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Frequent financial crises and economic globalization have made systemic risk a growing

Research Topic. This paper constructs a dynamic banking system model based on the

bank-asset bilateral network. By collecting the balance sheet and portfolio data of 47

Chinese listed banks in 2018, the paper firstly empirically analyses the impact of external

shocks, the price-cutting effect, and the proportion of various assets held by banks

to their total assets on the systemic risk of the banking system. The risk preference

coefficient and systemic shock are then introduced to construct the banks’ quantitative

portfolio strategy model to study its optimal investment. It has been found that the greater

the external shock and the stronger the price-cutting effect, the higher the systemic risk.

Moreover, the external shock and price-cutting effect will have a superimposed effect

within a specific range, and systemic risk will increase significantly. The asset classes

of the Chinese banking system have a different sensitivity to external shocks, among

which loan assets are the most sensitive. Further studies reveal an inflection point of risk

preference, resulting in banks’ expected return “increasing first and then decreasing.”

The higher the debt-asset ratio and the stronger the banks’ risk tolerance, the more

aggressive investment strategies banks can choose to achieve high returns. This paper

provides a reference for the banking industry to react to shocks and analyze systemic risk.

Keywords: systemic risk, bank-asset bilateral network, external shock, the price-cutting effect, risk preference

INTRODUCTION

Affected by global financial crisis, economic globalization, and the rapid development of Internet
finance, the current financial environment is increasingly complex. Financial risks are easier to
transmit, spread, and accumulate through the internal connections between financial institutions,
thus quickly form a systemic risk. Once systemic risk breaks out, it will produce enormous
destructive power among financial institutions, and the banking industry is the core of finance.
Therefore, the systemic risk of the banking system is one of the main sources of financial crises, and
it is also a hot topic of current related research.

The current research on the systemic risk of the banking systemmainly focuses on two channels,
the direct contagion channel based on the interbank lending market (bank-bank) and the indirect
contagion channel based on the portfolios of banks (bank-asset). Under the direct contagion
channel, most of the research focuses on the role of risk-sharing and risk contagion played by
interbank lending linkages. Most studies have shown that interbank linkages have a dual effect
of risk-sharing and risk contagion [Allen and Gale [1]; Leitner [2]; Iori et al. [3]; Nier et al. [4];
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Gai and Kapadia [5]; Tedeschi et al. [6]; Georg [7]; Ladley [8];
Deng et al. [9]; Chen et al. [10]; Grilli et al. [11]; Li and Li [12];
Vitali et al. [13]; Calomiris and Carlson [14]]. While some studies
have only revealed unilateral effects. Freixas et al. [15] conducted
similar research to Allen and Gale [1], the results showed that
the interbank linkages play a positive role in risk-sharing. Studies
by Brusco and Castiglionesi [16], Bao [17], Wang et al. [18],
and Zhou et al. [19] showed that interbank linkages play a role
in risk contagion. Besides, Barucca et al. [20] made extended
clearing models of interdependent liabilities by considering
the uncertainty of banks’ external assets, and presented a
comprehensive modeling framework for systemic risk in the
interbank market. He and Li [21] investigated the systemic
risk in the interbank market with different network topologies.
They found that network entropy was positively correlated
with the effect of systemic risk in the three types of interbank
networks. Network entropy in the small-world network was the
largest, followed by those in the random and scale-free network.
Ramadiah et al. [22] also studied systemic risk in relation to
network topology. They considered different realistic network
topologies to model shock propagation dynamics and showed
that the systemic risk properties of a financial network were
extremely sensitive to its network characteristics.

Relevant research under the indirect contagion channel
is relatively less, but it has attracted the attention of some
researchers. They mainly discuss the impact of changes in
asset prices on systemic risk when different banks invest in
the same asset class. The studies by Shleifer and Vishny
[23], Tsatskis [24], Duarte and Eisenbach [25], Braouezec and
Wagalath [26], and Greenwood et al. [27] all focus on financial
risk caused by asset prices. Tsatskis [24] proposed a banking
network model that focuses on quantifying the impact of
asset price changes on systemic risk. However, the research
only constructed related models without launching further
discussions and practical applications. Duarte and Eisenbach
[25] developed a “vulnerability index” for the sale of large bank
assets at reduced prices, mainly studying the effects of relevant
factors on the “vulnerability index” and also showed that the
index could measure the systemic risk of spillovers from reduced
prices. Braouezec and Wagalath [26] proposed an asset price-
oriented framework and found that the contagion of bank failure
under the influence of asset prices was significant. Greenwood
et al. [27] had presented a model in which fire sales propagate
shocks through bank balance sheets, and the fire sales spillovers
were described by a simple linear model. In the latest related
research, Tasca et al. [28] investigated the effect of the level of
diversification of external assets on the failure probability of the
system. Based on a simplified mathematical model, Yao et al.
[29] showed that reducing investment portfolio diversification
and controlling the interbank lending ratio can reduce systemic
risk to a certain extent. Squartini et al. [30] and Gangi et al. [31]
used the improved CAPMmodel and the method of maximizing
entropy to reconstruct the bank-asset bilateral financial network,
and analyzed the systemic risk caused by the spillover of the
price cut.

Besides, Huang et al. [32], Chen et al. [33], Caccioli et al.
[34], Levy-Carciente et al. [35], Fang and Zheng [36], Zhang

et al. [37], Fan and Liu [38], and Jiang and Fan [39] all built
a bank (financial institution)-asset bilateral network model for
further study. Huang et al. [32] and Levy-Carciente et al. [35]
conducted empirical studies on U.S. commercial banks and
Venezuelan banks, respectively, which are based on the bank-
asset bilateral network model and found that the models can
be used for systemic risk stress testing of the financial system.
Chen et al. [33] developed a company-asset bilateral network
model based on asset price contagion to analyze systemic risks
in financial markets. Similarly, Caccioli et al. [34] constructed
a bank-asset bilateral network banking system and investigated
the stability characteristics of the banking network under banks’
overlapping portfolios. Based on Caccioli et al. [34], Caccioli
et al. [40] further proposed a banking network model under the
interbank trading channel and the overlapping portfolio channel,
empirically studying systemic risks in the banking system under
both channels. Jiang and Fan [39] also proposed a model for
the interbank market with overlapping portfolios and introduced
investment risk to simulate the systemic risk of the banking
system. Fang and Zheng [36] used the network model of banks
holding common assets to investigate the contagion path of
systemic importance. Zhang et al. [37] and Fan and Liu [38]
both studied financial risk under the bilateral network based on
the financial network model of Caccioli et al. [34], and mainly
simulated the impact of different factors in the system. Gualdi
et al. [41] proposed a method to detect the most dangerous
portfolio overlaps in bank-asset bipartite systems. They found
that the similarity of institutional holdings increased significantly
just before financial crises or bubble bursts, and stated that the
method can be applied to any bipartite network.

The above research primarily analyzed the systemic risk
and yielded rich research results. However, there are still some
problems in the above work: (1) Empirical research on the
systemic risk of the Chinese banking system based on the bank-
asset bilateral network model has not yet been studied. We found
that Caccioli et al. [34], Zhang et al. [37], and Fan and Liu
[38] had carried out simulation analysis based on the bank-
asset bilateral network but it did not involve empirical research.
Caccioli et al. [40] had only conducted empirical research using
Australian banking data for the interbank trading channel, but
the overlapping portfolio channel had not been empirically
conducted. Huang et al. [32] and Levy-Carciente et al. [35]
conducted empirical studies based on the bank-asset bilateral
network model. However, both focused on foreign banking
systems, and the analysis was taken from the banks’ perspective.
Empirical research by Fang and Zheng [36] studied the Chinese
banking system under the bilateral network, but mainly analyzed
the contagion path, and did not study the systemic risk of
the Chinese banking system under banks’ overlapping portfolio.
(2) The current analysis of banks’ systemic risk management
strategies is from the bank-bank perspective. Gauthier et al. [42],
Liao et al. [43], and Fan et al. [44] had built quantitative bank
risk management models, primarily studying how to manage
systemic risks through the bank’s macroprudential capital, and
these studies are all interbank channels. The research under
the bank-asset channel [Huang et al. [32]; Caccioli et al. [34];
Levy-Carciente et al. [35]] focuses on the impact of different
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asset classes on systemic risks, and the lack of research on the
management of banking systemic risks in bilateral networks.
In Levy-Carciente’s work, they generated shock scenarios by
randomly selecting one asset at a time to depreciate, which is
inconsistent with reality and does not take into account the
characteristics of the assets (different asset classes may appreciate
or depreciate in the same market environment).

Based on the above analysis, this paper builds a banking
network system under the bank-asset bilateral network, collects
Chinese banks’ actual portfolio data, and empirically studies
the impact of external shocks, endogenous asset devaluations,
and the proportion of various asset classes in the total bank
assets on the systemic risk of the Chinese banking system. The
model is related to Levy-Carciente et al. [35]. In their paper,
Levy-Carciente et al. randomly select an asset to shock, which
only considers the impact of asset devaluation when the asset is
shocked and focuses on analyzing the bank’s systemic risk. Yet
there is no relevant research on its risk management based on the
bilateral network. Our model extends their work. Unlike Levy-
Carciente et al. [35], we construct the Chinese banking system
under the bank-asset bilateral network and develop a quantitative
investment strategy model. The quantitative investment strategy
model presented in this paper has introduced the banks’ risk
preference and is based on the bilateral network, which is
different from previous works [42–44]. Moreover, our model
fully considers the evolution of assets in real scenarios, where the
value of the asset may suffer losses and rise. Also, a systematic
shock method is adopted in our model, whereby all asset classes
are shocked at the same time. Furthermore, the existing models
mentioned above only consider the systemic risk depending on
the bank’s default probability. Our investment strategy model
takes into account the bank’s survivability and expected return
to investigate its optimal portfolio strategy.

We apply the bank-asset bilateral network model to 47 listed
Chinese banks in 2018 and empirically investigate the systemic
risk of the banking system. It shows that loan assets are the most
sensitive to external shocks. Moreover, the external shock and
the price-cutting effect will have a superimposed effect within
a specific range, where systemic risk will increase sharply. This
has not been noted by Levy-Carciente et al. [35]. We then
use the quantitative investment strategy model to carry out the
simulation. It should be noted that our analysis shows that there
is an inflection point of risk preference. This means that the
bank has an optimal risk preference when investing, so that it
can determine its investment strategy based on the risk level
of assets. Furthermore, the inflection point is different under
different debt-asset ratios. This contributes to the banks’ ability
to make reasonable investment decisions.

THE MODEL

Banks and assets, bank-bank, asset-asset, and bank-asset options
in a complex network system all have complex interrelationships.
The three links can form independently of each other, as well as
interconnected networks. The interbank and inter-asset networks
are composed only of the same type of nodes. In contrast, the

bank-asset network comprises two different types of nodes, which
have bilateral characteristics and is called a bilateral network.

In the existing research, Huang et al. [32], Chen et al. [33],
Caccioli et al. [34], and Levy-Carciente et al. [35] all developed
bank (financial institution)-asset bilateral network models by the
interconnection between two different types of nodes. Based on
the model of Levy-Carciente et al. [35], this paper uses the data of
Chinese listed banks to construct a bank-asset bilateral network
model of the Chinese banking system, and has revised themethod
of the asset class being shocked by switching from random
shock to systemic shock. To construct the banks’ quantitative
investment strategy model, different asset classes with different
types of risk and return are set up and the banks’ risk preference
coefficient is introduced. This paper has studied the systemic risks
of Chinese banks and analyzed banks’ optimal investment.

The Bank-Asset Bilateral Network
There are two types of nodes in the bank-asset bilateral network,
such as bank nodes, and asset nodes. It assumes that there are no
links between interbank nodes and the inter-asset nodes. Once
a bank invests in a specific type of asset, a linkage between the
bank and the asset is created. A bilateral network between a bank
and an asset eventually develops through the banks’ portfolio. A
bank’s portfolio contains various assets, such as interbank lending
assets, cash, precious metals, fixed assets, credit, etc.

In the bank-asset bilateral network, the dynamic evolution
algorithm is constructed as follows:

Step 1: Select one asset class from all asset classes to devalue it;
Step 2: The total assets of all banks held such as shocked assets

(the shocked asset in step 1) are updated, and the updated total
assets of each bank are compared with their total liabilities. If
a bank becomes insolvent, the bank is declared bankrupt;

Step 3: The asset of the default bank is liquidated, and all
of its assets are sold in fire sales, these asset classes will
depreciate again; at the same time, the total value of the bank
assets held in these depreciated asset classes will also have a
cascading depreciation;

Step 4: Determine each bank’s survival again and execute
the above algorithm in sequence until there are no more
bank failures.

As shown in Figure 1, firstly, the shock of assets A in Figure 1A

depreciates their assets, and the total value of all banks that
invest in this asset suffer losses (see bank 1, bank 2...bank i in
Figure 1B). Among them, bank 1 defaulted due to insolvency,
and the failed bank 1 sold all the assets it held (asset A, asset
B... asset E in Figure 1C); similarly, the total value of the
bank holding these assets depreciated again (see bank 2...bank
i in Figure 1D). Consequently, a bank’s failure in the bank-
asset bilateral network can trigger chain reactions, resulting in
cascading failures.

Dynamic Banking System Model Based on
Bilateral Network
In this paper, Bi,1, Bi,2, . . . ,̇ Bi,N is used to represent the various
assets held in a bank’s portfolio, where the subscript N is the
total number of asset classes, and the total assets of bank i
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FIGURE 1 | Evolution of bank-asset bilateral network. (A) Represents the asset class A depreciates. (B) Represents the total value of bank 1, bank 2. . . bank i that

invest in asset class A suffers losses. (C) Represents bank 1 defaults, the assets it held asset A, asset B. . . asset E depreciates. (D) Represents the total value of bank

2. . . bank i suffers losses.

are Bi =
∑

Bi,m , and Li is represented by the bank’s total
liabilities. The total market value of asset class m is defined as
Am =

∑

i Bi,m, so the market share of what bank i invests in asset
m is εi,m = Bi,m/Am. Besides, the relative size β of the asset class
m throughout the market is defined as βm = Am/

∑

n An. For
bank i, the proportion of its investment assetm to its total assets is
ηi,m = Bi,m/Bi. According to the Chinese banking system’s actual
data, this paper can obtain the initial total assets of the banks,
the initial total liabilities, the total value of each asset, and the
bank-asset investment matrix.

Bi,m,τ represents the value of assetm after τ times of evolution
in the model. Its initial value is Bi,m,0, then, the total asset of
bank i after τ times of evolution in the model can be expressed
as Bi,τ =

∑

m Bi,m,τ . In the same way, the total value of asset class
m after τ times of evolution is expressed asAm,τ =

∑

i Bi,m,τ . The
total liabilities Li of bank i are set to be fixed during the evolution
of the model. Then an external shock p(p ∈ [0, 1]) is introduced
to depreciate a specific asset class, and a non-liquidity parameter
α(α ∈ [0, 1]) is introduced to measure the degree of depreciation
of assets after a bank’s fire sale.

p is an exogenous parameter, which is uncontrollable, and α is
an endogenous parameter. Firstly, we select an asset class m′ for
external shocks, and the total value of the asset class m′ after the
shock is updated to:

Am′ ,τ=1 = pAm′ ,τ=0. (1)

When p = 0.7, it means that the shocked asset class m′ has
depreciated by 30%, while p = 0.3 means that the shocked asset
has depreciated by 70%. Therefore, the larger the value of p, the
smaller the external shock. It should be noted that, except for
the shocked asset class, the other asset classes remain unchanged.
Then, as long as any bank holds the shocked asset class, the asset
class it holds will also be devalued in the same proportion, which
can be described as follows:

Bi,m′,1 = pBi,m′ ,0 = Bi,m′ ,0
Am′ ,1

Am′ ,0
(2)

After suffering a shock, each bank’s total assets are recalculated
and their updated total assets with their total liabilities are
compared. If all the banks are satisfied Bi,1 > Li, then all the
banks survive, and the impact of the shock ends. If one bank
is satisfied Bi,1 ≤ Li, it means that the bank defaults under the

shock, and the impact of the shock will continue. The defaulted
bank will liquidate the assets and sell them at a reduced price. In
the bank-asset bilateral network, any asset class associated with a
failed bank is bound to depreciate and its asset class value will be
updated as follows:

Am,τ+1 = Am,τ − αBi,m,τ . ∀m, i
∣

∣Bi,1 ≤ Li (3)

The parameter α measures the price-cutting effect of a specific
asset class. If α = 0, it means that the assets’ total value held by
the failed bank will not be affected by the fire sale of the failed
bank, and will not trigger further cascading failures. If α = 1, it
means the assets’ total value held by the failed bank is suffering
from depreciation, and will lose the total value of all asset classes
held by the failed bank. In this case, the effect of the bank’s price
cuts will be maximized, which could trigger further insolvencies
and continue to spread the impact of the shock. At the same time,
the depreciation of asset classes will trigger the corresponding
depreciation of similar assets held by each bank, which can be
described as follows:

Bi,m,τ = Bi,m,0
Am,τ

Am,0
. (4)

The decrease in bank assets in the above equation can lead
to more bank bankruptcies. The liquidation of the bank’s
bankruptcy will further depreciate the asset class and trigger a
new round of bankruptcy. The impact of the shock will continue
until there are no more bank failures in the system.

Banks’ Quantitative Portfolio Strategy
Model
The banks’ portfolio strategy model is constructed from the
asset perspective, as shown in Figure 2. According to the actual
asset allocation of the Chinese banking system, banks generally
choose to invest in assets with different types of risk and return.
Therefore, in the banks’ portfolio strategy model, we divide the
asset classes into 10 types: {A1, A2...A10 } (rectangles in Figure 2)
and assign different attributes to each asset class. The return
rate of the asset class mis Sm, and the corresponding risk loss
rate is Rm. At the same time, each bank is set to hold different
proportions of various asset classes, as shown in the enlarged
circle in Figure 2A. According to the latest bank benchmark
interest rate released by the People’s Bank of China, the annual
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FIGURE 2 | Bank’s portfolio strategy model. (A) Represents all asset classes are simultaneously shocked at each time step. (B) Examples of all possible shock events.

interest rate of 1-year cash deposits is 1.5%, while that of 1-year
bank loans in the same period is 4.35%. The ratio between the two
is∼3. It is assumed that the return rate of the assets in the model
is equivalent to the risk loss rate, set Sm = Rm ∈ [0.15, 0.45].

Considering that the value of each asset in the banks’ portfolio
may be affected by the market environment. All asset classes are
subject to external shocks at the same time instead of a specific
asset class randomly shocked as in section The Bank-Asset
Bilateral Network. Thus, the banks’ portfolio strategy model
adopts a systematic shock method in this section, namely that
all asset classes are simultaneously shocked at each time step. As
shown in Figure 2A, at the t1 time step, the asset class A1 suffers
a negative shock, its total assets depreciate; the asset class Am

suffers a positive shock, its total assets increase. At the t2 time
step, the asset class A1 suffers a positive shock, its total value of
assets rebound; the asset class Am suffers a negative shock, and its
total assets depreciate. Likewise, each asset class is simultaneously
impacted during the time steps t3 . . . tn, and the total value of
the asset changes.

The profitable probability of asset class Am at each time step is
pm, then its unprofitability probability, namely, a loss is 1 − pm.
Defining a particular external shock as an “event,” there are 210

shock events in the model (see Figure 2B, the rectangle is full
to indicate profit, not full to indicate loss). According to the
“Guidelines for Bank Loan Loss Provision Provisions” issued by
the People’s Bank of China, the bank’s loan loss provision ratio
is at least 2% for high-quality loans, and it is up to 100% for
poor-quality loans. The bank’s average loan loss provision ratio is
∼44%. Therefore, for the convenience of research, we set the loss
probability of high-risk assets as 0.4 (i.e., the profit probability as
0.6) in our model and the loss probability of low-risk assets as 0.1
(i.e., the profit probability as 0.9). That is pm ∈ [0.6, 0.9].

Since banks have different risk preferences, banks will have
different investment allocation strategies. Moreover, in the
empirical research of this paper, we find that the proportion of
various assets held by each bank to its total assets has a significant
impact on the bank’s survival rate. To study the effect of the bank’s

investment portfolios, we introduce the bank’s risk preference
coefficient to adjust the bank’s portfolio, and thus Equations (5)
and (6) are introduced here. We use coefficient θ to represent
the banks’ risk preferences, θ from small to large, indicating that
banks’ risk preferences have shifted from steady to radical. When
a bank invests asset classAm, the impact function of each asset
held by the bank is as follows:

f
(

pm, θ
)

=
1

√
2π

e

(

−50(pm+0.3θ−0.9)
2
)

pm ∈ [0.6, 0.9], θ ∈ [0, 1]

(5)

In Equation (5), we assume that the impact factor of the bank’s
investment in a specific asset class follows a similar normal
distribution. In this model, we have assumed that the profit of
high-risk assets is also higher when it is profitable, and the profit
of low-risk assets is also lower when it is profitable. Therefore, the
impact factor of banks investing in the lowest risk assets is largest
whenθ = 0; on the contrary, the impact factor of banks investing
in the highest risk assets is largest whenθ = 1. pm is the profitable
probability of asset class Am (i.e., pm can be used to measure
asset risk) and pm ∈ [0.6, 0.9], which is consistent with the above
settings. Besides, 50 in Equation (5) is to make the difference of
various assets in the investment portfolio more significant.

The proportion η of each asset held by the banks is expressed
as follows:

ηm =
f
(

pm, θ
)

M
∑

i=1
f
(

pi, θ
)

(6)

In the simulation research of this study, we have explored
the optimal asset portfolio ratio by adjusting the bank’s risk
preference. The optimal value enables the bank to achieve the
highest return within the risk tolerance range. However, it does
not represent the real value of the scene, and this study only
proves that there is an optimal value.
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We have set 10 types of assets in the investment strategymodel
in this paper, and each type of asset may appreciate or depreciate
at each time step. Thus, the model defines 210 events, and each
event includes the appreciation or devaluation of each type of
asset. Based on the profitable probability of each asset class, a
random shock event for each asset class is generated in the system
at the time step t. After the shock, the total value Am of the
asset class m and the value Bi,m of the asset class m held by the
bank i are updated according to the event. When the asset value
appreciates, it is expressed by Equation (7), when the asset value
depreciates, it is expressed by Equation (8).

When the asset is profitable:

{

Am,t+1 = (1+ Sm)Am,t ,
Bi,m,t+1 = (1+ Sm)Bi,m,t .

(7)

When assets are at a loss:
{

Am,t+1 = (1− Rm)Am,t ,
Bi,m,t+1 = (1− Rm)Bi,m,t .

(8)

Where Sm in Equation (7) is the return rate of the asset class m,
and Rm in Equation (8) is the corresponding risk loss rate.

Comparing the updated total assets of each bank with its total
liabilities; if any bank is insolvent, it will sell its asset portfolio at a
lower price, which will trigger further risks. At the same time,
the market influence function is introduced in the bankruptcy
liquidation of failed banks to measure more precisely the effect
of asset price reduction [34]. In their study, Caccioli et al. [34]
point out that it is the linear market impact for log-prices in the
case of fire sales, so they use an exponential price impact function.

g(xm) = e−∂xm (9)

xm indicates the ratio of the asset class m to be sold by the failed
bank to the total value of the asset class m, and ∂ indicates the
sensitivity of asset prices, that is, the degree of fluctuations caused
by the fire sale of the asset classm. Caccioli et al. [34] have shown
that the parameter ∂ is chosen such that the price drops by 10%
when 10% of the asset is liquidated, i.e., ∂ = 1.0536. Based on
this, when a bank goes bankrupt and is liquidated, the value of
the asset class m after the τ times of price-cutting will change
as follows:

Am,τ+1 = Am,τ ∗ g(xm,τ ) (10)

xm,τ indicates that the proportion of asset class m sold at time τ

is xm.
We define the expected return Ei of the bank i to measure its

profitability under the premise of ensuring its survival, which is
defined as follows:

Ei = Pi ∗ Pr ofi (11)

Where Pi = STi
λ
, Pi is the survival probability of bank i, STi

is the survival times of bank i in the simulation experiments,
λ is the total number of simulation experiments. Pr of i is the

average return of bank i, and the income Pr of i of bank i is the
difference between the value of the total assets of bank i after each
simulation and its initial value.

TABLE 1 | Asset classes of Chinese banks.

Asset types

Cash Cash and deposits with the Central Bank

Precious metals

Interbank assets Deposits with peers and other financial

institutions

Funds on loan

Repurchase funds

Financial

investment

Financial investment

Loans Loans and advances

Other assets Fixed assets

Other assets

Intangible assets

Other investments

EMPIRICAL RESULTS

Data
We have collected the balance sheet data of 47 Chinese listed
banks at the end of 2018. It covers five major types of
Chinese banks, large state-owned commercial banks, joint-stock
commercial banks, city commercial banks, rural commercial
banks, and policy banks. It covers most listed banks in China.
Therefore, the listed banks’ data collected in this paper may
reflect the overall asset status of various banks of the banking
industry in China.

In this paper, each bank’s assets are finally divided into five
categories based on their investment attributes and income
types, namely cash, interbank assets, financial investment, loans,
and other assets. Special assets in the bank’s balance sheet are
classified according to their nature or classified as other assets.
For example, goodwill is an intangible asset and is attributable
to other assets; financial leases are investment receivable and are
attributable to the financial investment class. Finally, we obtain a
summary of the asset classes of Chinese banks in 2018, as shown
in Table 1.

According to the portfolio of the 47 Chinese listed banks
presented in this paper, we have plotted the bank-asset bilateral
network of the Chinese banking system, as shown in Figure 3.
It should be noted that the interbank assets in Figure 3 refer to
the collective name of some assets with common characteristics
(such as deposits from interbanks and other financial institutions,
buying re-sale funds), rather than the traditional interbank
lending assets. Figure 3 shows that in the Chinese banking
portfolio, loan assets make up the largest proportion, followed by
financial investment assets. The proportion of cash and interbank
assets is relatively small, and the two are relatively close, with the
other asset class being the lowest. Besides, the six state-owned
commercial banks have the largest total assets for bank nodes
and hold more loan assets. Among the 12 joint-stock commercial
banks, Shanghai Pudong Development Bank, Industrial Bank,
Minsheng Bank, and China Merchants Bank have more loan
assets than other commercial banks. It should be noted that the
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FIGURE 3 | The bank-asset bilateral network of the Chinese banking system. The circle represents the asset class; the rectangle represents the bank class; the size

of each node represents the size of its total assets; the thickness of each connecting line represents the total value of each asset class invested by each bank;

besides, in the rectangular node: red represents state-owned banks; purple means joint-stock commercial banks; light blue means city commercial banks; dark blue

means rural commercial banks; yellow means policy banks.

network between the bank and the asset is fully connected in
this paper.

External Shocks and Price-Cutting Effects
By adjusting the value of p and α to form different external shocks
and price-cutting effects, each asset class is shocked to study
the survival rate of the banking system under different shocks.
We select different asset classes to shock in turn, and conduct
multiple experiments by continually adjusting the combined
value of p and α when each asset class is shocked. In a single
experiment, p and α are the same for all banks-assets. Finally, the
results are shown in Figure 4.

It can be seen that when cash assets are shocked (Figure 4A),
the survival rate of the banking system gradually increases with
the increase of p, and the survival rate is 1 when p > 0.6, i.e.,
there is no bank default. When p ≤ 0.6, the survival rate of
the banking system gradually decreases with the increase of α,
and when α > 0.36, for any value of p, the survival rate is 0,
i.e., all banks fail, and the whole banking system will collapse.
Therefore, generally speaking, when p is large (p > 0.6), the
external shock is too small, and no bank fails, so the role of α

cannot be reflected; when α is large (α > 0.36), the price-cutting
effect is more robust, and changes in external shocks cannot
be reflected. When p ≤ 0.6 and α > 0.36, the larger the α,
the lower survival rate of the system, and the smaller the p, the
lower survival rate of the system. It shows that the external shock
and the price-cutting effect are superimposed in this interval,
and the larger the external shock, the stronger the price-cutting
effect, the more unstable the system. When the interbank assets
are shocked (Figure 4B), the impact of p and α on the banking
system is similar to the above shock on cash assets. The difference
is that the survival rate of the whole banking system is 1 when
p > 0.48, and there is no bank default in the system. At that
time, the change of α has no effect on the survival rate of the
banking system when p > 0.33; while, when p ≤ 0.29 and
α ≤ 0.19, the superposition of external shocks and price-cutting
effects is more significant. When the financial investment assets
are shocked (Figure 4C), the situation is significantly different
from the two types of assets mentioned above. At this time, the
survival rate of the entire banking system is 0 when p ≤ 0.56, or
when p ≤ 0.88 and α > 0.17, indicating that the external shock
is large or that the price-cutting effect is strong at this stage, and
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FIGURE 4 | (A–E) The survival rate of the banking system under different values of p and α when cash assets, interbank assets, financial investment assets, loan

assets, and other types of assets are shocked, respectively.

the banking system is relatively fragile. In contrast, if the survival
rate of the banking system is 1 when p ≤ 0.88, all banks in the
system survive. It indicates that when the external shock is low,
the banking system is stable. Moreover, when 0.56 < p < 0.88
and α ≤ 0.17, the effects of external shocks and price cuts are
superimposed. When the loan assets are shocked (Figure 4D),
the survival of the banking system is basically the same as that of
the above-mentioned shocks on financial assets, except that the
boundary value is different in each case. When p ≤ 0.76, or when
p ≤ 0.9 and α > 0.25, the survival rate of the banking system is
0, no bank survives. This indicates that the external shock is large
or the price-cutting effect is strong at this time, and the banking
system is relatively fragile. When p ≥ 0.9, the survival rate of the
banking system is 1 and all banks in the system survive, which
indicates that the system becomes stable when the external shock
is small. And, when 0.76 < p < 0.9 and α ≤ 0.25, the external
shock and the price-cutting effect are superimposed. When other
types of assets are shocked (Figure 4E), there is no bank default
in the system, no matter how p or α changes.

Our analysis suggests that, on the whole, the smaller the p
(i.e., the more significant the external impact of assets) and the
larger the α (i.e., the stronger the price-cutting effect), the more
unstable the banking system will be. When α is large enough, the
price-cutting effect will have a significant impact on the stability
of the banking system. If p is large, no bank will fail, which
means that there will be no price-cutting of assets, so the stability
of the banking system does not depend on α; if p is small, the
price-cutting sale of assets of the failed bank will lead to the
collapse of all banks, that is, the collapse of the entire banking
system. Besides, the sensitivity of various assets to external shocks

is different. In addition to other assets, loan assets are the most
sensitive to external shocks, while interbank assets are the least
sensitive. The corresponding ranges of external shocks and price
reduction effects are also different.

The Proportion η of Various Assets Held by
Banks in the Total Assets of Banks
Based on the research in section External Shocks and Price-
Cutting Effects, it is noted that the number of various assets
has a particular impact on the stability of the banking system.
To explore the influence of the proportion η (various assets
held by banks in the total assets of banks) on various banks’
stability, we chose the corresponding shock intensity when the
banking system is relatively stable to carry out the following
research. We select the data when the survival rate of the banking
system reaches more than 60% under the shock of each asset
class, and the results are shown in Figure 5. Figure 5 shows
when each asset class suffers a shock, the proportion of various
assets held by banks to the total assets of banks (horizontal
axis) and the order of bank default (vertical axis). When the
ordinate axis is 0, it represents the bank has not defaulted; when
the ordinate axis is 1, it means that the bank defaulted during
the first round of shocks, and so forth. Figure 5 indicates that
the banks that survived each asset’s shock have a substantial
similarity in their investment (as can be seen from Figure 5, the
nodes representing the surviving banks have a certain degree
of aggregation).

When shocking cash assets (see Figure 5A), we find that the
proportion of cash of surviving banks is mainly around 0.08–
0.1, such as large state-owned banks: Bank of Communications;
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FIGURE 5 | (A–D) The order of default under different values of η when cash assets, interbank assets, financial investment assets, loan assets, and other types of

assets are shocked, respectively. The default order is 0 meaning the bank survives.

joint-stock commercial banks: China Everbright Bank and
China CITIC Bank; city commercial banks: Zhengzhou Bank,
Qingdao Bank, and Zhongyuan Bank, etc., and rural commercial
banks: Jiangyin Bank, Changshu Bank, and Zhangjiagang
Bank. When shocking the interbank assets (see Figure 5B),
the proportion of interbank assets of surviving banks mainly
clustered around 0.01 and 0.04, such as large state-owned
banks: Agricultural Bank and Construction Bank; joint-stock
commercial banks: Everbright Bank, China CITIC Bank, and
Shanghai Pudong Development Bank Banks; city commercial
banks: Ningbo Bank, Guiyang Bank, Qingdao Bank, and
Zhengzhou Bank, etc., and rural commercial banks: Jiangyin
Bank, Changshu Bank, and Zhangjiagang Bank. When shocking
the financial investment assets (see Figure 5C), the proportion of
financial investment assets of surviving banks is mainly around

0.3–0.34, such as the large state-owned banks: Agricultural
Bank and Bank of Communications; joint-stock commercial
banks: Everbright Bank, China Banks, Minsheng Bank and
Shanghai Pudong Development Bank; city commercial banks:
Chongqing Bank, Gansu Bank, and Xi’an Bank, etc., and
rural commercial banks: Wuxi Bank, Jiangyin Bank, Changshu
Bank, and Zhangjiagang Bank. When shocking the loan assets
(see Figure 5D), the proportion of loan assets of surviving
banks is mainly around 0.35 and 0.4, such as city commercial
banks: Nanjing Bank, Ningbo Bank, Guiyang Bank, Zhongyuan
Bank, Qingdao Bank, Bank of Hangzhou and Bank of
Chengdu, etc.

The above results show a particular relationship between
the survival of banks and the proportion of corresponding
assets invested by banks. Meanwhile, we also found that the
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TABLE 2 | The proportion of various assets held by banks in the total assets of banks.

Bank Cash Interbank

assets

Financial

investment

Loans Other

assets

Zhongyuan Bank 10.40% 6.80% 40.72% 39.73% 2.33%

Jiangyin Bank 10.13% 1.20% 33.61% 52.08% 2.98%

Changshu Bank 10.05% 1.47% 32.59% 53.22% 2.67%

Zhangjiagang Bank 9.90% 1.04% 34.81% 51.28% 2.97%

four banks, Zhongyuan Bank, Jiangyin Bank, Changshu Bank,
and Zhangjiagang Bank, did not fail when each asset class was
shocked, indicating the strong robustness of the four banks.
Therefore, we analyzed the asset portfolios of the four banks,
as shown in Table 21. We note that the asset portfolios of the
four typical banks exhibit certain similarities, especially Jiangyin
Bank, Changshu Bank, and Zhangjiagang Bank, which are highly
consistent. Therefore, we propose an optimal portfolio of assets
in the banking system, allowing the bank to have high-risk
resistance and strong robustness.

Simulation Analysis
We have developed the banks’ quantitative portfolio strategy
model based on the results of section The Proportion η of Various
Assets Held by Banks in the Total Assets of Banks above. This
section further discusses the banks’ optimal investment strategy
from a portfolio selection perspective.

Firstly, we study the expected return and banks’ survival rate
under banks’ different risk preferences θ (θ ∈ [0, 1]). In our
model, we set the number of banks as 101, and the difference
of risk preference coefficient of each bank is 0.01; the number of
asset classes is 10, and each bank holds these 10 types of assets at
the same time; the profit probability of each asset is pm, the return
rate when assets are profitable is Sm, and the loss rate when assets
are depreciated is Rm; the bank’s total liabilities is L= 10,000, and
the asset-liability ratio isχ = 1.08 (the average asset-liability ratio
of 47 listed banks in the empirical study is 1.08); the total time
step of each simulation experiment is 1,024. Finally, the results
obtained through more than 10,000 simulation experiments are
shown in Figure 6. Figure 6 shows that there is a “turning point”
of risk preference. Before the point, each bank’s overall expected
return shows an upward trend and maintains a relatively high
and stable survival rate. After the point, the expected return of
the banks decreases significantly, and the survival rate begins
to decline.

It indicates that when banks’ risk preference tends to be
conservative and low-risk and low-return assets held by banks
account for a relatively large proportion, the banks’ survival rate
is high. However, it abandons some of the benefits that can result
from high-risk and high-return assets. As banks’ risk preference

1The investment portfolio data of all 47 banks can be seen in the Appendix. It

can be seen that the proportion of various assets held by banks in the total assets

of banks is obviously different. And in our study, the proportion of investment

portfolio of the four banks that have not failed when each asset class is shocked is

the most similar among all banks.

changes radically, banks hold more andmore high-risk and high-
return assets. The banks’ expected returns will increase while
maintaining strong stability within a specific range. However, as
the aggressive process increases, the risk continues to accumulate.
Therefore, once the risk preference coefficient has reached the
extreme value (0.31 in this experiment), the loss begins to
increase due to excessive risk. Rather, the expected return starts to
decrease. With the risk preference θ becoming more radical, the
stability of the banking system has gradually declined. Overall,
we believe there is an optimal risk preference when banks make
investment choices. Banks can determine investment strategies
based on the risk level of assets to achieve maximum return with
reasonable consideration of risk. The simulation results show that
the banking system is the most stable and the expected return is
the highest when the risk preference coefficient is 0.31.

Since the banking system is heterogeneous in real life, we
further investigate the impact of each bank’s asset-liability ratio χ

on the risk preference. Based on the previous parameter settings,
we have simulated and studied the expected return of the bank
under different values of θ with various asset-liability ratios. The
results are shown in Figure 7. Figure 7 shows that each bank has
a “turning point” of risk preference under different asset-liability
ratios. As banks’ risk preference becomes more and more radical,
the expected return of the banking system as a whole shows a
tendency to “increase first and then decrease.” At the same time,
we find that as banks’ asset-liability ratio χ increases, the banks’
expected return also rises, and the turning point of risk preference
is gradually shifted to the right. That is, as the asset-liability ratio
χ increases, the banks’ risk preference becomes more and more
radical. It shows that a bank with a larger asset-liability ratio has
a more robust risk tolerance and can choose more aggressive
investment strategies for high returns.

Based on the above research, we have chosen an asset-liability
ratio of 1.08, and a risk preference coefficient of 0.31 to further
study the dispersion of banking system investments. We have
studied the expected return and survival rate of the bank under
different asset classes. The results are shown in Figure 8. It turns
out that the expected return and the survival rate of banks
are different under different investment diversification in the
banking system. As banks choose more and more varied assets,
their investments become more and more diversified, and the
survival rate of banks shows a rising trend. However, the expected
return of banks shows a process of first fall, then rise, and
then fall.

We analyze the fact that as bank investments become
increasingly diversified, once risk events occur in a specific asset
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FIGURE 6 | The expected return and survival rate of the bank under different values of θ .

class, the impact will be reduced correspondingly. The ability
of banks to resist risk is becoming increasingly strong, so the
probability of survival continues to increase. However, when a
bank’s investments are relatively concentrated (lower than the
first turning point in the expected return), the bank chooses to
invest in fewer assets. At this time, investment diversification will
have a negative impact on banks. The diversification of bank
investments will lead to increased risks, and the investment is
not sufficiently diversified. Therefore, when a risk event occurs
and causes assets to depreciate, it will not cause the bank to
fail, but will still reduce the bank’s expected return. When a
bank’s investment is at a reasonable level (between the two
turning points), it reduces asset devaluation. Consequently, the
expected return of the bank will continue to rise. When a
bank’s investment is too diversified (beyond the second turning
point), its ability to resist risk is more robust, and the banking
system is relatively stable. However, it is too dispersed, makes
it impossible to concentrate investment on high-quality assets,
and misses the possibility of higher returns, thus leading to a
decline in expected returns. Therefore, we propose that banks
should consider overall risk resistance and the expected return
level to determine the principle of investment diversification, and
maximize their returns with a reasonable asset allocation while
ensuring stability.

CONCLUSION

Research on systemic risk under the bank-asset-bank indirect

contagion channel is relatively rare. There is no empirical
research on the systemic risk of Chinese banks in this
channel. This paper used the bank-asset bilateral network to

study systemic risk. Moreover, by constructing a quantitative
portfolio strategy model for banks, a bank’s optimal investment

strategy is further explored from the asset class. This paper
collects actual data on the balance sheets and portfolios of

listed banks in China, obtains the Chinese bank-asset bilateral
network, and empirically studies the impact of different external
shocks, endogenous asset devaluations, and the proportion

of various asset classes in the total bank assets on systemic
risk. Based on the banks’ quantitative portfolio model, we
perform a simulation to study the impact of different banks’

risk preferences and investment diversification on systemic
risk. In addition, we compare and analyze banks’ investment
strategies under different asset-liability ratios. The conclusions
are as follows:

First, overall, the greater the external shock and the greater
the effect of price cuts, the higher the systemic risk. And if
the effects of external shocks and price cuts overlap within
a specific range, systemic risk has increased dramatically.
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FIGURE 7 | The expected return of the bank under different values of θ with various the asset-liability ratios.

FIGURE 8 | The expected return and survival rate of the bank under different

asset classes.

Loan assets are the most sensitive to external shocks, and
interbank assets are the least sensitive in the Chinese bank-asset
bilateral network system. Moreover, the higher the proportion
of various assets in total assets when subjected to the same
external shocks, the greater the impact on the stability of the
entire system. The empirical results show that none of the
four Chinese listed banks, Zhongyuan Bank, Jiangyin Bank,
Changshu Bank, and Zhangjiagang Bank had failed when
each asset class was shocked, indicating the strong stability
of these banks. Further analysis reveals some similarities
between the four banks’ portfolios. We believe that the banks’
portfolio has a significant impact on the stability of the
banking system.

Second, the banks’ investment risk preference has a significant
impact on systemic risk and investment return. Generally
speaking, the more conservative the risk preference, the stronger
the stability of the banking system. There is a “turning point”
of risk preference in the expected return of banks, and the
expected return of each bank “increases first and then decreases”
before and after the inflection point. Furthermore, the greater
the banks’ asset-liability ratio, the stronger their risk tolerance
when it comes to choosing more aggressive investment strategies
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to achieve high returns. The more diversified the banks’
investments, the stronger their risk resistance and stability.
Meanwhile, there are “two turning points” in the banks’ expected
return. As bank investments become increasingly dispersed,
the expected return of banks first decreases, then increases,
and finally decreases. We propose that banks consider their
anti-risk capacity and their expected return level to determine
investment diversification.

This paper focuses on systemic risk based on the bank-
asset bilateral network, without considering the impact of other
complex links between banks and the assets of the banking
system. In addition, the empirical study on the bilateral network
of the Chinese banking system is a fully connected network,
which does not explore the systemic risks of banks under other
bilateral networks. These issues will continue to be discussed in
future work.
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APPENDIX

The proportion of various assets held by each bank in its total assets.

Bank Cash Interbank

assets

Financial

investment

Loans Other assets

Bank of China 11.81% 7.85% 22.77% 54.78% 2.79%

Agricultural Bank of China 12.58% 4.63% 29.62% 50.84% 2.33%

Industrial and Commercial Bank of China 13.22% 5.96% 24.36% 54.53% 1.93%

China Construction BankCon 11.80% 4.45% 23.79% 57.21% 2.75%

Bank of Communications 8.81% 8.90% 29.61% 49.76% 2.92%

Postal Savings Bank of China 12.64% 7.00% 35.60% 43.60% 1.16%

China Everbright Bank 9.10% 4.07% 30.22% 55.09% 1.52%

China CITIC Bank 9.43% 4.10% 26.67% 57.54% 2.27%

Hua Xia Bank 8.04% 2.46% 30.14% 57.22% 2.14%

China Guangfa Bank 10.45% 5.83% 24.65% 55.45% 3.62%

Ping An Bank 9.81% 5.70% 24.87% 57.03% 2.58%

China Merchants Bank 7.41% 9.09% 24.78% 55.59% 3.13%

Shanghai Pudong Development Bank 7.28% 3.95% 30.64% 55.55% 2.57%

Industrial Bank 7.32% 3.56% 43.49% 43.09% 2.55%

China Minsheng Banking Corp 6.76% 5.83% 33.66% 51.55% 2.20%

China Zheshang Bank 8.17% 3.36% 34.31% 50.83% 3.33%

China Bohai Bank 11.91% 3.73% 30.25% 52.98% 1.13%

China Development Bank 1.72% 9.26% 17.95% 69.38% 1.69%

Bank of Nanjing 7.54% 4.49% 47.79% 37.05% 3.13%

Bank of Ningbo 8.75% 1.40% 49.58% 35.70% 4.57%

Bank of Beijing 8.37% 5.99% 36.11% 47.37% 2.17%

Bank of Jiangsu 7.58% 3.17% 42.12% 45.58% 1.54%

Bank of Guiyang 8.82% 1.68% 53.65% 33.54% 2.32%

Bank of Hangzhou 9.08% 8.08% 44.37% 36.64% 1.84%

Bank of Shanghai 7.22% 7.76% 43.04% 39.90% 2.08%

Bank of Chengdu 13.47% 4.14% 44.46% 36.29% 1.65%

Bank of Chongqing 7.38% 12.86% 32.11% 45.72% 1.93%

Huishang Bank 8.39% 3.74% 51.43% 35.28% 1.16%

HARBIN Bank 12.31% 5.23% 40.07% 40.38% 2.01%

Shengjing Bank 9.90% 3.41% 48.18% 37.35% 1.15%

Bank of Qingdao 9.56% 1.92% 46.85% 39.75% 1.92%

Bank of Zhengzhou 10.25% 1.49% 52.46% 34.06% 1.74%

Bank of Tianjin 9.45% 2.70% 44.74% 42.00% 1.11%

Zhongyuan Bank 10.40% 6.81% 40.72% 39.74% 2.33%

Bank of Gansu 9.60% 9.88% 31.31% 47.06% 2.17%

Jiangxi Bank 9.01% 4.34% 45.51% 39.50% 1.65%

Bank of Jiujiang 9.13% 5.91% 38.53% 44.01% 2.43%

Bank of Changsha 8.24% 2.57% 50.13% 37.43% 1.63%

Bank of Xi’an 10.74% 1.39% 33.22% 53.28% 1.38%

Guangzhou Rural Commercial Bank 13.31% 7.27% 29.85% 47.82% 1.75%

Jilin Jiutai Rural Commercial Bank 13.67% 7.05% 28.28% 45.88% 5.12%

Suzhou Rural Commercial Bank 10.90% 9.93% 26.64% 49.20% 3.33%

Wuxi City Commercial Bank 9.60% 8.07% 32.66% 47.37% 2.29%

Jiangyin Bank 10.12% 1.20% 33.61% 52.08% 2.98%

Changshu Bank 10.05% 1.47% 32.59% 53.22% 2.66%

Zhangjiagang Bank 9.90% 1.04% 34.81% 51.28% 2.97%

Zijin Rural Commercial Bank 10.02% 12.44% 31.74% 43.36% 2.44%
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