℓ,1),(ℓ′ ,1) + G(ℓ,1),(ℓ′ ,−1))1#ℓ,ℓ′#n
. (75)

By the horizontal translation invariance of Gop, this is a
Toeplitz matrix of the form aℓ−ℓ′. Using standard results
on the Green matrix on the plane, one finds that the
entries am are the Fourier coefficients of the following
symbol, which has a so-called Fisher–Hartwig singularity,

σop(k) � ********
1 − cos k

√ · { ********
3 − cos k

√ − ********
1 − cos k

√ }. (76)

For large n, the asymptotics of such Toeplitz determinants is well-
known (see f.i., [43]) and leads to the following result [44]:

Zop(n)
Zop

xAn1/4 e−
2G
π n, n≫ 1, (77)

with G � 0.915965, the Catalan constant. The proportionality
constant A is explicitly known but is unimportant here.

What if we consider the opposite situation in which we
open n consecutive sites of a closed boundary? Reasoning as
above, we quickly get the corresponding ratio,

Zcl(n)
Zcl

� detΔcl(n)
detΔcl � det[Δcl + DIn]

detΔcl � det[I + Gcl]
i,j∈In

, (78)

which is also a Toeplitz determinant. However, this one is
infinite—each entry is infinite—for the same reason we
have pointed out in Section 5.4. Adopting the same point
of view, we similarly evaluate the effect of opening n sites with
respect to the situation where only one site is open. One
therefore considers instead the ratio Zcl(n)

Zcl(1), which one can
write as

Zcl(n)
Zcl(1) �

1
b0

det(bℓ−ℓ′)1#ℓ,ℓ′#n, (79)

where the entries bm are the Fourier coefficients of a symbol σcl(k)
given by

σcl(k) � 1
2
(1 − cos k)α · { ********

3 − cos k
√ + ********

1 − cos k
√ }, α � −1

2
.

(80)

Its Fourier coefficients are well-defined for α> − 1
2, diverge in the

limit α→ − 1
2, but nonetheless keep the ratio (79) finite.

Remarkably, for large n, it takes the form [44].

Zcl(n)
Zcl(1)xAn1/4 e

2G
π (n−1), n≫ 1, (81)

for the same constant A as above.
Before discussing the CFT side, let us remark that the

exponential factors in equations (77) and (81) are expected.
On a finite N × N grid, all four partition functions
(numerators and denominators) are asymptotically
dominated by the bulk free energy, given by e

4G
π N

2
, as

mentioned in Section 2. These terms drop out in the
ratios. The next correction is related to the boundary free
energy fb (per site) and takes the form e4Nfb in case the
boundary condition b is the same at all boundary sites. For
the partition functions considered above, the boundary
conditions only differ on the lower edge of the grid so that
for large N≫ n≫ 1, the ratios are asymptotic to

Zop(n)
Zop

x
e(N−n)fop+nfcl

eNfop
� e−n( fop−fcl),

Zcl(n)
Zcl(1)x

e(N−n)fcl+nfop

e(N− 1)fcl+fop � e(n−1)( fop− fcl).

(82)

The free energies fop and fcl represent (the logarithm of) the
effective number of values taken by the boundary heights in the
set of recurrent configurations. The number of possible values
taken by the height at an open boundary site is 4, and is 3 at a
closed site. If these numbers of values get effectively reduced in
the set of recurrent configurations, one should expect that the
number of values at an open boundary site remains larger than
that at a closed site, implying fop − fcl > 0. An explicit calculation
[44] confirms this and yields fop − fcl � 2G

π , in agreement with the
above results. To fix the ideas, the effective number of values
taken by a boundary height is e fop � 3.70 at an open site, and
e fcl � 2.07 at a closed site.

In the CFT approach, a change of the boundary condition at
x, from condition a to condition b, is implemented by the
insertion in the correlators of a specific field ϕa,b(x). Such
boundary condition changing fields21 are usually expected to
be chiral primary fields and satisfy ϕa,b(x) � ϕb,a(x) when the
boundary conditions a and b do not carry an intrinsic
orientation (see Section 6.4 for counterexamples). The
insertion of the product ϕa,b(x1)ϕ

b,a(x2) accounts for the

21In the correspondence between statistical system and field theory, the boundary
condition changing fields are somehow special. They describe the effects of a
change of the boundary condition but are not associated with a lattice observable,
unlike the height fields ha, for instance.
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change at x1 from condition a to condition b and then back
from b to a at x2 but does not account for the exponential terms
related to the difference of boundary free energies of condition
a vs. condition b, namely, the terms we have just discussed in
the previous paragraph. These are clearly nonuniversal, that is,
depend on the specific model under consideration, and cannot
be accounted for by the underlying CFT, which itself applies to
all the models in the universality class to which the sandpile
model belongs.

It follows that the effect of changing the boundary condition
given above, in which we omit the exponential terms,
should correspond to the 2-point function
〈ϕop,cl(0) ϕcl,op(n)〉 � 〈ϕcl,op(0) ϕop,cl(n)〉. The two are indeed
equal on the lattice and asymptotic to n

1
4, and from this, we

infer that the boundary condition changing field ϕop,cl(x) �
ϕcl,op(x) is a chiral conformal field of weight h � −1

8, with a
correlator given by

〈ϕop,cl(x1) ϕcl,op(x2)〉op � A |x1 − x2|1/4. (83)

For physical reasons, we might worry about having a correlator
that actually increases with the distance, suggesting somehow
the existence of a strange interaction that would get stronger
at larger distances. There is nothing strange however as it
does not really correspond to the physical correlation of two
observables. As said above, the field ϕop,cl is expected to be
primary. As usual, this conjecture can be put to test: the
consequences of this statement must have a match in the
lattice properties of the model.

One of the strongest consequence of the primary nature of ϕop,cl

and the assumed structure of the conformalmodule that contains it is
thatanycorrelatorwherethisfieldappearsmustsatisfyasecond-order
partial differential equation,22 the precise form of which depends on
the other fields involved. A first and simple test is to look at a 4-point
function,23 for instance 〈ϕop,cl(x1)ϕcl,op(x2) ϕop,cl(x3) ϕcl,op(x4)〉,
which should describe the effect of closing the sites on two
disjoint interval [x1, x2] and [x3, x4] in the otherwise open
boundary of the UHP. Using the global conformal invariance,
one can reduce the partial differential equation to a second-
order ordinary differential equation. In the two-dimensional
solution space, we select the only solution which reduces to the
product 〈ϕop,cl(x1) ϕcl,op(x2)〉〈ϕop,cl(x3) ϕcl,op(x4)〉when the two
intervals are infinitely distant. This unique solution reads (with
xij � xi − xj)

〈ϕop,cl(x1) ϕcl,op(x2) ϕop,cl(x3) ϕcl,op(x4)〉op
� 2A2

π
(x12 x34)1/4 (1 − t)1/4 K(t), t ≡

x12x34
x13x24

, (84)

where K(t) � ∫ π2
0

dθ******
1−t sin2 θ

√ is the complete elliptic integral.

To compare with a lattice calculation, we take xi integers, with
x21, x32, and x43 all large, and try to compute the determinant in
eq. (74)with I � I1 ∪ I2, the union of the two intervals [x1, x2] and
[x3, x4]. This determinant is no longer Toeplitz, which makes it
difficult to compute its asymptotics analytically. Dividing it by the
prefactor (x12 x34)

1/4, it can however be evaluated numerically as a
function of t by varying the lengths of the intervals and their
separation distance. The agreement with eq. (84) is more than
satisfactory [44].

The opposite situation—two open intervals in a closed
boundary—has also been considered. The appropriate 4-point
function can be obtained from eq. (84) by making a simple
cyclic permutation (x1, x2, x3, x4)→ (x4, x1, x2, x3), with the result
that K(t) gets replaced by K(1 − t). An equally successful
agreement was observed [36]. Many other cross-checks have
been done, confirming that the open/closed boundary
condition changing field is indeed a primary field with
conformal weight h � −1

8. One of them, particularly
convincing, is presented in the next section.

6.3 Bulk Variables With Inhomogeneous
Boundary
In Section 6.1, we have computed the lattice 1- and 2-site
height probabilities on the UHP, with either the open or the
closed boundary condition. Here, we would like to revisit these
results in light of what we have learned of the boundary
condition field, in terms of which one should be able to
relate the probabilities for the two boundary conditions. In
particular, we would like to understand the 1-site probabilities
σopa (y) and σcla (y),

σopa (y) � 1
y2
(ca + da

2
+ da log y) + . . . ,

σcla (y) � − 1
y2
(ca + da log y) + . . .

(85)

One can do this by computing, on the CFT side, a more
general probability, namely, we look for the probability to find
a height equal to a at a distance y from the boundary, when
the boundary condition is mixed, namely, open everywhere,
except on the interval [x1, x2] where the condition is closed.
The two homogeneous open and closed conditions can be
recovered in the limits x1 → x2 and x1 → −∞, x2 → ∞. Let
us denote by 〈ha(z, z)〉mix the corresponding quantity in the CFT,
given by

〈ha(z, z)〉mix �
〈ϕop,cl(x1) ϕcl,op(x2) ha(z, z)〉op〈ϕop,cl(x1) ϕcl,op(x2)〉op , (86)

where the division by 〈ϕop,cl(x1) ϕcl,op(x2)〉op comes from the fact
that we want to evaluate the probability to have a height 1 in front
of a mixed boundary condition and not the combined effects of
having a height 1 and the closing the boundary between x1 and x2.
The denominator is known from eq. (83).

22Again, the technical assumption is that the field ϕop,cl is degenerate at level 2,
similarly to the height 1 field h1 (see Section 5.5).
23The CFT is really defined on the UHP plus the point at infinity. The boundary
must therefore be thought of as the real line plus the two points ±∞ identified, and
forming a loop closing at infinity. Any change of the boundary condition thus
involves an even number of insertions of ϕop,cl. For instance, 〈ϕop,cl(0)ϕcl,op(∞)〉
changes the boundary condition from open to closed on the positive real axis.
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To compute the numerator, we represent the height fields in
terms of the chiral fields as h1(z, z) � ϕ(z)ψ(z) and h2(z, z) �
ψ(z)ψ(z) (as usual, considering the heights a � 1, 2 is enough) and
write the differential equation satisfied by the two ensuing 4-point
correlators, as a consequence of the primary nature of ϕop,cl.
Because ψ is the chiral logarithmic partner of ϕ, the general
solution for 〈ϕop,cl(x1) ϕcl,op(x2)ψ(z)ψ(z)〉op in fact depends on
that of 〈ϕop,cl(x1) ϕcl,op(x2) ϕ(z)ψ(z)〉op.

All calculations done, one finds that they depend on two
integration constants c2 and d2 in such a way that the ratios in eq.
(86) take the following forms, where y � Rez [27]:

〈h1(z, z)〉mix � d2
2y2

1 + t*
t

√ , t � (x1 − z)(x2 − z)
(x1 − z)(x2 − z), (87a)

〈h2(z, z)〉mix � 1
2y2

1 + t*
t

√ {c2 + d2
8
(1 + *

t
√ )2*
t

√ + d2 log y

− d2 iy(1 − t)
(x1 − x2)[ 1

1 + t
− 1
2
*
t

√ ]}. (87b)

Although t is complex, both expressions are real on account of
t* � 1/t.

Let us now discuss the above two limits x1→ x2 and x1→ −∞,
x2 →∞. For convenience, we set x1 � −x2 and examine the limits
x2 → 0+ and x2 → +∞. To compute the two limits, the important
thing to notice is that the complex variable t, now equal to

t � (x2 + z)(x2 − z)
(x2 + z)(x2 − z), (88)

has complex norm equal to 1 and loops anticlockwise around the
origin as x2 varies from 0+ to +∞, starting from 1+ 0i to 1 − 0i. It
follows that t itself goes to 1 in both limits, but

*
t

√
goes to +1

when x2 → 0+ and goes to −1 when x2 → +∞. The actual limits
yield

〈h1(z, z)〉op � lim
x2→0+

〈h1(z, z)〉mix � d2
y2
,

〈h1(z, z)〉cl � lim
x2→+∞ 〈h1(z, z)〉mix � −d2

y2
,

(89a)

〈h2(z, z)〉op � 1
y2
(c2 + d2

2
+ d2 log y),

〈h2(z, z)〉cl � − 1
y2
(c2 + d2 log y), (89b)

in complete agreement with the lattice results: the change of the
overall sign between the open and closed boundary conditions,
the specific dependence on the two coefficients c2 and d2, and the
equality c1 � d2 are all accounted for! The conformal approach
however cannot fix the two coefficients c2 and d2; these must be
determined by lattice calculations.

The expressions (87) can also be tested in situations where the
boundary condition along the real axis is no longer homogeneous.
A particularly instructive case is when the boundary condition is
closed on the negative part of the real axis and open on the
positive part, corresponding to the limits x1 → −∞ and x2 → 0.
The conformal transformation w � L

π log z can be used to map the
UHP onto an infinite strip of width L, with open boundary

condition on the left side and closed on the right side. The
conformal transformation rules of the fields involved being
known, the expressions (87) can be transformed to the strip
and compared with numerical simulations on a truncated (and
large) strip (exact calculations on the lattice are not available). It
was found [27] that the conformal predictions and the numerical
plots match remarkably well, thereby confirming once more all
the field identifications made so far.

6.4 Wind on the Boundary
The open and closed boundary conditions are very natural as the
very definition of the sandpile model uses dissipative and
conservative sites. One may wonder what other type of
boundary condition could be thought of. Perhaps, we could
think of alternating open and closed boundary sites; we expect
however that such a boundary condition would flow to the open
condition in the scaling limit, as numerical experiments confirm.
We have already commented on the possibility to uniformly fix
the boundary heights. Fixing the boundary heights to 2 or to 3, or
even to 2 or 3, seems difficult. The two boundary conditions,
different from open and closed, which have been considered in
[45], are in fact closely related, but not quite identical, to the third
possibility. They are fixed boundary conditions but in the
language of spanning trees.

We recall that in a rooted spanning tree, there is exactly one
outgoing arrow at each vertex. The two new boundary conditions,
noted ← and →, force the outgoing arrows at the boundary sites
to be uniformly left or uniformly right.24 In terms of height
values, either conditionmeans that none of the boundary sites has
height 1 (because each boundary site has an ingoing arrow) or
height 4 (because the burning algorithm would imply that the
arrow is pointing down, toward the root). The converse is
however not true: recurrent configurations with height values
equal to 2 or 3 on the boundary do not necessarily have boundary
arrows uniformly oriented.

The way the orientation of an edge can be forced has been
briefly discussed in Section 5.7. This allows evaluating the effects
of inserting a stretch of left or right arrows into an open or a
closed boundary, similarly to what we did in Section 6.2. We refer
the reader to Ref [45] for details of the analysis and restrict here to
a summary of the results.

An obvious but unusual feature of the boundary conditions←
and → is that they are intrinsically oriented. It implies that the
boundary condition changing field ϕa,→ turning the boundary
condition from a to → may not be the same as the field ϕ→,a

implementing the opposite change. With a, b ∈ {op, cl,←, → },
this makes potentially twelve distinct fields ϕa,b (the fields ϕa,a are
just the identity). We already know ϕop,cl � ϕcl,op, and likewise, if
a ∈ {op, cl} is unoriented and b ∈ {←, → } is oriented, we expect
the identifications ϕa,→ � ϕ←,a and ϕa,← � ϕ→,a on the basis of a
left–right reflection symmetry. These identifications have been
confirmed and reduce the number of distinct fields to seven.

24In contrast, the outgoing arrow of a closed boundary site of the UHP can point
left, up, or right, while that of an open boundary site can point in any of the four
directions, a down arrow pointing to the root.
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There is an additional subtlety for the field that changes the
orientation from → to ←. Indeed the right and left arrows
+→ •←+ point to the same boundary site (in black), and
whether that site is open or closed may be relevant. Indeed, if
it is open, the flow of arrows, which eventually terminates at the
root, can go directly to the root; if it is closed, it must necessarily
go upward into the bulk of the UHP. In the two cases, the
macroscopic configurations of arrows are different. Thus, we
should distinguish two different fields, ϕ→

,op← and ϕ→
,cl←. The

detailed analysis confirms that they are distinct fields as their
conformal weights are different.

We therefore have eight distinct boundary condition changing
fields. A mix of analytical calculations and numerical simulations
has been used to determine the conformal weights of these eight
fields. The results are given in Table 2.

The more delicate question of the exact nature of all these
fields has been addressed by considering the fusion of the
representations to which they belong. Loosely speaking, the
fusion rules implement the composition law ϕa,b*ϕ

b,c x ϕa,c of
boundary condition changing fields in the limit where the
insertion points coincide. The ensuing consistency conditions
suggest that all of them are primary fields, except two, which
could belong to logarithmic representations (i.e., reducible
indecomposable with Jordan cells). Also, the fields of weight
0 are nontrivial, that is, not equal to the identity (they are
found to be degenerate at level 3). Relying on these proposals,
various 4-point correlators have been computed and
successfully compared with numerical simulations. We refer
the readers to Ref [45] for more details on these specific points.

6.5 Boundary Height Variables
The boundary condition changing fields are not the only ones to
live on a boundary. The lattice model includes observables in the
bulk as well as on the boundaries. Those in the bulk have been
discussed at length and give rise in the scaling limit to non-chiral
fields Φ(z, z), characterized by a pair of conformal weights (h, h);
those on the boundaries give rise to boundary, chiral fields Φa(x),
characterized by a single conformal dimension ha. In general, the
nature of the boundary field associated with a boundary
observable and its conformal weight depend on the boundary
condition.

In the Abelian sandpile model, only the boundary fields arising
from the height variables and from the insertion of isolated
dissipation have been studied on the UHP. In both cases, only
open and closed boundaries have been considered.

The case of isolated dissipation is simpler and has been
examined in detail in Ref [36], where isolated dissipation has
been considered on a closed boundary only. The calculation
proceeds much like that for the bulk, reviewed in Section 5.4,
for which the same regularization is used. The results are
similar: the dissipation field ωcl(x) turns out to be a chiral
field with conformal weight hcl � 0 and is a logarithmic
partner of the identity. The multipoint correlators involve
various combinations of logarithms like their bulk versions.
On an open boundary, already dissipative, the dissipation
field ωop(x) is expected to be a descendant of the identity.
Isolated dissipation is the simplest observable that can be

associated and computed in terms of a local defect matrix.
This, from what we have said in Section 5.6 of the minimal
clusters, suggests that both ωcl and ωop can be realized as local
fields in the symplectic fermions. It was indeed shown that
ωcl ∼ θ~θ [36] and ωop ∼ zθz~θ [46] reproduce all known
correlations. We note that the latter is proportional to the
boundary stress–energy tensor T(x) of the symplectic theory,
a non-primary chiral field of weight hop � 2 and a descendant
of the identity since T(x) ∼ (L−2 I)(x).

Boundary height variables are more complicated than
dissipation but simpler than the bulk height variables. The
first results have been derived by Ivashkevich in Ref [47],
where the one- and two-site height probabilities on open
and closed boundaries were obtained. The probabilities
involving heights 1 only are no more complicated than in the
bulk and can be easily obtained by using a defect matrix. As
could be expected, probabilities for higher heights are more
difficult.

On a boundary, heights larger or equal to 2 are characterized as
in the bulk, namely, in terms of the number of predecessors
among their nearest neighbors. So, it leads essentially to the same
problems of computing nonlocal contributions. Both in the bulk
and on a boundary, one can write linear identities expressing
combinations of nonlocal contributions in terms of local ones,
themselves calculable with a defect matrix. In turn, the nonlocal
contributions can be used to calculate probabilities. In the bulk,
the linear system is underdetermined and cannot be inverted to
provide the required nonlocal contributions and then the
probabilities themselves. The main observation made in Ref
[47] was that on a boundary, the linear system can be inverted
and therefore allows computing the height probabilities and
correlations in terms of local contributions only. The following
results were obtained.

The 1-site height probabilities on the boundary, open and
closed, of the infinite UHP were computed exactly. For
comparison purposes, we reproduce here their numerical
values (the exact values can be found in Ref [47]) and recall
those in the bulk, as given in Section 5.1:

P1 � 0.073 63, P2 � 0.173 90, P3 � 0.306 29,

P4 � 0.446 17,
(90)

P
op
1 � 0.103 82, P

op
2 � 0.216 57, P

op
3 � 0.316 23,

P
op
4 � 0.363 38, (91)

Pcl
1 � 0.113 38, Pcl

2 � 0.318 31, Pcl
3 � 0.568 31. (92)

TABLE 2 | Conformal weights of the fields ϕa,b which implement a change of
boundary condition from a (row label) to b (column).

h[ϕa,b] Open Closed → ←

Open −1
8 0 0

Closed −1
8 −1

8
3
8

→ 0 3
8 0 (center op)

1 (center cl)

← 0 −1
8 0
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On the open boundary, for which the comparison makes more
sense, lower heights are thus more likely.

Mixed 2-site correlators τopa,b(x1, x2) and τ
cl
a,b(x1, x2) on an open

or a closed boundary were also computed in Ref [47]; all of them
were found to decay like |x1 − x2|− 4. Although logarithmic
conformal field theory was in its infancy at the time, it
indicates in hindsight that unlike their bulk cousins, boundary
height fields are not logarithmic. This is also in agreement with
the fact explained above that boundary height correlations can be
fully computed in terms of local contributions.

The decay of the 2-site correlators strongly suggest that all
boundary height fields, whatever the boundary condition,
have a conformal dimension equal to hop � hcl � 2. But like for
the other observables discussed so far, we are interested to
know the precise nature of the associated fields. Since the
multisite boundary height probabilities appear to be
calculable in terms of local contributions using defect
matrices, it suggests again to look for field candidates
constructed out from the symplectic free fermions θ, ~θ.
This was done independently in Ref [46] and in Ref [48],
following however two different approaches: the former
computed various 3-point correlators, whereas the latter
considered 2-point correlators only but in the massive
extension of the sandpile model (see Section 7.1). The
massive extension indeed allows distinguishing more
efficiently different fields which would otherwise have the
same 2-point correlators in the non-massive (critical) limit.

The results are as follows. The four height fields on an open
boundary are all proportional to a single field,

hopa (x) � Oa zθ z~θ, 1# a# 4, (93)

with explicit normalization constants Oa and where the θ, ~θ fields
satisfy the Dirichlet boundary condition. Thus, on an open
boundary, the four height fields and the dissipation field turn
out to be all proportional to each other. On a closed boundary, the
three height fields are distinct and given by

hcl1 (x) � C1 zθ z~θ, hcl2 (x) � C2 zθ z~θ + 1
2π

θ zz~θ,

hcl3 (x) � C3 zθ z~θ − 1
2π

θ zz~θ, (94)

where the θ, ~θ fields now satisfy the Neumann boundary
condition. In both cases, the boundary condition means that
the correlators are computed using the Wick theorem with the
Wick contractions given by the Green functions Gop or Gcl (see
eqs. (64a) and (64b)). Let us point out that for both boundary
conditions, the 3-site correlations of three heights 1 do not
vanish, unlike their bulk version.

The question of the nature of the height fields on the windy
boundary conditions discussed in the previous section is
definitely interesting but has not been considered so far.

6.6 Duality
This long section on boundaries has been largely devoted to a
discussion of the open and closed boundary conditions, the best
known and most studied ones. To finish, it is worth pointing out

that a duality exists between these two boundary conditions,
which has not been fully investigated nor exploited. This duality
follows from a duality relation for planar graphs, well-known in
graph theory, and acquires in the framework of the sandpile
model an interesting flavor. It has been considered and discussed
in [39, 49] in the dimer model, intrinsically related, like the
sandpile model, to spanning trees.

Let us consider a rectangular portion of Z2, that is, the graph Γ
made of a rectangular array of vertices, in which two adjacent
vertices are linked by a single edge. The boundary conditions
chosen for the boundary vertices determine the extended graph
Γ*, obtained from Γ by adding the sink vertex and the edges
connecting the open boundary sites to the sink. The graph Γ*
corresponding to a 3 × 3 grid with three open edges and one
closed edge is shown in Figure 1.

Once the graph Γ* is embedded in the plane,25 the faces of Γ*
are the connected components of its complementary in the plane
(for a finite graph, there is thus a large outer face, encircling the
graph). The definition of the dual graph (Γ*)p is standard: the
vertices of (Γ*)p are associated with the faces of Γ*, and two such
vertices are connected if their corresponding two faces are
separated from each other by an edge of Γ*. The dual graph of
the example above is also shown in Figure 1.

By comparing the two graphs, one immediately notices that
the boundary conditions are exchanged: if a boundary is
homogeneously open resp. closed in Γ*, it becomes
homogeneously closed resp. open in (Γ*)p. In addition, the
dual graph (Γ*)p is the extension (Γp)* by a sink of a dual
rectangular grid Γp, of size slightly different from the original
grid Γ.

A classical result states that the number of spanning trees on Γ*
is equal to the number of spanning trees on its dual (Γ*)p. In fact,
for every spanning tree T on Γ*, there is a unique dual spanning
tree T p on (Γ*)p such that the two are perfectly interdigitating: the
edges of T p are exactly those of (Γ*)p which cross the edges of Γ*
not used in T , and vice versa. An example of this is given in
Figure 1.

This dual picture implies that the recurrent configurations for
the sandpile model defined using Γ* can be isomorphically
described by those on (Γp)*. As far as the counting goes, the
equality of their partition functions can be explicitly written for
rectangular grids. If Γ is an L1 × L2 rectangular grid with k of its
four boundaries being open, the other 4−k being closed, the dual
Γp is an L′1 × L′2 rectangular grid with swapped boundary
conditions, and the following identity holds,

Zk op | (4−k) cl (L1, L2) � Z(4−k) op | k cl (L′1, L′2). (95)

The dimensions are related as follows: Li′ � Li + 1 resp. Li − 1 if
the opposites sides of length Li of Γ are both open resp. closed, and
L′i � Li otherwise. If k � 4, the dual rectangle has all its boundaries
closed with a single boundary site open.

25This requires Γ* to be planar and therefore excludes that some of the bulk vertices
and some of the boundary vertices be open (dissipative) at the same time, except in
a few very special cases.
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The isomorphism of the two descriptions may be hard to
formulate in concrete terms for the height variables as it is defined
for the associated trees. Its practical utility remains to be seen.

7 MORE DEVELOPMENTS

We would like to add a few more considerations about two
further features of the sandpile model, namely, the dissipative
sandpile model and some aspects of universality.

7.1 The Massive Sandpile Model
In the standard sandpile we have studied so far, the sites in the bulk of
the grid, that is, the vastmajority of sites, are conservative. Thismeans
that when such a site topples, it loses a certain number of sand grains
which are all redistributed to its nearest neighbors. Sandmoves in the
grid but remains conserved. Dissipative sites must be present for the
dynamics of the model to be well-defined; however, the dissipative
sites were located most of the time on the boundaries.

The mostly conservative nature of the model is what drives it
dynamically to a critical state: when enough sand is stored in the
system, large avalanches become likely and span macroscopic parts of
it, inducing strong correlations between distant heights. In the long run,
the system enters a critical state described by the invariant measure P,
characterized by infinite correlation lengths in the infinite volume limit,
and algebraic decays of the correlation functions. The field theory
emerging in the scaling limit is conformal and consequently massless.

From the above point of view, a natural way to take the
sandpile model out of criticality is to introduce a fair amount of
dissipation so as to make the range of the avalanches shorter. It is
not completely clear what a fair amount means as there are
several ways to introduce dissipation. In the most common
version, every site is made dissipative, with a dissipation rate
controlled by an external parameter. In this case, it has been
argued that indeed criticality is broken, resulting in an
exponential decay of the correlations [33, 50, 51]. A
mathematically rigorous proof that all correlations decay
exponentially has been provided in Ref [52, 53]. Presumably, a
nonzero density of dissipative sites could be sufficient to break

criticality, but to our knowledge, this possibility has not been
investigated. In any case, the field theory emerging from the
dissipative sandpile model must be massive, with mass(es)
inversely proportional to the lattice correlation length(s).

To make all sites dissipative, one can simply add to the toppling
matrix of the standardmodel an integermultiple of the identitymatrix,
Δ→Δ(t) � Δ + t I with t an integer, while leaving all non-diagonal
entries unchanged. According to the update of the heights after the
toppling of site j, namely, hi → hi − Δj,i(t), a toppled site loses t sand
grainsmore thanwhat it used to lose (whether or not the toppled site is
on a boundary). That this change makes the correlation functions
decay exponentially should be clear, for the following simple reason.

The new toppling matrix Δ(t) is a massive Laplacian matrix. It is
well-known that the inverse Laplacian Δ−1(t) has a kernel given at
large distances by Gi1,i2(t)x

1
2πK0(|i1 − i2|

*
t

√
) + . . . and decays

exponentially like e−r
*
t

√
at large distances (K0 is the modified

Bessel function). Thus, all multisite probabilities examined in the
earlier sections, for observables like minimal cluster variables, arrow
variables, isolated dissipation, or boundary heights, will similarly decay
exponentially. Though technically less clear for bulk heights equal to 2,
3, or 4, the same decay is expected for the reason explained above: there
is a loss of sand each time a site topples, which makes the typical
avalanches short-ranged, which in turn induces correlations of heights
on local scales only.

To take a concrete example, let us look at the correlation of two
heights 1 in the dissipative model. The technique explained in
Section 5.3 in terms of defect matrices goes through. At
dominant order, the result, which is the off-critical extension
of (35), reads [33]

σ1,1(i1, i2; t) � −t2P
2
1

2

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩K0″2 − K0 K0″ + 1
π
K0′

2 + 1 + π2

2π2
K2
0

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ + . . .

(96)

where the argument of the Bessel functions is r
*
t

√
and P1 on the

right hand side is the critical probability; the dots stand for higher
orders in t. We see that the correlation decays exponentially, with
a correlation length proportional to ξ ∼ t−1/2.

How do we compute the scaling limit in the massive model?
The general discussion in Section 3 suggested that setting i � �x

ε in

FIGURE 1 | Drawing codes for the three figures are as follows. The open circle stands for the sink vertex, while the solid circles stand for the non-sink vertices. The
solid lines represent true edges of the extended graphs, unlike the dashed lines connecting the open circles which indicate that these should be identified as the unique
sink vertex. Let us note that the corner vertices which lie at the intersection of an open and a closed boundary have a single edge to the sink; those at the intersection of
two open boundaries have two such edges. (A) The left figure shows the extended graph of a 3 × 3 grid with open boundary conditions on the left, lower, and right
boundaries, and closed boundary condition on the upper boundary. (B) The second panel shows how the dual of the blue graph, in red, is constructed. The red sink is
the vertex associated with the outer face of the blue graph. (C) For a better readability, the dual graph alone is reproduced on the third panel. (D) Two dual spanning trees
are drawn on the far right.
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the lattice correlator and taking the limit over ε (after multiplying
the correlator by a suitable power of ε) yields the field theoretic
correlator. This cannot be the right way to proceed in the
dissipative model. Because the correlators decay exponentially, the
limit for ε going to zero of exp(−∣∣∣∣ �x1 − �x2

∣∣∣∣ *
t

√
/ε) vanishes whatever

the power of ε it is multiplied by.
The only way to get a nontrivial limit is to take a double limit:

as we take the large distance limit by setting i � �x
ε, we

simultaneously take the large correlation length limit by
accordingly adjusting the dissipation rate. In the present case,
we should take the latter proportional to ε2: we therefore set t �
M2ε2, with M playing the role of a mass (inverse correlation
length in the continuum field theory).

Looking at the lattice correlator (96), we see that the factor t2 carries
the overall dimension of the fields involved: t2 is proportional to M4

and thus inversely proportional to a distance to the fourth power. It
replaces the explicit dependence in r−4 in the non-dissipative model.
Eventually, we find that the scaling limit of the correlator (96) is

lim
ε→0

ε−4 σ1,1(z
ε
,
w
ε
; ε2M2) � −M4 P

2
1

2
{K0″

2 − K0 K0″ + 1
π
K0′

2

+1 + π2

2π2
K2
0 }, (97)

where the argument of the Bessel function is now Mǀz – wǀ. It is
straightforward to check that the M → 0 limit of the previous
expression is equal to −P2

1/2|z − w|4, obtained in Section 5.
The last question is: the expression above is: the correlator of what

field and in what field theory? Themost obvious guess turns out to be
correct: let us look into the massive extension of the free symplectic
fermion theory. It contains the same two fields as before, which
simply acquire a mass through a mass term in the action,

S � 1
π
∫ 

dzdz(zθz ~θ +M2

4
θ~θ) . (98)

The 2-point correlators of the two fundamental fields are now
given by

〈θ(z, z)θ(w,w)〉 � 〈~θ(z, z)~θ(w,w)〉 � 0,

〈θ(z, z)~θ(w,w)〉 � K0(M|z − w|). (99)

Using Wick’s theorem, it is a simple matter to check that the
following local field,

h1(z, z;M) � −P1[zθ z ~θ + z θ z~θ +M2

2π
θ~θ], (100)

has a 2-point correlator26 in the massive fermionic theory that is
precisely given by equation (97). The 3- and 4-point correlators of
the same field have been checked to reproduce the corresponding
lattice results. The field h1(z, z;M) is therefore what the height 1

variable in the dissipative sandpile model converges to in the
scaling limit.

Similar correlators have been computed for many minimal
clusters in Ref [33], with an unexpectedly simple result. The field
describing the minimal cluster variable S in the dissipative model
appears to be simply given by

hS(z, z;M) � hS(z, z) − PS NS
M2

2π
θ~θ, (101)

where PS is the probability of S in the non-dissipative model
and Ns is the size of the cluster S. The field hS(z, z) is still
given by relation (54) in terms in the (now massive)
fermions.

Likewise, the mixed 2-point correlators for all boundary
heights on open and closed boundaries have been explicitly
evaluated in the dissipative model [48]. For them too, it is
found that the boundary fields given in Section 6.5 get
additional terms proportional to M2 θ~θ.

The nature of the higher height fields remains elusive but is
definitely worth investigating as it would add a most valuable and
crucial element of understanding of the sandpile model.

7.2 Aspects of Universality
Universality is the statement that the large distance properties of
statistical models should only depend on some gross features of
the way they are defined; microscopic details which become
invisible from large distances should not matter. The
statement is admittedly not very precise but, in concrete
instances, leads to an expected robustness with respect to local
modifications. In sandpile models, these would include the
precise way sand is deterministically redistributed among
neighbors (provided some form of isotropy is preserved), or,
to a certain extent, the specific graph or lattice on which the
model is defined. Features that do matter are a substantial
introduction of dissipation, as we have seen in the previous
section; a directed redistribution of sand after toppling [54]; a
dynamics with stochastic toppling rules [55]; the formulation of
the model on a hierarchical geometric structure like the Bethe
lattice [56]; and, of course, a change of dimensionality of the
underlying lattice.

Very early on, universality with respect to the planar lattice on
which the sandpile is being formulated has been tested via a
renormalization group approach [57, 58] and numerical
simulations [59]. More recently, exact calculations of height
correlations have been carried out on the honeycomb and
triangular lattices.

In Ref [60], all calculations of height 1 correlations presented
in the previous sections have been worked out on the hexagonal
lattice (in the non-dissipative model). These include the 2-, 3-,
and 4-site probabilities for heights 1 in general positions, in the
bulk and on open and closed boundaries, as well as 1-site
probabilities on the UHP, again for both types of boundary
conditions. The results show that although the subdominant
contributions differ from those on the square lattice, the
dominant terms are exactly identical, up to normalizations.
The same distinctive features are found, like the fact that the
3-site bulk correlation vanishes in the scaling limit (the dominant

26The insertion by hand of the dissipation field ω(∞) at infinity in the field
theoretic correlator is not required in the dissipative model as dissipation is present
everywhere in the bulk.
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term in the lattice result has dimension −7, instead of −8), and the
change of sign for the UHP 1-site probabilities when changing the
boundary condition from open to closed (see Section 6.3). Up to
normalization, the field identifications of the height 1 variable in
the bulk and on open and closed boundaries have been
confirmed.

The results have been extended to higher heights on the
honeycomb lattice and to all heights on the triangular lattice
[61]. Interestingly, these two regular lattices have coordination
numbers different from the square lattice, with the consequence
that the height variables take in each case a different number of
values: four for the square lattice, three for the honeycomb lattice
and six for the triangular lattice. This naturally raises the question
of which height variables scale to logarithmic fields and which
do not.

The calculations have been carried out by using the technique
developed in Ref [29], already used on the square lattice. The 1-
site probabilities on the infinite honeycomb lattice are all rational,

P1 � 1
12
, P2 � 7

24
, P3 � 5

8
, (102)

while those on the infinite triangular lattice are somewhat more
complicated, like

P6 � 1175
864

− 365
144

*
3

√
π
− 289
12π2

+ 30
*
3

√
π3

+ 45
π4

− 54
*
3

√
π5

x 0.286,

(103)

and very similar expressions for P1#a#5.
Concerning the nature of the height variables in the scaling limit,

the results confirmwhat the reader has probably already suspected: far
from boundaries, the height 1 variable becomes a primary field with
conformal weights (h, h) � (1, 1), while each of the higher heights
scales to a logarithmic partner of the height 1, exactly like on the
square lattice. On boundaries, all height fields are non-logarithmic.
Moreover, all computed correlations27 exhibit the same bulk and
boundary behaviors as on the square lattice. Thus, for what concerns
the type of the underlying lattice, universality has been explicitly and
successfully verified.

8 CONFORMAL SUMMARY

This last section is more specifically oriented toward conformal
aspects of the sandpile model. We will summarize what we believe
is currently known of the conformal picture, and discuss some of
the most peculiar issues that are not so well-understood. We will
almost exclusively discuss the non-chiral bulk fields, but before
coming to those, we briefly comment on the chiral boundary
fields encountered so far.

The boundary fields have been somewhat less investigated
than the bulk fields. We have encountered two types of boundary

fields, those arising from boundary observables and the boundary
condition changing fields. In the first class, we have considered
the height fields on open and closed boundaries and the
dissipation field. Except for the dissipation on a closed
boundary, none of them is logarithmic, and no evidence of a
logarithmic partner has been found. All can be expressed as local
fields in the symplectic fermions.

In the second class, we found primary fields of weights −1
8 and

3
8, which are both standard fields in a c � −2 CFT. Due to the
values of their conformal weight, they cannot be local in the
symplectic fermions but are naturally accommodated28 in the
symplectic fermion theory [22]. The status of the other boundary
condition changing fields related to the windy boundary
conditions is uncertain and should be further investigated
before their exact nature can be reliably stated.

Thus, overall, the boundary fields raise no particular questions.
They are fairly simple fields which fit well within the symplectic
theory. From this point of view, the bulk fields are somehowmore
intriguing.

Most of the bulk fields we have encountered seem to have a
realization in terms of symplectic fermions, by which we mean
that the fermionic expressions reproduce the known correlators.
A few have not been realized in this way so far, namely, the height
variables haP2 not equal to 1, logarithmic partners of the height 1
field h1, and the two fields ρ and ρ, to which they transform under
L1 and L1, respectively.

Although we have not given any physical interpretation of ρ
and ρ, they appear to be related to the derivatives of the
dissipation field ω [31],

ρ � δ L−1ω, ρ � δ L−1ω, (104)

where δ is a constant which may depend on the lattice considered
and equal to δ � πP1

2 on the square lattice. In addition, the primary
field h1 may be consistently identified as being proportional to the
derivatives of ρ and ρ,

L−1ρ � L−1ρ � βλh1, β � 1
2
, (105)

where λ is defined from L0 h2 � L0 h2 � h2 + λh1 and depends on
the normalizations of h1 and h2. Combining these relations with
the previous ones yields the somewhat surprising result is that the
height 1 field is proportional to the Laplacian of the dissipation
field, h1 ∼ zzω. The correlator (40) confirms this: applying
z1z 1z2z 2 on it indeed yields a multiple of 1/ǀz1 – z2ǀ4, itself
proportional to 〈h1(z1, z1)h1(z2, z2)ω(∞)〉.

From these observations, it follows that all bulk fields
encountered so far, namely,

ha>1, h1, ρ, ρ, ρ→, ρ↑, ϕS, ϕ↔, ϕh, ω, I, (106)

belong to the same conformal representation as they are all
related to each other by the action of Virasoro modes Ln or
Ln. Indeed, ρ→ and ρ↑ are not quasi-primary and transform to a

27Some of the calculations done on the square lattice could not be worked out. For
instance, we could not find a proper method of images to compute the Green
matrix on the triangular half-plane with the closed boundary condition and
therefore could not investigate that boundary condition.

28Very much like the spin field of the Ising model belongs naturally to the free
Majorana fermionc theory with c � 1

2, despite being nonlocal in the fermions.
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multiple of I under L1 or L1, while ϕS, ϕ↔ and ϕh are linear
combinations of h1 and the chiral and antichiral stress–energy
tensors T and T . In fact, in terms of fermions, all these fields,
except ha>1, are proportional to or are linear combinations of I,
θ~θ, θz~θ, θz ~θ, zθz ~θ, z θz~θ, zθz~θ and z θz ~θ. Clearly, the main
question is: do the fields ha>1 also have a realization in terms of
symplectic fermions?

In the symplectic fermion theory, the conformal
representation which contains the fields quoted above is larger
because it contains many other fields, like θzθ or zθz θ, which
have not yet been found in the sandpile model. Among other
peculiarities, the fermionic theory also contains four logarithmic
pairs (ϕαβ, ψαβ) of weight (1,1), given by ϕαβ � zθαz θβ for the
primary fields, and ψαβ � θ~θ zθαz θβ for their logarithmic
partners, where θα and θβ are independently either θ or ~θ (see
[22] for more details).

Conformal representations of the above type are called
staggered modules and have been first studied in Ref [62] in
their chiral version. As far as we know, it has been first noticed in
Ref [63] for the case of modules containing rank 2 Jordan blocks
that these representations are characterized by an intrinsic
complex parameter β, known as a logarithmic coupling, an
indecomposability parameter or a beta-invariant. The
parameter β is crucial because it specifies the equivalence class
of such representations, whose general structure was further
studied in Ref [20] in the rank 2 case. The non-chiral
staggered modules are far less understood and documented
and reflect the difficulty to formulate a consistent and local
logarithmic CFT (see however [64, 65]). It is nonetheless
believed that the parameter β present in the chiral
representations plays the same role of equivalence class label
in the non-chiral ones, even if the latter may have more than one
such label.

Concentrating on the action of the chiral Virasoro modes, the
parameter β arises when we consider the triangular relations
satisfied by a generic logarithmic pair (ϕ, ψ) of weights (1,1) and
the associated ρ.

The arrows coming out of ψ indicate the actions (L0 − 1)ψ � λϕ
and L1ψ � ρ. It is important to note that if the normalization of ψ
is fixed, those of λϕ and ρ are fixed as well (the value of λ depends
on the way ϕ is normalized). The vertical arrow indicates that
L−1ρ is proportional to λϕ,

L−1ρ � β(λϕ), (107)

the proportionality factor β being intrinsic to the representation
as all normalizations have already been fixed. In addition, these
relations are invariant under the change ψ → ψ + αϕ because the
field ϕ is primary (L1ϕ � 0), and so they do not depend on which
logarithmic partner is considered.

To answer the above question thus amounts to check
whether the sandpile representation and the symplectic
representation have the same value of β. The value of β in
the sandpile model has been given above: if the pair (ϕ, ψ) is
chosen to be (h1, h2), with the same normalization as the height
variables on the square lattice, in which case λ � −1

2, then one
finds β � 1

2 [27].
The field h1 has been already identified in terms of fermions and

yields a natural choice for the primary field ϕ on the symplectic side,

ϕθ � −P1(zθ z ~θ + z θ z~θ). (108)

As mentioned earlier, the lattice results in the scaling limit are
consistent with h1 being degenerate at level 2, namely, (L2−1 –
2L−2)h1 � 0 (see Section 5.5). The same equation is satisfied by ϕθ.

The only candidate for the logarithmic partner of ϕθ is
proportional to θ~θ (zθ z ~θ + z θ z~θ) up to an irrelevant multiple
of ϕθ. By computing its conformal transformations via its OPE
with the chiral stress–energy tensor, one finds that the
following normalization,

ψθ � −P1 θ~θ (zθ z ~θ + z θ z~θ), (109)

satisfies L0ψθ � ψθ − 1
2ϕθ , for the same value λ � −1

2. The same
OPE reveals in addition that

ρθ � L1ψθ � − P1

2
(θ z ~θ + z θ ~θ), (110)

from which, upon using zz θ � zz ~θ � 0, one obtains

L−1ρθ � zρθ � − P1

2
(zθ z ~θ + z θ z~θ) � 1

2
ϕθ. (111)

Comparing with equation (107), the value of the logarithmic
coupling is found to be βθ � −1 in the fermionic realization. As a
consequence, the symplectic fermion theory cannot
accommodate the height fields ha>1 and therefore does not
appear to be the correct CFT to describe the scaling limit of the
sandpile model.

As one might suspect, the value of β has strong consequences on
correlation functions involvingψ. A detailed comparison between β �
1
2 and the fermionic realization βθ � −1 has been made in Ref [27]; it
was shown in particular that the correlations with a trial field h2
corresponding to a value β � −1 do notmatch the lattice results.29 On
general grounds, this can also be understood from the fact that the
value of β determines the singular descendant of ψ, which, if set to
zero, yields a β-dependent differential equation satisfied by any
correlator containing ψ. In the present case, the singular
logarithmic field is a combination of a descendant of ψ at level 5
and a descendant of ρ at level 6, with the following explicit dependence
on β [20]:

29As an example, the correlator 〈h2(z, z)〉mix displayed in (87b), and corresponding
to the four-point function 〈ϕop,cl(x1) ϕcl,op(x2) h2(z, z)〉, can be computed upon
assuming that h2 is a logarithmic partner of h1 carrying a generic value of β ≠ 0. Its
general form is given in Ref [7].
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ξ � (L3−1 − 8L−2L−1 + 12L−3)(L2
−1 − 2L−2)ψ

− 1
β
[ − 16

3
(β + 1)L2−2L2−1 + 4

3
(14β + 5)L−3L−2L−1 − 6βL2

−3

− 6(β − 2)L−4L2
−1 + 8βL−4L−2 − 2

3
(5β + 2)L−5L−1 + 4βL−6]ρ.

(112)

Using the relations L1ψ � ρ, (L0 − 1)ψ � λϕ, as well as the
degeneracy condition (L2−1 − 2L−2)ϕ � 0 (and the value c � −2),
one can verify that the field ξ satisfies L1ξ � L2ξ � 0, provided the
identity L−1ρ � βλϕ holds. A rather convincing confirmation for the
value of β � 1

2 in the sandpile model is therefore to check that the
various correlators involving h2 indeed satisfy the condition ξ � 0 for
β � 1

2. It has been done for the correlator (87b).
The situation therefore seems to be the following. The sandpile

model contains a conformal logarithmic representation whose
structure is very similar to the one appearing in the symplectic
fermion theory, but which is nevertheless inequivalent to it. As far
as the logarithmic partner ψ is not brought in, the two
representations look the same; this explains why some of the
fields can be realized in terms of symplectic fermions. However,
the fermionic theory does not contain the β � 1

2 representation

found in the sandpile model, from which one concludes that it
does not describe its scaling limit.

To characterize the CFT that does describe the sandpile model,
even if a Lagrangian realization of it cannot be found, remains an
enormous challenge. At the moment, this looks to be an
extremely ambitious question in view of the (very) small
number of fields which has been successfully identified.
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