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We study nonlinear dynamical equations for coupled conserved and non-conserved

fields describing nanoparticle concentration and liquid crystal order parameter,

respectively, and solve them numerically over bidimensional domains. These equations

model the rapid segregation of nanoparticles away from nematic domains, which has

been observed experimentally in a suspension of gold nanoparticles in 5CB below the

isotropic-nematic transition temperature. We contrast the different behaviors obtained

when the LC order parameter is treated as a scalar or a tensor, as well as the different

rates of evolution observed with each of these. We find, after an instantaneous quench

lowering the temperature below the transition one, an initial linear regime where the

ordering of the nematic phase proceeds exponentially with time. Only after a lag period

the nanoparticle material couples effectively to the LC order parameter and segregates

to regions that are less orientationally ordered (extended domain walls for a scalar order

parameter, but point disclinations for a tensor one). The lag period is followed by the

onset of nonlinear dynamics and saturation of the order parameter. The choice of a

scalar or tensor LC order parameter does not change this sequence but results in a

clear overshooting of the nonlinear saturation level for the tensor order parameter case.

These results are found to be insensitive to weak anchoring due to coupling of gradients

of the conserved and non-conserved variables, for the nanoparticle concentrations

and anchoring parameters studied. Our modeling approach can be extended in a

straightforward manner to cases where the cooling rate is finite and to other systems

where a locally conserved concentration is coupled to a orientation field, such as

active Langmuir monolayers, and possibly to other examples of nonlinear dynamics in

ecological or excitable media problems.

Keywords: dynamic equations, model C, liquid crystal, nanoparticles, mixture, self-assembly, phase separation

sorting, conserved and nonconserved fields

1. INTRODUCTION

Nonlinear dynamical systems generate intense research because they encompass a large class of
phenomena displaying pattern formation, wave-like solutions and even oscillatory patterns of
activity [1, 2]. When nonlinear dynamical systems take into account spatial dependencies, they
often are modeled in a continuum fashion with partial differential equations. Among the diversity
of such systems, the Newell-Whitehead equation (1) finds application diverse fields such as
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population growth and epidemics in ecology [3], pattern
formation in cloud fields [4], mechanical and chemical
engineering [5], and the dynamics of phase transitions [6]:

∂φ

∂t
− Ŵ

∂2φ

∂x2
+ bu− ǫf [u] = 0, (1)

where f [u] is a known functional of the unknown u, Ŵ is a
diffusion rate, b is a convection force and ǫ is the magnitude of
the nonlinear response.

An example of the application of the Newell-Whitehead
equation to soft matter systems occurs for the case of liquid
crystals and their isotropic-nematic transition, where the
appropriate choice of the functional f [u] leads to the well-
known Allen-Cahn [7] or Model A equations [8]. Liquid crystals
are a particularly convenient, table-top choice of materials to
study the behavior of nonlinear dynamical systems: they are
chemically stable at room temperature, highly susceptible to
external influences (of thermal, electrical, or magnetic character),
and have wide technological application [9].

When nanoparticles are suspended homogeneously in the
isotropic phase of a mesogenic fluid, they can undergo rapid
self-assembly of micron-sized nanoparticle structures if there is
a transition to the nematic phase [10–12]. The hollow structures
that can be obtained from such process have a range of sizes and
morphologies (such as spheres, cylinders, and foams) that make
them attractive for different areas of application [13–15], such as
optoelectronics, encapsulation and controlled release, sensing, or
catalytic frameworks, among others.

In order to understand this behavior, the Newell-Whitehead
equation (corresponding to Model A [8]) must be consistently
coupled to a conservation law for the concentration of
nanoparticles. We have formerly introduced a thermodynamic
model that accounts for the formation of the simplest NP
aggregate morphology observed in experiments (micro-shells)
as a first-order transition [16], where the excluded volume of
the nanoparticles competes with the latent heat of the isotropic-
nematic transition to give rise to shells with walls of a definite
width for a given temperature quench and initial volume fraction
of nanoparticles in the mixture. However, in the self-assembly
methodology reported by [12], the final morphology is controlled
by the cooling rate and initial concentration of nanoparticles.
This indicates that a dynamic model of the system, as opposed
to a purely thermodynamic description, is required to analyze it.

A first model addressing this requirement was presented in
[12], which combined a Lebwhol-Lasher Monte Carlo simulation
of the isotropic-nematic transition which was coupled in a linear
fashion to a Cahn-Hilliard equation for the nanoparticle sorting.
However, this coupling was one-directional: the nematization
order parameter S acted as an external field driving the
nanoparticle concentration, but there was no coupling back to
the Lebwhol-Lasher simulation.

In this work, we reconsider that previous approach in the
context of the dynamic equations of Model C for the time
evolution of coupled conserved and non-conserved fields [8].
In our present approach, the nematic order parameter and the
nanoparticle concentration follow dynamic equations that are

mutually coupled, and therefore we reconsider the nature of the
coupling free-energy term. We contrast the different behavior
obtained when the liquid crystal is described solely by its (scalar)
nematization order parameter S and when it is described with
a more detailed alignment tensor Q. To begin with, the former
situation does not allow for anchoring of the liquid crystal
director, while the second one can. We characterize and contrast
the types of structures obtained with the scalar and tensorial
models, as well as the different rates of evolution observed with
each of these. Further, we investigate the initial segregation
process, driven by linear dynamics, and the later non-linear
dynamics with numerical simulations.

We report new results quantifying the role of the nanoparticle
mobility and the anchoring of the liquid crystal (with respect
to nanoparticle concentration gradients present at the edges of
the NP aggregates) regarding the impact that the NPs have on
the LC dynamics and viceversa. Our results indicate that the
tensorial model is characterized by a slower rate of evolution
of the alignment tensor field but a faster evolution of the
NP concentration field, in comparison to the results of the
scalar model. Both display non-linear saturation of their initially
exponential dynamics, although the tensorial model shows a clear
overshooting with respect to its final saturation behavior.

With our new model, we are able to account for the mutual
coupling between the nanoparticles and the mesogenic fluid. It
also opens the way for including more realistic models for the
NP free energy, beyond the quadratic term that corresponds to a
truncation of the NP free energy at the level of its second-virial
coefficient. In particular, including the effect of the NP excluded
volume as well as the presence of attractive interactions is feasible
through known models for the free energy of hard spheres and
perturbation theories for Lennard-Jones, square-well and other
types of attractive potentials. We also discuss how our results
relate to other settings where Newell-Whitehead equations could
be coupled to conserved fields, in cases like excitable media,
population growth, and epidemics.

2. METHODS

Our analysis relies on the formulation of Model C, by [8],
for the dynamical equations of a conserved field coupled with
a non-conserved field. For our purposes, the conserved field
corresponds to the nanoparticle concentration, C(x′, t′). We
denote space and time coordinates by x′ and t′, respectively,
reserving unprimed symbols for non-dimensional coordinates to
be introduced below in order to simplify the notation. The non-
conserved field corresponds to the order parameter for the liquid
crystal. We consider, first, the case where this parameter is taken
simply as the scalar nematization,

S(x′, t′) = 〈P2(cos θ)〉, (2)

where θ is the angle between the molecular axis of a mesogen and
the nematic director, P2(x) is the second Legendre polynomial,
and the angular brackets denote here a coarse-graining average
over molecular orientations at the given coordinates. We
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also consider the case where the order parameter is the
alignment tensor,

Q(x′, t′) = 〈uu− I/d〉, (3)

with u a unit vector in the direction of molecular orientation,
I the identity tensor, and d = 2, 3 the dimensionality of u; the
angular brackets also denote here a coarse-graining average over
molecular orientations at point x′ and time t′.

Within the methodology of Hohenberg and Halperin [8], the
dynamic equations are related to the functional derivatives of
the system’s free energy functional with respect to each of the
dynamical fields, but they have different forms depending on the
presence or absence of a conservation law for each dynamical
variable. We show how to obtain such dynamical equation below.

For the case where the LC order parameter is taken just as the
nematization S, we take as the system’s free energy functional the
following expression:

F[S,C] =
∫

dx′
(

K

2

(

∇ ′S
)2 +

r

2
S2 − wS3 + uS4 +

�

2
C2

+
α

2
CS2

)

. (4)

In the previous equation, ∇ ′ denotes differentiation with respect
to the spatial coordinates x′i, r = a(T−T∗) is a control parameter
that depends on the temperature T, the limit of thermal stability
T∗ and a positive constant a, while K is an elastic constant, w and
u are Landau-de Gennes expansion coefficients [9], � is a virial
expansion coefficient for the NPs free energy and α is coupling
parameter for the conserved and non-conserved fields. They
are phenomenological constants with material-specific values.
The first four terms in (4) correspond to a Landau-de Gennes
expansion, the fifth term is a low-concentration approximation
to the free energy of the nanoparticles (to the level of the second
virial coefficient), with the last term providing the coupling
between the fields.

The Landau-de Gennes expansion coefficients a,T∗,w and u
can be determined from microscopic information by simulation
[17, 18] or by experimental information about the values of
several quantities at the isotropic-nematic transition in the
pure liquid crystal: the magnitude of the discontinuity of the
nematization S, the temperature shift between the transition
temperature, the limit of meta-stability T∗, the phase-transition
latent heat and the correlation length [19]. Elastic constants such
as K can be calculated from microscopic information about the
direct correlation function for the mesogens in a liquid crystal
[20, 21], or by analysis of long-wavelength director fluctuations
using molecular simulations [22, 23]. For the coupling between
the conserved and non-conserved fields, we have chosen a term
that is linear in C but is quadratic in S. This choice is similar
to that used by Elder and coworkers for the study of binary
mixtures [24] and results in a shift in the isotropic-nematic
transition temperature, as can be recognized by defining a control
parameter r(T,C) = a(T − T∗) + α

2C. Thus, the first effect of
the coupling term is a shift in the isotropic-nematic transition
temperature by an amount proportional to α

2aC, when compared

with that for the pure nematic with C = 0. From experimental
information as well as molecular simulation modeling, we set
α > 0 and therefore obtain a reduction in the transition
temperature when nanoparticles are present. A second effect of
the coupling term αCS2/2, when α is positive, is that the absolute
minimum of its contribution to the free energy is zero and can be
achieved when non-zero values of C occur at places where S = 0.
In other, words, segregation of nanoparticles to locally isotropic
regions is favored thermodynamically by this term.

For the case where the LC order parameter is the alignment
tensor Q, the system’s free energy functional is, analogously,
taken as:

F[Q,C] =
∫

dx′
(

K

2

(

∇ ′Q
)2 +

r

2
trQ2 − w trQ3 + u trQ4

+
�

2
C2 +

α

2
C trQ2

)

. (5)

Again, the parameters in this expression are phenomenological
and available from experiments [25, 26] and we consider α > 0
for the coupling between the fields C and Q, since the isotropic-
nematic transition temperature is observed to decrease as the
concentration of nanoparticles is increased. When considering
molecular orientation of mesogens confined to a plane, hence
d = 2, the tensor order parameter can be parameterized as

Q = S(nn− I/2) (6)

and the trace of odd powers of Q is identically zero. In
such situations, substitution of the previous parametrization
into (5) shows that the remaining terms r

2 trQ
2, u trQ4, and

α
2C trQ2 contribute to the free energy with r

4S
2, u

8 S
4, α

4CS
2,

respectively. These differ from the corresponding terms in (4)
only by a rescaling of the coefficients r, u, and α. Therefore, the
coupling term also favors segregation of nanoparticles into locally
isotropic regions.

In this work we present our results for the cases of
systems described by the models in Equations (4) and (5) over
bidimensional domains. To describe the dynamics after the
isotropic-nematic phase transition, we assume in Model C that
at time t′ = 0 the system suffers a sudden quench bringing
the temperature below the transition value. We also assume
that isothermal conditions throughout the whole sample remain
aftwerwards: this allows us to work solely with the dynamical
equations of Model C for the conserved and non-conserved
fields. For the case where S is the sole order parameter of the LC,
these equations are

∂S

∂t′
= −Ŵ

δF

δS
,

∂C

∂t′
= −∇ ′ ·

(

−ŴC∇ ′ δF

δC

)

, (7)

where Ŵ and ŴC are phenomenological mobilities that here we
consider constant. Substitution of the free energy functional
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defined in (4) into (7), followed by a change of variables to
non-dimensional ones defined by

s =
√

u

|r|
S,

c =
α

|r|
C,

x =
√

|r|
K
x′,

t = Ŵ|r|t′, (8)

yields the following dynamical equations:

∂s

∂t
= ∇2s− (sgn(r)+ c)s− s3,

∂c

∂t
= R∇2

(

c+ gs2
)

, (9)

where sgn(x) is the sign function, while R and g are non-
dimensional parameters:

R =
ŴC�

ŴK
, (10)

g =
α2

2u�
. (11)

We point out that, because our assumption of isothermal
conditions, we can treat parameter r = a(T − T∗) as constant
and so our scaled dynamical equations become independent
of r up to its sign; also, the actual nematization S is related
to the non-dimensional variable s through a temperature-
dependent transformation.

In summary, we notice that (9) contain a Newell-Whitehead
equation for the non-conserved field and a diffusion equation for
the conserved one that are mutually coupled. The coupling in
the former equation amounts to a local shift (by c) in the control
parameter sgn(r), while that in the latter amounts to an additional
term driving NP diffusion away from high-nematization regions.

For the case whereQ is the LC order parameter, it is necessary
to project δF/δQ onto the set of traceless symmetric tensors,
which results in the following expressions:

∂Q

∂t′
= −Ŵ

(

δF

δQ
−

1

d
tr

[

δF

δQ

]

I

)

,

∂C

∂t′
= −∇ ′ ·

(

−ŴC∇ ′ δF

δC

)

. (12)

If one introduces a reduced alignment tensor as

q =
√

u

|r|
Q, (13)

the dynamical equations in this case reduce to

∂q11

∂t
= ∇2q11 − (sgn(r)+ c)q11 − q11

(

q211 + q212
)

,

∂q12

∂t
= ∇2q12 − (sgn(r)+ c)q12 − q12

(

q211 + q212
)

,

∂c

∂t
= R∇2

(

c+ g
(

q211 + q212
))

, (14)

where the unprimed Laplacian operator denotes differentiation
with respect to the non-dimensional spatial coordinates x. Again,
(14) correspond to two coupled Newell-Whitehead equations, for
the components of the q tensor and one diffusion equation for the
NP concentration: the concentration shifts the coefficients of the
linear terms for the non-conserved variables, while their mutual
coupling is nonlinear, and the coupling of the non-conserved
variables to the conserved field drives diffusion of NPs away from
the nematically ordered regions.

While the scalar order parameter model expressed by (9)
does not allow us to consider anchoring of the liquid crystal
orientation with respect to the NP aggregate interfaces (that is,
the requirement that the nematic director n orients in a particular
direction with respect to an interface normal [9]), the tensorial
model given by (14) can be augmented to account for anchoring
by including a new term to the free energy density in (5) [27, 28]:

fanch = 3

(

∂C

∂x′i

)

(

∂Qij

∂x′j

)

, (15)

where 3 is an anchoring parameter. By coupling the gradients
of the concentration C and gradients of the elements of the Q

tensor, for 3 > 0 lower free energy configurations are obtained
when the director is parallel to concentration gradients, hence
hometropic at the interface of NP aggregates; if 3 < 0, then the
preferred orientation of the director becomes perpendicular to
concentration gradients and the anchoring becomes planar [28].
The corresponding dynamical equations obtained from Model
C are:

∂q11

∂t
= ∇2q11 − (sgn(r)+ c)q11 − q11

(

q211 + q212
)

+
λ

2

(

∂2c

∂x21
−

∂2c

∂x22

)

,

∂q12

∂t
= ∇2q12 − (sgn(r)+ c)q12 − q12

(

q211 + q212
)

+ λ
∂2c

∂x1∂x2
,

∂c

∂t
= R∇2

(

c+ g
(

q211 + q212
)

− λ

((

∂2q11

∂x21
−

∂2q11

∂x22

)

+ 2
∂2q12

∂x1∂x2

))

, (16)

where λ = α3
�u|r|1/2 .

For the tensorial model, the nematization s and the orientation
θ of the director n = (cos θ , sin θ) can be obtained from q using
the parametrization

q = s(nn− I/2) =
s

2

(

cos(2θ) sin(2θ)
sin(2θ) − cos(2θ)

)

. (17)

Comparison between the parametrization of Q given in (6) and
(17), together with the scaling in (13) shows that s =

√
u/|r|S,

just as for the scalar model. From the dynamical Equations (9),
or (14), (16) and (17), one can show that homogeneous and
stationary states can be achieved if the initial NP concentration
is uniform c(x, 0) = c0 and the order parameter is either zero
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s(x, 0) = 0 or given by s(x, 0) =
√
1− c0 if r < 0. This

work is concerned with the former case since, experimentally,
nanoparticles are initially suspended homogeneously in the
isotropic phase of 5CB [12].

We solved numerically the dynamical equations, for the
models with scalar and tensor LC order parameters (with and
without anchoring in the latter case), with a finite difference
method over a square grid of N = 128 equidistant points in
each direction, with periodic boundary conditions. The spacing
1xi = 1 and the time step 1t = 0.01 were chosen together

so that the forward Euler method would be stable [1]. In order
to imitate the experimental conditions described by [12], we
used as initial condition an isotropic state s(x, 0) = 0 with
uniform nanoparticle concentration c(x, 0) = 0.01. We then
added random perturbations to the dynamical variables drawn
from a uniform distribution on the interval [−10−3, 10−3]. We
ran 20 realizations of the dynamics for these randomized initial
conditions for each simulated system.

Besides direct visualization of the evolution of the conserved
and non-conserved fields, we analyzed the dynamics of the

FIGURE 1 | Time evolution of nematization s(x) and NP concentration c(x), from the scalar model (9): (A) for NP mobility R = 0.1 and (B) R = 10. NP material

segregates to the domain walls where the nematization is diminished with respect to the interior of the nematic domains. This segregation is more pronounced for the

more mobile case (B). Parameters g = 0.005, r = −1, c0 = 0.01 were fixed through both runs. In an homogeneous and steady nematic state s =
√
1− c0 = ±0.995

but, once the NPs segregate, we expect that at long times s = ±1 deep inside the nematic regions.
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system in Fourier space by calculating the power spectra

Ps(k, t) = s(k, t)s∗(k, t),

Pc(k, t) = c(k, t)c∗(k, t), (18)

where f (k, t) denotes the Fourier transform with respect to space
of f (x, t) and f ∗ is the complex conjugate of f . We also computed

the correlation functions

Cs(x, t) = 〈s(x− y, t)s∗(y, t)〉y − 〈s(y, t)〉2y,

Cc(x, t) = 〈c(x− y, t)c∗(y, t)〉y − 〈c(y, t)〉2y, (19)

where the angular brackets denote here an average over the whole
domain for the spatial coordinates y followed by a further average

FIGURE 2 | Time evolution of director orientation θ (x), nematization s(x) and NP concentration c(x) from the tensor dynamical Equations (14), for NP mobility

parameter R = 0.1. As for the scalar dynamical equations, NP material aggregates at the low nematization regions, which correspond here to point disclinations. As

the disclinations annihilate, NP material is released back into the nematic domains where it diffuses away. Parameters g = 0.005, r = −1, c0 = 0.01 were fixed

through the run, so that the equilibrium values of s =
√
1− c0 = ±0.995 in the nematic phase.
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over multiple independent realizations. In this respect, the power
spectra and correlation functions were averaged over the 20
independent realizations corresponding to the same number of
randomized initial conditions for a given system.

We computed the correlations length ξa, for a = s, c, from the
correlation functions as

ξa =
(

∂ logCa

∂x

∣

∣

∣

∣

x=0

)−1

, (20)

obtained by quadratic fitting of the logarithm of the correlation
functions Cs and Cc with respect to the radial coordinate x = |x|.
Complementary to this method, we also measured a correlation
length La = 2π/ka from the wave number ka at which the power
spectra Pa(k, t) reaches half of its maximum (which corresponds
to the size of the circular patterns shown in Figure 3). While both
estimates yield proportional values, we found that the second
one tracks the increase in the correlation length more robustly.
Hence, only the time evolution of the correlation lengths Ls and
Lc is presented in the results.

3. RESULTS

Our first results for the time evolution of the nanoparticle-
mesogen mixture are shown in Figure 1 for the model with
scalar order parameter. Our numerical simulations show that
the nanoparticle concentration grows in time precisely at those
regions where the order parameter is close to zero. These regions
are domain walls between areas with nematization s of opposite
signs. As the domains grow and the domain walls shrink and
disappear, the NP concentration “stored” in the domain walls is
released back into the domains interior, diffusing back to other
nearby walls.

Figure 1A displays the time evolution when the relative
mobility parameter R = 0.1 corresponds to slow NP diffusion
compared to LC relaxation, one can observe that c is higher at
the domain walls but still noticeable at the domain interiors.
On the other hand, Figure 1B shows the time evolution for
R = 10, corresponding to fast NP diffusion compared to LC
relaxation. In this latter case, c is much smaller at the domains’
interior and most of the NP material gets confined to the
domain walls.

FIGURE 3 | Time evolution of the power spectra of the nematization Ps(k) and the concentration Pc(k) from (A) the scalar Equations (9) and (B) the tensor Equations

(14). As the time increases, the power is concentrated at ever smaller wave numbers k = |k|, indicating that the characteristic length in the system increases with

time. Also, the conserved-field power spectra Pc(k) show clear maxima at intermediate wavenumbers, with noticeable smaller values at the origin. Parameters

R = 0.1,g = 0.005, r = −1, c0 = 0.01 were fixed through the runs.
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Our results for the model with tensor order parameter
and no anchoring (λ = 0) are shown in Figure 2 and
Supplementary Figure 1. Again, the numerical simulations show
that the NP concentration segregates toward topological defects
where the tensor order parameter q is close to zero. Now,
however, these topological defects are points where the director
orientation θ changes abruptly. In this case, the NP “stored” at the
defects are released back into the nematic phase when the point
disclinations of opposite charge annihilate. The same qualitative
behavior was obtained from numerical simulations with negative
and positive values of the anchoring coefficient (λ= −0.4, −0.1,
0.1, and 0.4), corresponding to weak planar and homeotropic
anchoring, respectively [28] (see Supplementary Figure 2). In
this model the nanoparticle aggregates remain on the order of
a few order parameter coherence lengths, and thus we observed
no formation of NP aggregates large enough to trigger repulsion
among them due to anchoring. However, non-zero values of λ do
alter the shape of the NP aggregates: those with−1/2 topological

charge acquire a clearly triangular shape, while those with +1/2
charge become slightly elongated (see Supplementary Figure 2).

In order to quantify the characteristic length scales associated
with the NP self-assembly at the topological defects in the
nematic, we analyzed the power spectra for the conserved and
non-conserved fields in our models, Ps(k, t) and Pc(k, t). Typical
behavior of these power spectra is shown in Figure 3, for the
cases with scalar and tensor order parameter with λ = 0 (no
anchoring), keeping the same values of R and g in both of them.
For both models and for both s and c, we observe that, overall,
the power becomes concentrated at ever smaller values of the
wave number k = |k| as time increases. This corresponds, as
expected from Figures 1, 2, to an increase in the characteristic
length scales for the order parameter andNP concentration fields.
Nevertheless, from Figure 3we can observe that such length scale
increase is faster for s than for c when the LC order parameter
is taken as scalar, but slows down noticeably for s when the
LC order parameter is taken as a tensor (see Figure 3B). The

FIGURE 4 | Time evolution of the angular average of the power spectra of the nematization Ps(k) and the concentration Pc(k), as functions of the wave number k, from

the scalar Equations (9) for conditions of low and high NP mobility R: (A) Ps(k, t) for R = 0.1, (B) Ps(k, t) for R = 10, (C) Pc(k, t) for R = 0.1, (D) Pc(k, t) for R = 10. Each

curve corresponds to the time indicated in the inset legends. While the nematization power spectrum increases quickly and steadily, the concentration power

spectrum Pc(k) for low NP mobility goes through a quiescent stage before undergoing sudden increase, and even initially decreases at high wave numbers for high NP

mobility. Parameters g = 0.005, r = −1, c0 = 0.01 were fixed through the runs.
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FIGURE 5 | Time evolution of the angular average of the power spectra of the nematization Ps(k) and the concentration Pc(k), as functions of the wave number k, from

the tensor Equations (14) for conditions of low and high NP mobility R: (A) Ps(k, t) for R = 0.1, (B) Ps(k, t) for R = 10, (C) Pc(k, t) for R = 0.1, (D) Pc(k, t) for R = 10.

Each curve corresponds to the time indicated in the inset legends. Now, the nematization power spectrum increases quickly but non-monotonically with time.

Nevertheless, the concentration power spectrum Pc(k) for low NP mobility still goes through a quiescent stage before undergoing sudden increase, and (initially)

decreases at high wave numbers for high NP mobility. Parameters g = 0.005, r = −1, c0 = 0.01 were fixed through the runs.

numerical solutions with λ 6= 0 display the same type of behavior
and are not shown. Therefore, from this point we focus on the
solutions for λ = 0, although we discuss quantitatively the effect
of anchoring on the dynamics later in this section.

To study further the different behaviors observed in the
Fourier space, we computed the angular average of the power
spectra and plotted the resulting functions Ps(k, t) and Pc(k, t)
against the wave number k at different times. For the model
with scalar order parameter under conditions of low NP
mobility (R = 0.1), we show the power spectra for s in
Figure 4A and that of c in Figure 4C. Figures 4B,D show
the corresponding power spectra, respectively, for conditions
of high NP mobility (R = 10). For both values of R, the
power spectrum Ps(k, t) for the nematization increases very
quickly at low values of k, until this increment slows down
and saturates (see Figures 4A,B). On the other hand, the power
spectrum Pc(k, t) for the NP concentration is initially quiescent
when the mobility R is small; only after some lag it increases

with time and acquires a maximum at intermediate values
of k (see Figure 4C): this corresponds to the bright rings
visible in Figure 3. When the mobility R is high, however, the
quiescent period is replaced with a process where the power
spectrum decreases sharply at high wave numbers, and only later
increases and develops a maximum at intermediate values of k
(see Figure 4D).

The corresponding situation for the model with tensor order
parameter is shown in Figure 5. Again, for conditions of low NP
mobility (R = 0.1), we show the power spectra for s in Figure 5A

and that of c in Figure 5C. On the other hand, Figures 5B,D
show the corresponding power spectra of s and c, respectively, for
conditions of high NP mobility (R = 10). The power spectrum
Ps(k, t) for the nematization still increases rapidly at low values of
k, but now the total increment is much reduced when compared
with the result from the scalar equations. Eventually, growth is
followed by a decrease with increasing time (see Figures 5A,C).
On the other hand, the behavior of the power spectrum Pc(k, t)

Frontiers in Physics | www.frontiersin.org 9 May 2021 | Volume 9 | Article 636288

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Segura-Fernández et al. Nanoparticle Assembly by Liquid Crystals

FIGURE 6 | The maxima of the power spectra of the nematization and the concentration, as functions of time, for systems with anchoring parameter λ = 0 and with

low and high NP mobility, from (A) the scalar dynamical Equations (9) and from (B) the tensor Equations (14). In both (A,B) circles correspond to low NP mobility

R = 0.1 while crosses correspond to fast NP mobility R = 10. Initially, the nematization maxima grow exponentially and then saturate, but they show an overshoot

with respect to the saturation value in the tensor case (B). On the other hand, the exponential growth of the concentration maxima lags behind the growth of the

nematization maxima, but it is also followed by saturation. The lag period is shorter for the case of high NP mobility. Parameters g = 0.005, r = −1, c0 = 0.01 were

fixed through the runs.

for the NP concentration remains qualitatively similar to that in
the first model (see Figures 4B,D).

An alternative view of the time evolution of the power spectra
was obtained by plotting the maximum values of Ps and Pc,
as functions of time in a semi-logarithmic scale, as shown in
Figure 6. First, for the model coupling the NP concentration
only to nematization (see Figure 6A), we observe a regime
where the maximum of the nematization power spectrum grows
exponentially with time, followed by saturation. We observe
practically the same behavior for low and high values of the NP
mobility parameter, R = 0.1 and 10 (respectively). Also for the
case of scalar order parameter, we observe a lag interval where
the maximum of Pc decreases by a small amount before growing
rapidly toward some saturation value. Second, for the model
coupling c and the tensor order parameter, we again observe
exponential growth of the maximum of Ps, regardless of the value
of R. Only, in this case, the exponential-growth regime does not
reach values as high as in the first model, and it is followed by
an overshoot before a decrease to a saturation value. For the
second model, the maximum of Pc still shows the lag interval and
decrease followed by growth to a saturation value. Here, the high
mobility value R = 10 leads to a clear overshoot in the maximum
of Pc, while the low mobility value does not.

At this point, we present again results for the cases with
positive and negative anchoring parameter λ. Figure 7 compares
the time evolution of the maxima of the power spectra for
nematization and concentration for conditions of homeotropic
anchoring (λ > 0), planar anchoring (λ < 0), and
absence of anchoring (λ = 0). We found that for the range
of λ considered, corresponding to weak anchoring [28], the
dynamics of the LC order parameter and the NP concentration
display a minor dependence with the value of the anchoring
parameter λ. We interpret this as a consequence that, since the
initial concentration of NP was taken as very small, the local

concentration remains small even at the NP aggregates, as well
as the gradient of c. Thus, the influence of the anchoring that
couples the gradients of concentration to those of the order
parameter tensor is limited. With this in mind, we focus on the
representative case with λ = 0 in the rest of the results section.

We interpret the initial regimes of exponential growth in the
power spectrum of the nematization as the interval where the
dynamics can be described by the linear part of the dynamical
equations, and the saturation regime as the set-in of the nonlinear
saturation state where the nonlinear terms in the dynamics
prevent exponential divergence of the nematization field. Also,
we interpret the lag in the growth of the concentration power
spectrum as arising from the conserved-field dynamics: since the
dynamics of c is diffusive, at the linear stability analysis level
we do not expect it to give rise to unstable modes at any wave
number, only the non-conserved field may produce unstable
modes and so in the initial regime (controlled by the linear
dynamics) the only exponentially-rising power spectrum is the
one for s.

The information contained in the power spectra can be
translated back into direct space in the form of the auto-
correlation functions for s and c. Figure 8 shows the time
evolution of these correlation functions obtained from the scalar
dynamical equations, for R = 0.1 and R = 10 (the tensor
case correlation functions are qualitatively similar and shown
in the Supplementary Figure 3). These functions decay over a
short range, and such correlation range increases with time (as
expected). Still, the auto correlation of the NP concentration
remains flat over the initial lag period before growing quickly.

Figure 9 shows the time dependence of the correlation
lengths. For both the scalar and tensor order parameter models,
the nematization correlation length is typically larger than
the concentration correlation length. While the nematization
correlation length in the scalar order parameter model grows

Frontiers in Physics | www.frontiersin.org 10 May 2021 | Volume 9 | Article 636288

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Segura-Fernández et al. Nanoparticle Assembly by Liquid Crystals

FIGURE 7 | The time evolution of the maxima of power spectra, from the tensor equations incorporating anchoring (14) with NP mobility R=0.1 and R = 10, of: (A)

the nematization when −0.4 ≤ λ ≤ 0 (planar anchoring), (B) the nematization when 0 ≤ λ ≤ 0.4 (homeotropic anchoring), (C) the NP concentration when

−0.4 ≤ λ ≤ 0 (planar anchoring), and (D) the NP concentration when 0 ≤ λ ≤ 0.4 (homeotropic anchoring). To facilitate comparisons, circles and crosses indicate

data for λ = 0. For the weak anchoring conditions and low initial NP concentration c0 = 0.01 considered here, the dynamics of the nematization shows only a small

dependence with the value of the anchoring parameter. Parameters g = 0.005 and r = −1 were fixed through the runs.

monotonically with increasing time, in all other cases the
correlation lengths show a peak over a time interval that
matches the initial linear regime, followed by systematic increase
afterwards. The lack of a peak in Ls(t) seems to us to be related
to the absence of overshoot in the power spectrum Ps(k, t)
for the scalar order parameter model when R = 0.1, since
the corresponding curve for R = 10 (not shown) does show
a peak while its corresponding power spectrum does present
an overshoot.

4. DISCUSSION

Our results indicate that, for situations where the nanoparticle
concentration is so low that approximation of their free energy
up to the level of the second virial coefficient is adequate, the
ordering of the nematic phase at temperatures below its phase
transition proceeds exponentially with time, with little response

of the NPmaterial. Such exponential dependence is characteristic
of the linear regime where the order parameter is small. Only
after a lag the NPs couple effectively to the ordering in the
liquid crystal, segregating to the regions where the nematic order
parameter is close to zero. These initial stages are followed by the
onset of nonlinear dynamics that leads to nonlinear saturation of
the order parameter. Whether the LC order parameter is taken
as a scalar or tensor does not change this sequence, but affects
the kind of topological defects that capture the NP material
(domain walls for the scalar case, point disclinations for the
tensor one) as well as a clear overshoot of the exponential
dynamics with respect to the nonlinear saturation level for
the tensor case. We found insensitivity of the solution to the
tensorial dynamical equations to the anchoring parameter λ for
conditions of weak homotropic or planar anchoring. Since this
parameter couples the gradient of the tensor order parameter
with gradients in concentration, we interpret this insensitivity as
arising from the low value of the conserved initial density: even
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FIGURE 8 | Time evolution of the correlation functions for the nematization and NP concentration from the scalar dynamical Equations (9), as functions of distance x,

for low and high NP mobility conditions: (A) Cs(x) for R = 0.1, (B) Cs(x) for R = 10, (C) Cc(x) for R = 0.1, and (D) Cc(x) for R = 10. The color legends indicate the time

t for each correlation function. Initially, the correlation for the nematization increases exponentially with increasing time, while that for the NP concentration remains

small. Only after a lag period it rises abruptly. Parameters g = 0.005, r = −1, c0 = 0.01 were fixed through the runs.

at those regions where NP aggregate the local concentration and
gradients remain small and so limit the influence of anchoring on
the dynamics.

Compared with the model used by [12], our approach fully
couples the dynamical equations for the LC order parameter
with the NP concentration. Still, we find that for values of
the coupling parameter g and initial NP concentration c0 as
small as considered here (similar to those in experiments),
the evolution of the LC component remains largely unaffected
even when varying the relative mobility parameter R by two
orders of magnitude. Numerical exploration of the dynamics
at higher NP higher concentrations is certainly possible and
useful for further investigation of the effects of anchoring, but
this would require improving the NP free energy expression
beyond the second virial coefficient level, as discussed below. For
situations where the NP aggregates become sufficiently large and
concentrated, they should start to behave as colloidal inclusions
in the nematic phase, triggering processes where weak anchoring,
as well as orientational elasticity, drive further interaction and

structure formation at the colloidal length scale [29–31]. Another
issue that should be addressed when considering higher NP
concentration is the emergence of additional interactions driven
by depletion interactions, as recently revealed by computer
simulations [32]. It is also possible to explore the behavior for
larger values of the coupling parameter g; preliminary results
from molecular simulations indicate that the coupling parameter
increases rapidly with pressure.

It is important to mention that the quadratic coupling term
used in this work leads to different behavior from the linear one
assumed by [12]: a linear coupling would result in preferential
segregation of the NP field to regions where s is negative, instead
of regions that are locally isotropic. Also, our choice for the free
energy of the NPs leads to simple diffusive behavior, instead of
the nonlinear dynamics of the Cahn-Hilliard equation,

∂z

∂t
= ∇2

(

z3 − z − ∇2z
)

, (21)
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FIGURE 9 | Correlation lengths Ls (top row) and Lc (bottom row) as functions of time for (A) the scalar order parameter model and (B) the tensor order parameter

model. The nematization correlation length is generally larger than the NP concentration correlation length. The peaks in these curves span the initial linear regime. The

curve for the nematization correlation length from the scalar dynamical equations does not display a peak. Parameters R = 0.1, g = 0.005, r = −1, c0 = 0.01 were

fixed through the runs.

where z = c − cc is the deviation of the NP concentration from
its critical density cc. In this work, we assume that parameter �

is positive and, therefore, that the NPs interact repulsively. In the
absence of attractive interactions, no critical point is expected and
so we used the Model C dynamics as stated. A Cahn-Hilliard
treatment would allow us to generalize our model to include
the effect of attractive interactions, but another possible route
is to replace the expression for the NP free energy with known
expressions for a Lennard-Jones [33] or a Square-Well fluid
[34] and then use Model C to obtain the nonlinear dynamical
equations. We are currently exploring this second avenue.

As mentioned earlier, our non-dimensionalization procedure
for the dynamical equations assumes that parameter r = a(T −
T∗) is constant, and our numerical simulations correspond
to evolution after a temperature quench below the isotropic-
nematic transition. In order to simulate finite cooling rates, it
would be sufficient to reframe the equations to incorporate a time
dependence in parameter r. This would be useful to test directly
the hypothesis of Riahinasab et al. that cooling rate and local
shifts in the transition temperature due to higher concentration
of nanoparticles dictate the morphology of NP assemblies during
segregation from the nematic phase, and we plan to perform and
report such calculations presently.

The modeling approach followed in this work can be extended
to three-dimensional cases, where the tensor order parameter
contains five degrees of freedom, but the numerical work
becomes more demanding. In particular, our finite difference
approach would probably need to be replaced with a more
efficient scheme, such as finite element or Galerkin methods.
Inclusion of stochastic noise terms into the dynamical equations
is also a possibility, although it has been shown by Bray that
it is an irrelevant perturbation in a Renormalization Group
sense [6, 35]: transitions between the minima in the free energy
are possible in the presence of thermal fluctuations (but are

seldom observed in simulations over small domains) and the
roughness of the interfacial structure is larger as the noise
strength increases [35]. Another direction where our modeling
approach can be applied is the study of active matter [35], in
particular the case of active Langmuir monolayers [36] where
a local concentration c of chiral molecules is coupled to a
local orientation field n. By extending the description of the
orientation to that of a tensor order parameter, defect dynamics
beyond the director description could be captured. Finally, we
point out opportunities for examining other nonlinear dynamical
systems where one ormore Newell-Whitehead equations become
coupled to a conserved variable. As an instance, even if a
quadratic term is absent in the dynamical equations for liquid
crystals in two dimensions due to the traceless condition of
its tensor order parameter, other systems may admit such a
term. The spatially-dependent Nagumo equation contains such
nonlinear dependence [3]:

∂M

∂t
= D∇2M + C1M(C2 −M)(M − C3), (22)

whereM represents the local population of a species undergoing
motion and birth, death and mutual cooperation or competition,
while D,C1,C2,C3 are parameters that account for such
processes. In some epidemiological studies [37], a population
of a short-lived species (for instance, mosquitoes) interacts
with another species (such as large mammals or birds) with

a very long lifespan compared to that of the first one.
In such cases, as a consequence of a large separation of

time scales, it may be interesting to consider the long-lived
population as approximately conserved. We are currently
surveying other instances of excitable nonlinear media where
coupling to locally conserved fields is warranted as a promising
research direction.
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