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Pulsatile flows of viscoelastic fluids are very important for lab-on-a-chip devices, because

most biofluids have viscoelastic character and respond distinctively to different periodic

forcing. They are also very important for organ-on-a-chip devices, where the natural

mechanical conditions of cells are emulated. The resonance frequency of a fluid refers to

a particular pulsatile periodicity of the pressure gradient that maximizes the amplitude

of flow velocity. For viscoelastic fluids, this one has been measured experimentally

only at macroscales, since fine tuning of rheological properties and system size is

needed to observe it at microscales. We study the dynamics of a pulsatile (zero-mean

flow) fluid slug formed by a viscoelastic fluid bounded by two air-fluid interfaces, in

a microchannel of polymethyl methacrylate. We drive the fluid slug by a single-mode

periodic pressure drop, imposed by a piezoactuator. We use three biocompatible

polymer solutions of polyethylene oxide asmodel viscoelastic fluids, and find resonances.

We propose a model accounting for surface tension and fluid viscoelasticity that has an

excellent agreement with our experimental findings. It also provides an alternative way

of measuring relaxation times. We validate the method with parameters reported in the

literature for two of the solutions, and estimate the relaxation time for the third one.

Keywords: fluid slug, pulsatile flow, dynamic permeability, microfluidics (experiment), viscoelasticity, interfaces,

contact angle, relaxation time

1. INTRODUCTION

The study of oscillatory fluid flow at microscales has become relevant due to the increasing
number of applications that use this type of motion. For example: chemical synthesis inside
microfluidic channels [1], liquid-liquid extraction [2], mixing by oscillatory cross flow [3–7],
cooling of microelectronic circuits by micro oscillating heat pipes [8], inertial focusing of particles
of a fewmicrons [9, 10], DNA elongation studies [11] and studies of oscillatory movement of liquid
plugs displaced by air in microchannels as model pulmonary flows [12, 13].

Pulsatile flows of viscoelastic fluids are very important for most organ-on-a-chip devices, where
the natural mechanical conditions of cells are emulated [14–17], since most natural processes occur
at certain characteristic frequencies. The characterization of viscoelastic fluids under non-steady
pressure forcing is also important for lab-on-a-chip clinical analysis of biofluids such as blood,
mucus, or synovial fluid. The dynamics of polymeric viscoelastic solutions under pulsatile forcing in
microchannels is an area of recent development [18]. Flow of these solutions is strongly influenced
by chemical properties of the polymer, its molecular weight and ramifications, concentration, the
nature of the solvent, temperature and pressure [19].
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The fluid response to an oscillatory pressure gradient has often
been described by the dynamic permeability, a theoretical linear
response function that has been obtained for numerous confined
fluids: Newtonian, Maxwellian and general linear viscoelastic
fluids, in a wide range of confining geometries [20–27]. It has
also been obtained theoretically for Newtonian and viscoelastic
fluids confined in elastomeric materials at microscales [28, 29]
and for compressible binary fluids [30]. A distinctive feature of
the dynamic permeability, when elastic elements are present in
the system, is that it presents resonances, which refer to particular
pulsatile periodicities of the pressure gradient that maximize
the amplitude of fluid velocity. Experimental observation of
resonances consists of an increase of flow velocity amplitude
at a specific frequency range of the driving pressure gradient,
that maximizes the momentum transfer to the fluid. For single
fluids, resonances have only been reported experimentally at
macroscales [31, 32], since fine tuning of rheological properties
and system size is needed to observe them at microscales, in a
desired frequency range.

Recently, a model to study the dynamics of a pulsatile (zero-
mean flow) fluid slug, consisting of a Newtonian fluid and
two air-fluid interfaces, driven by a periodic pressure gradient
in a rectangular microchannel, has been proposed [33]. In
that model, a stress tensor for a Newtonian fluid, together
with Laplace condition for the pressure jump at both sides of
the curved air-fluid interfaces, has been considered. Analytical
solution of the model showed, for relatively low frequencies,
a monotonic increase with frequency of the magnitude of the
dynamic permeability as well as the emergence of a resonant
behavior, due to the presence of surface tension. Microfluidic
experiments were designed and implemented to observe both the
low-frequency dynamics and the resonance. The model was then
validated against the experimental results and used as a proposed
strategy to measure surface tension in dynamic situations.

There are different ways to impose oscillatory frequencies
to a fluid inside a microchannel. By using syringe pumps,
low frequencies of oscillation (below 10 Hz) are achieved [1];
in contrast, the use of high-speed valves and gas-pressurized
fluids [3], mechanical motors [34], heating [35] or mechanical
displacement of an air bubble [36] can increase the forcing
frequency range to 10–1,000 Hz. Alternative possibilities to
impose pulsatile forcing in this frequency interval are the use of a
moving train of droplets [37] and the coupling of a loudspeaker
diaphragm to a microfluidic chamber [4]. Finally, coupling
the displacement of a piezoelectric to a fluid encompasses a
wide range of forcing frequencies of the methods described
previously [38].

There are several sophisticated theoretical models to study
the rheological behavior of PEO solutions, in different ranges of
concentration and molecular weights. Of particular importance
are the Phan-Thien-Tanner (PTT) model [39, 40] and the
Cross model [19]. They have been adequate to study several
experimental conditions and driving forces where a complex
rheological response, involving elongational and shear thinning
effects, has been experimentally observed and theoretically
reproduced. However, there is also experimental evidence that a
Maxwellian model predicts correctly and accurately the behavior

of small ejected, lowmolecular weight PEO (1x106g/mol) droplet
jets [41]. Moreover, within microchannels of constant sectional
area, several works suggest that for spatially-uniform pressure
gradients elongational and shear thinning effects, like the ones
considered by the PTT and Cross models, are irrelevant [40,
42, 43]. Furthermore, despite the fact that viscoelastic fluids
generally involve several relaxation times, many studies of fluids
with complex rheological behavior often report a single dominant
Maxwellian-like relaxation time, fitted from their experimental
data, since the Maxwell model is used as an archetype in the field.

In this work, we perform experimental and theoretical studies
of the dynamics of a pulsatile (zero-mean flow) microfluidic
slug, formed by a viscoelastic fluid bounded by two air-fluid
interfaces in a rectangular microchannel, and find resonances in
the dynamic permeability. We have driven the fluid slug by a
single-mode periodic pressure drop, imposed by a piezoactuator
in the range from 0.5 to 200 Hz, managing to keep the
amplitude of the dynamic pressure drop practically constant at
all frequencies. We have determined the displacement of the
viscoelastic slug by visualization of the oscillatory movement of
air-fluid interfaces. We have used three biocompatible polymer
solutions of polyethylene oxide (PEO), as model viscoelastic
fluids, because the rheological behavior of PEO has been widely
assessed [19, 44, 45]. We propose a linear model accounting
for surface tension and fluid viscoelasticity, that has a good
qualitative agreement with all of our experimental findings and
a quantitative agreement for low pressure drops, where the
linear theory is expected to describe the system. Such agreement
provides an alternative way of measuring relaxation times. We
validate the method against parameters reported in the literature
for PEO of two different molecular weights: 1x106g/mol (PEO1)
and 5x106g/mol (PEO5); and estimate the relaxation time for
PEO of 8x106g/mol (PEO8). This is of great relevance because
relaxation times are sometimes difficult to measure for low
polymer concentration in conventional rheometers [45–48].

The paper is organized as follows: section 2 describes
the experimental procedure and the data analysis; section 3
describes the experimental results including resonances of the
dynamic permeability; section 4 introduces a theoretical model
for pulsatile viscoelastic slugs; section 5 compares experimental
results for the dynamic permeability with predictions obtained
from the theoretical model, it also introduces a proposal
to measure relaxation times; section 6 summarizes the most
important conclusions and perspectives.

2. MATERIALS AND METHODS

2.1. Fluids
We use polyethylene oxide (Sigma-Aldrich) of three different
average molecular weights: Mw = 1x106 g/mol (PEO1); Mw =

5x106 g/mol (PEO5) and Mw = 8x106 g/mol (PEO8) to prepare
solutions in deionized water at a fixed concentration of 0.1%
(mass/volume). The dynamic viscosities, η, of the PEO solutions
are: 1.72 mPa.s for PEO1 [41]; 4 mPa.s for PEO5 (approximated
from a PEO4 solution at 0.1% (m/v) [19]), and 10 mPa·s for
PEO8 [measured with an ARES (RSF III) Rheometer]. The three
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polymer solutions have the same surface tension, σ = 62
mN·m−1 [49].

2.2. Microfluidic Device
We machined a straight microchannel (37.48 ± 0.11 mm long,
1.00± 0.04 mmwide and 0.31± 0.05 mm deep) on a 2 mm-thick
polymethyl methacrylate (PMMA) plate using a CNC machine
(CNC3018). The channel was sealed with a second PMMA plate
with four inlets (Figure 1) exposing both parts to volatilized
chloroform for 4 min and pressing them by a pair of slides and
clamps. The bonding was completed by sonication of the device
in ethanol at 50 ◦C for 15 min [50, 51].

2.3. Experimental Setup
A piezoelectric actuator equipped with flexural hinges as an
amplifier device (APF705, Thorlabs) was attached on one of its
sides to an elastic membrane that covered a rigid polyethylene
cylinder (15mm long, 4.7 mmdiameter). The opposite side of the
cylinder has a seal with a tubing (0.51 mm ID, 1.19 mm OD and
1 cm long; Microbore PTFE Tubing, Cole-Parmer) inserted in
the middle. The other end of the tubing was introduced into the
first microdevice inlet. The movement of the actuator displaces
the air in the cylinder and transduces an oscillatory movement to
a slug of PEO solution (1.0 cm in length; 3.1 µL) situated in the
middle of the microchannel (Figure 1). The oscillation frequency
and amplitude of the piezoelectric motion was controlled by
a multifunction data input/output device (USB-6351, National
Instruments) and magnified by a Trek PZD350A High-Voltage
amplifier (75–150 V). The pressure drop was measured by a
differential pressure sensor (Honeywell 142PC01G) attached by

PTFE tubing to the second and third inlets of the microfluidic
channel. The fourth inlet was open to the atmosphere. The
displacement of the liquid slug was visualized with the aid of an
inverted microscope (DM IL LED, Leica) and the movement of
the interface closest to the atmosphere outlet (IF2 in Figure 1)
was recorded with a high-speed camera (Phantom Miro M110,
Vision Research). Depending on the driving frequency, videos
from 30 fps up to 3,000 fps were acquired after a 10 s

FIGURE 2 | Four different pressure drops were studied for each PEO solution

in the range from 0.5 to 200 Hz. The experimental amplitude of pressure drop

was held almost constant at 225, 450, 700, or 900 Pa by adjusting the voltage

input to the piezoelectric actuator. Data shown corresponds to a PEO8

0.1% solution.

FIGURE 1 | Experimental setup. The displacement of a liquid slug within the microchannel is driven by the periodical movement of the piezoelectric actuator

compressing the air trapped between the elastic membrane and the left side of the fluid slug IF1. The position of one of the air-liquid interfaces, IF2, is visualized and

recorded by means of an inverted microscope and a high-speed camera.
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FIGURE 3 | Left: pressure drop, interface displacement, and interface velocity as a function of time for the same experiment. Right: Fourier spectrum analysis of the

corresponding quantities, showing that all of them have a dominant mode for their dynamics at 10 Hz. Data are for PEO5 0.1%, 1p = 225 Pa.

stabilization period of cycling movement to ensure recording
after transient states. The size of the fluid slug was verified after
each measurement to confirm that no evaporation had occurred.

2.4. Data Analysis
The piezoactuator movement was adjusted by regulating the
input voltage to keep the same reference pressure drop for all the
range of frequencies studied. For each PEO solution, oscillatory
pressure drops of four different amplitudes were used: 225, 450,
700, and 900 Pa, each in the frequency range from 0.5 to 200 Hz
(Figure 2). The sinusoidal shape of pressure drop allowed us to
fit a sinusoidal wave to obtain the amplitude of each signal.

The videos of the interface movement were analyzed using
MATLAB utilities, that track the position of all interface
points through time, then velocity was obtained by numerically
differentiating position data.

To prove that the frequency imposed by the piezoactuator was
consistent with the interface movement, Fourier transform of
the pressure drop, interface displacement and interface velocity
were performed. A dominant peak for the spectrum of all these
signals was observed at the same frequency of oscillation of the

piezoelectric transducer, indicating that the fluid slug follows the
dynamics imposed by the piezoactuator (Figure 3).

The dynamic contact angle of the interface was determined
from video image analysis of the advancing and receding time
lapses. The interface profile at every time, was fitted to a fourth-
degree polynomial function. The fit reproduces very well the
interface profile and was extrapolated to compute the contact
angle at the wall. Figure 4 top illustrates the change in contact
angle at five instants of an oscillation cycle. Figure 4 bottom
shows the dynamic contact angle oscillation in time.

3. RESULTS

The air-fluid interfaces of the polymeric solutions display
a characteristic curvature that flattens and bends in every
oscillation cycle. This is illustrated in Figure 4 middle. In
Figure 5, we show the air-fluid interface of PEO5 0.1%
through an entire oscillation cycle at four different frequencies.
A maximum amplitude of the displacement, Amax, for this
experiment occurs at 40 Hz. Peak-to-peak amplitude of the
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FIGURE 4 | Top: Interface profile at 5 time instants (T1− T5) during an

oscillation cycle. Middle: The maximum contact angle is associated with the

advancing stage of the cycle, while the minimum contact angle is associated

with the receding stage of it. Bottom: Dynamic angle as a function of time

obtained from the interface at the right of the fluid slug IF2. Data are for PEO8

oscillating at 40 Hz, driven by a 1pmax = 900 Pa.

displacement is highlighted in red so the frequency dependent
behavior can be assessed visually. It is clear that the neighboring
smaller or larger frequencies display a smaller displacement.

By changing the frequency but keeping constant the amplitude
of pressure drop driving the movement, a clear non-monotonic
behavior of the amplitude of the interface displacement is
observed for different driving frequencies, even for the PEO
of lowest molecular weight. Top panels in Figure 6 show that
the highest displacement for each fluid increases in magnitude
as the imposed pressure rises, which is an expected result for
an increasing driving force. The maximum interface movement
is observed for PEO1, the fluid with the smallest molecular
weight and viscosity. The interface velocity, at the center of
the microchannel, as a function of the oscillating frequency
shows an asymmetric bell-shape curve for each imposed pressure
(Figure 6 middle panels). As expected, the maximum velocity
amplitude rises as the pressure increases for all PEO solutions.
The peak of each curve is the resonance frequency, meaning
that at this frequency the amplitude of flow velocity is maximum
in the frequency range studied. A non-trivial effect is observed
in which the resonance frequency decreases with an increasing

FIGURE 5 | Interface profiles at 5 time instants (T1− T5) during an oscillation

cycle for four different frequencies, illustrating that the maximum amplitude of

the displacement is a non-monotonic function of frequency. T1 represents the

minimum position and T3 the maximum position of the cycle. Data are for

PEO5 oscillating in the range [20–80] Hz, driven by a 1pmax = 700 Pa.

pressure drop. This is part of the non-linear behavior of the
system response. Since we are driving the system with a one-
mode pressure drop, we expect that, at least in the linear regime,
the amplitude of the interface velocity would be given by the
maximum amplitude of the interface displacement multiplied by
its frequency. For this reason, the resonances observed in velocity
have higher frequencies than those obtained for the amplitude of
interface position.

We also analyzed the dynamic permeability of each polymer
solution as a function of frequency and amplitude of pressure
drop (Figure 6 bottom panels). We present an operational
definition of the amplitude of the local dynamic permeability at
the center of the channel, as the ratio between the maximum
amplitude of the velocity at the center of the channel, divided by
the pressure gradient—given by the quotient of pressure drop,
1p, and slug length, L,—that is,

K =
vmax

1p/L
. (1)

Derivation of Equation (1) will be given in section 4 Model
for small pressure drop values; however, we will use this
operational definition for all pressure drops studied, since it
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FIGURE 6 | Maximum amplitude of displacement, maximum amplitude of velocity and modulus of dynamic permeability, as a function of driving frequency for the

three PEO polymeric solutions and 4 different maximum amplitudes of the driving pressure drop.

is a convenient way to cancel out the small differences in
pressure drop amplitude for the different frequencies tested (see
Figure 2). In this sense,K can be interpreted as a velocity rescaled
by a pressure gradient. Accordingly, in the bottom panels of
Figure 6, we observe that the resonance frequencies of the local
permeability are roughly the same as those obtained for velocity
data. Also, as pressure drop increases, the resonance frequency
of the permeability decreases. This effect is more pronounced
for low molecular weights. For the dynamic permeability value
at resonance, there is no clear trend when the amplitude of the
pressure drop changes. For details and graphs describing this
behavior, see Supplementary Material.

Regarding the dynamics of the contact angle, we found that
advancing angles are larger than receding ones. As an example,
Figure 7 shows the dynamic angles obtained when the amplitude
of pressure drop is 225 Pa. It has been reported in the literature
that, when velocity increases, the advancing angle augments and
the receding angle decreases, so a larger difference between them
should be observed [52–55]. The difference of advancing and

receding angles, 1θ = θadv − θrec (sometimes called contact
angle hysteresis [52]), is shown as a function of frequency in
Figure 8. For a single-mode oscillatory flow, the fluid velocity
increases with frequency up to the resonance and then decreases.
We can observe that the same trend exists for 1θ as a function
of frequency. The fact that the dynamic contact angle difference
is affected by the interface velocity, has previously been reported
for capillary numbers close to the ones of our experiments (Ca=
10−5 to 10−3) [53, 55]. This phenomenon is attributed to surface
roughness and chemical heterogeneity [56, 57], but there is an
influence of the fluid rheological properties, like shear thinning or
elasticity [53]. In our slug, an important component of elasticity
is given by the presence of two interfaces.

4. MODEL

In order to explain theoretically our experimental results, we
build up a model containing two basic features: the viscoelastic
character of the fluid and the elastic character of interfaces. The
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FIGURE 7 | Contact angle as a function of frequency. For each plot, the upper line corresponds to the advancing angle and the lower line corresponds to the receding

angle. Left: PEO1. Center: PEO5. Right: PEO8. The difference between advancing and receding angle diminish as the molecular weight is higher.

FIGURE 8 | Contact angle hysteresis as a function of frequency for the three

PEO solutions with different molecular weights for 1p = 225 Pa (red line:

PEO1; blue line: PEO5; black line: PEO8).

interplay between these two elasticities will lead to a complex
behavior, the simpler the rheology of the viscoelastic fluid, the
easier the understanding of the physical interaction. Because
of this, we present a model for the uniaxial dynamics of a
viscoelastic slug, taking into account the presence of interfaces
and the viscoelastic character of a single-relaxation-time fluid,
that could be extended to models containing more characteristic
times. We build up a model for the dynamics of viscoelastic
slugs over a model presented for the dynamics of a Newtonian
slug [33].

A study of a pulsatile fluid slug consisting of a Newtonian
fluid and two air-fluid interfaces driven by a periodic pressure
gradient, has been recently proposed and validated [33]. In that
model, a stress tensor for a Newtonian fluid of the form τ =

−η∇v, together with Laplace condition for the pressure jump at
both sides of the air-fluid curved interfaces, 1p = 1pdriving +
σκ1 + σκ2, has been considered. In these expressions, η is
the fluid viscosity, v is the axial fluid velocity, σ is the surface
tension of the air-fluid interfaces, κ1 and κ2 are the left and right
hand side curvatures, respectively, and 1pdriving is the pressure
drop external to the fluid slug (on the air side). The dynamics

for such Newtonian slugs is described by an integro-differential
equation in space and time, which, in frequency domain, can be
written as a simple equation, differential in space and algebraic in
frequency, that reads:

− iωρv̂ = −
1p̂driving

L
+

[

η + i
2σ

ωL

]

∇2v̂, (2)

where ω denotes angular frequency, ρ is the fluid density, L is the
length of the fluid slug, and v̂ and p̂ denote Fourier transforms
of velocity and pressure, respectively. This equation incorporates
momentum conservation, the stress tensor for a Newtonian
fluid, Laplace equation for the pressure jump at the interfaces,
an approximation of interface curvatures as concavities, and
continuity of velocities at both interfaces. This model has given
a correct description of the experimental dynamics of a water
slug and of a 70% glycerol solution in water slug, when interfacial
curvatures are considered to be a response to a dynamic
external pressure gradient 1pdriving/L. Details of the derivation
of Equation (2) can be seen in [33].

A Newtonian slug stress tensor, that integrates stresses of the
Newtonian fluid and the interfaces, of the form

τ̂Nslug = −

[

η + i
2σ

ωL

]

∇ v̂, (3)

substituted in the linearized momentum conservation equation
for uniaxial flow in the x direction,

− iωρv̂ = −
1p̂driving

L
−

[

∇ · τ̂slug
]

x
, (4)

gives exactly Equation (2) for the dynamics of a Newtonian
slug. A stress tensor of the form (3) for a material consisting
of a volume of fluid and two air-fluid interfaces, has not been
introduced in the literature, to the best of our knowledge,
since classical treatments describe both fluid phases and
apply boundary conditions at air-fluid interfaces, rather than
describing the system fluid-interfaces as a composite material.
Vazquez-Vergara et al. [33] together with discussion in the
previous paragraph, show that introduction of a slug stress tensor,
as the one in Equation (3), is a consistent approach to describe the
zero-mean flow, linear pulsatile dynamics of Newtonian slugs.
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Viscoelastic fluids might involve, in general, several relaxation
times. The coupling of such times with the characteristic time
given by the presence of interfaces, is expected to lead to a
complex dynamics of viscoelastic slugs. To understand such
coupling, we start by introducing the simplest model of a
viscoelastic slug, consisting of a volume of linear Maxwellian
fluid, that has a single relaxation time, and two air-fluid
interfaces, with surface tension σ .1 We propose the following
expression for the viscoelastic slug stress tensor:

τ̂VEslug = −

[

η + i 2σ
ωL

]

1− iωtr
∇ v̂. (5)

where the parameter tr is the Maxwell relaxation time. Equation
(5) reduces to the constitutive equation of a Newtonian slug
(Equation 3) in the limit tr → 0, and reduces to the Maxwell
model in the absence of interfaces [58], that is, in the limit σ → 0.
Alongwith the previous consistency proofs, experimental validity
of the model given by Equation (5) must be demonstrated.

When the stress tensor (Equation 5) is substituted in the
momentum conservation equation (Equation 4), we can obtain
an equation for the dynamics of a viscoelastic slug,

[

η + i
2σ

ωL

]

∇2v̂− iωρ(1− iωtr)v̂ = (1− iωtr)
1p̂driving

L
. (6)

Solution of Equation (6) subject to no-slip boundary conditions,
for flow in a rectangular microchannel whose plates are separated
by a distance 2l, gives a linear relation between velocity and
pressure drop in frequency domain, that is,

v̂(z,ω) = −K(z,ω)
1p̂air

L
, (7)

where z is the coordinate perpendicular to the plates. The
complex local dynamic permeability, K(z,ω), is given by

K(z,ω) = −
1

iωρ

[

1−
cos(Az)

cos(Al)

]

with A2 = iωρ

[

1− iωtr

η + i 2σ
ωL

]

.

(8)
This linear relation is expected to coincide with experimental
results, for low values of the pressure drop, where K(z,ω) is
independent of the amplitude of the pulsatile forcing.

It is worth noticing that Equations (7) and (8), which are the
solution for the dynamics of a Maxwellian slug given by our
model, are consistent with the pulsatile solution of the linear
Maxwell model for a single fluid in a rectangular cell in the limit
of zero surface tension given in [26] (equivalent to the solution in
[23, 24, 59] in the cylindrical case).

Expressions (7) and (8) are valid for general periodic time-
dependent pressure drops, consisting of an arbitrary number of
sinusoidal modes. In particular, for a one-mode driving pressure

1This model can be generalized to other models containing more characteristic

times, in a more or less straightforward manner. For example, for a linearized

Oldroyd-B model, containing two relaxation times tr and t2, the viscoelastic stress

tensor proposed for the fluid slug would be τ̂OB
slug

= −

[

η+i 2σ
ωL

]

(1−iωt2)

(1−iωtr )
∇ v̂.

drop of frequency ω0, it can be shown that, in time domain, the
amplitude of the velocity at the center of the cell, vmax, is related
to the amplitude of the pressure drop, 1pmax, as

vmax =
∣

∣K(z = 0,ω0)
∣

∣

1pmax

L
, (9)

which is in agreement with the operational definition of K,
used to compute the permeability from experimental data
in Equation (1).

Our model has been deliberately developed for zero-mean
pulsatile flows, due to the oscillatory nature of our experimental
driving force. It therefore cannot be used to model fronts in
imbibition-like systems, where the pressure drop has always the
same sign and the interface curvature is due to wetting. In our
case, curvature effects due to wetting cancel out since they have
opposite signs on the left and right side interfaces [33], and
the dynamics of the slug will be governed by the instantaneous
interfacial curvatures caused by pulsatile forcing.

5. COMPARISON WITH EXPERIMENTAL
RESULTS

We compare the experimental results for K at low-amplitude
pressure drops (225 Pa) from Figure 6 with K(0,ω0) derived
from the linear model developed in the previous section. For the
figures, we simply useK to denote the local dynamic permeability
at the center of the microchannel. Figure 9 shows experimental
and theoretical predictions of K as a function of the driving
frequency for three PEOs. A log-log scale has been used to
highlight the tendency of low frequency data.

Figure 9 left shows, with green dots, the permeability
K obtained from experimental data for PEO1. With a red
continuous line, it shows the theoretical permeability, as
predicted by our model for a Maxwellian slug, obtained from
Equation (8) with z = 0 and a relaxation time, tr = 1.78
ms, reported as Maxwellian in the literature [41]. As reference,
we have also plotted, in a blue continuous line, the theoretical
permeability for a Newtonian slug. As Figure 9 left shows, the
agreement between experimental data and theoretical prediction
for a slug of a viscoelastic fluid obeying Equation (8) is excellent,
both, at low frequencies and around resonance; Figure 9 middle
shows equivalent curves for PEO5. Since the relaxation time, at
the concentration used in our experiments, is not reported in the
literature, we took one reported for PEO4, as surrogate [19]. The
agreement between the green dots, obtained from experimental
data, and the red line predicted by our model, is very good,
both, at small frequencies and around resonance, despite the fact
that the relaxation time used was obtained from a fit to a Cross
model [19, 60].

Before discussing Figure 9 right for PEO8, for which there
is no relaxation time reported in the literature, at the desired
concentration, we will discuss the theoretical behavior of the
resonance frequency, in terms of characteristic frequencies of
the system.

We can define three characteristic frequencies of the system
that depend on viscosity, η, surface tension, σ , relaxation time,
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FIGURE 9 | Comparison of theoretical (red and blue lines) and experimental results (green dots) for dynamic permeability for PEO solutions at 225 Pa of: (left) PEO1

solution; (middle) PEO5 solution; (right) PEO8 solution.

tr , and system’s geometry, l (half the microchannel thickness), as

ωη =
η

ρl2
, ωσ =

2σ

ηL
and ωrelax =

1

tr
. (10)

In terms of these frequencies, the argument of the cosine term,
Al, in Equation (8), can be written as

A2l2 = i
ω

ωη

[

1− i(ω/ωrelax)

1+ i(ωσ /ω)

]

. (11)

We find two different regimes for the resonance frequency. For
ωrelax ≪ ωη, the resonance frequency, ωres, is given by

ωres =
π

2

(

ωη ωσ

)1/2
, (12)

while for ωrelax ≫ ωη, it is given by

ωres =
π2/3

21/3

(

ωη ωσ ωrelax

)1/3
. (13)

The resonance frequency, with the proper scaling to make the
second of these regimes collapse, is given in Figure 10.

We have found numerically the maximum of the local
dynamic permeability in Equation (8) using characteristic values
of ωη and ωσ for each of the three PEO solutions employed
in the experiments. We have plotted the resonance frequency
as a function of the independent variable ωrelax/ωη. The red
curve corresponds to PEO1, the blue curve to PEO5 and the
gray curve to PEO8. Red and blue dots over the curves (for
PEO1 and for PEO5, respectively) represent pairs (tlitr ,ωres(t

lit
r )),

in the corresponding rescaled units of the graph, where ωres(t
lit
r )

is the theoretical resonance obtained using a relaxation time from
the literature.

Our resonance curves in Figure 10 could serve “as a
rheometer” to validate or estimate viscoelastic relaxation times.
Such a procedure is schematized with horizontal dashed lines
in Figure 10, which relate a reasonable resonance frequency
range—obtained by visual inspection of Figure 9—, with a
range of possible relaxation times, obtained from the vertical
dashed lines, through the theoretical curve in Figure 10. To
validate our method, we have estimated that the resonance

FIGURE 10 | Illustration for the way of estimating the value of relaxation time

(through ωrelax ) by visual estimation of the resonance frequency, and its

corresponding error bars. The theoretical model predicts a relation between

resonance frequency and relaxation frequency that can be exploited to validate

or estimate relaxation times. We have used PEO1 solution (red dashed lines),

and PEO5 solution (blue dashed lines) to validate the method. Then we have

used the method to estimate the relaxation of the PEO8 solution, from its

experimental resonance (gray dashed lines). Red and blue intervals, marked

with dashed lines, are in agreement with theoretical data of resonance

frequency and relaxation times (placed as a circle red dot) for PEO1 and

(placed as a circle blue dot) for PEO5. Black dashed line represents an

approximated relation for ωres in Equation (13). Continuous lines are exact

results for resonance, obtained by numerical means.

frequency for PEO1, is in the range [120:136] Hz, and in the
range [100:120] Hz for PEO5. As Table 1 shows, the range of
relaxation times estimated by the theory—from measurement of
the experimental resonance frequency—are in agreement with
the values for the relaxation time reported in the literature. We
consider that, as a proof of concept, this validates our method for
estimating relaxation times of single-relaxation-time viscoelastic
fluids. Accordingly, we estimate from Figure 9 that, for PEO8,
the resonance frequency is in the range [80:100] Hz, and estimate
that the relaxation time would be in the range [6.8:14.8] ms.
Even though this range is wide, when considering a value in
the middle of this range, we obtain the red curve in Figure 9

for the dynamic permeability,which, despite being less accurate
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TABLE 1 | Comparison between reported values in the literature of viscoelastic

relaxation time and the range estimated by the theoretical model via the

experimental resonance.

System Reported tr (ms) Estimated tr via fitting to model (ms)

PEO1 1.78a 1.76–3.04

PEO5 5.8b 3.21–6.21

PEO8 – 6.76–13.76

(a) Taken from [41]. (b) Taken from [19].

than the ones for the lower molecular weight polymers, still
gives a reasonable agreement for both, the tendency of the
experimental permeability at low frequencies, and the region
around resonance. It is important to note that the relaxation
times obtained with our method follow the trend that, the larger
the molecular weight of PEO, the larger the relaxation time.
This is in qualitative agreement with global trends observed
in literature for a vast range of concentrations and molecular
weights in PEO aqueous solutions [19, 41, 61]. Our method
promises to be valuable for low molecular weight polymers, for
which relaxation times are difficult to obtain experimentally by
conventional means. For high molecular weight polymers, more
sophisticated models, including shear thinning, might result
necessary to describe the dynamics and to obtain rheological
parameters from it, as it happens for high concentrations of
low molecular weight polymer solutions [19, 45]. It is worth
mentioning that the size of the fluid slug can be experimentally
adjusted to fall in the range where the approximated black dashed
line in Figure 10 is valid, that is, whenever it agrees with the
exact value of resonance frequency, given by the continuous
lines; at such regime, there is a simple analytical relation between
resonance frequency and relaxation time, and the indirect
determination of relaxation times could be carried out easily
using Equation (13). In contrast, the plateau observed for each
continuous line on the right side of Figure 10, corresponds to the
regime where the resonance frequency is given by Equation (12),
when the relaxation time is not relevant. The curves differ from
each other due to their viscous frequency, ωη.

Our theory is also able to predict the contact angle, given an
initial shape of the interface. Several models for front dynamics
in the literature establish a difference between a static contact
angle at equilibrium situations, and the angle observed due to an
imbibition-like front dynamics, where the pressure gradient has
always the same sign, this is typically called a dynamic contact
angle. In addition to such descriptions, recent studies have dealt
with a different time-varying dynamic contact angle, which is
affected not only by imbibition phenomena but also by oscillatory
driving forces [62]. This is the case of our dynamic contact angle.
We explain in a nutshell how do we compute dynamic contact
angles from our theoretical model: our differential equation
gives the slug velocity v(z, t) as a function of pressure drop.
Since interface shape, u(z, t), and velocity are related through
∂u/∂t = v, once the velocity v(z, t) is known, we can integrate
this equation to obtain u(z, t) =

∫

v(z, t)dt + u0(z), where u0(z)
is an integration constant which gives the interface profile at rest

(or, equivalently, at very high frequencies). Once the interfacial
profile is known in time, the arctangent of its slope close to the
wall gives the dynamic contact angle.

It is worth mentioning that our experiments measure an angle
along the channel width, not along the channel height, which
is the dimension modeled in Equation (6). So, it is necessary to
find out a relation between the angles measured in both planes.
We follow Tabeling results [63] on steady flow where the relation
between the slope of flow velocity at the channel walls in both
planes obeys a linear relation of the form

∂v

∂y

∣

∣

∣

∣

y=W/2

= m
∂v

∂z

∣

∣

∣

∣

z=l

(14)

where m is a factor that only depends on the aspect ratio W/2l
(see Figure 11 left). Since for a single-mode oscillatory flow,
interface shapes and velocity are linearly related through the
driving frequency, that is, ω0, as v(y, z, t) = ω0u(y, z, t), an
equivalent relation can be proposed for interfacial profiles, u, as

∂u

∂y

∣

∣

∣

∣

y=W/2

= m
∂u

∂z

∣

∣

∣

∣

z=l

(15)

This geometrical relation between the slope at both confining
dimensions is illustrated in Figure 11 left. The dynamics of both
angles is illustrated in Figure 11 right.

With the correction explained above, the experimentally
obtained contact angles are compared to the ones predicted by
our model. This is shown in Figure 12. We find that the contact
angle predicted by the theory is larger than the one obtained from
experiments; however, our theory correctly predicts the phase
difference between the angle and the pressure gradient.

A model for single Maxwellian fluids accounting for channel
width and height, has found that the effect of the second
confining dimension is relevant only at high frequencies [64].
We therefore consider that if such analysis were extended to
Maxwellian slugs, it would not affect the conclusions regarding
resonances and dynamic permeabilities presented in this work.

6. CONCLUSIONS AND PERSPECTIVES

We have made a thorough experimental study of the dynamic
behavior of pulsatile fluid slugs made by three biocompatible
viscoelastic fluids [65]. We have studied their responses in a wide
frequency range, from [0.5:200] Hz, at four different amplitudes
of the pressure drop, which have been maintained practically
constant in all the frequency range. We have chosen the dynamic
permeability as a parameter to characterize the fluid dynamics
since, in the regime where flow and pressure drop are linearly
related, it can be analytically demonstrated that it is a response
function of the system to a pulsatile pressure drop. At higher
pressure drops, it is a convenient way to represent a rescaled
velocity, which cancels, to linear order, the small differences in
pressure drop amplitude applied at different frequencies. We
have found that the permeability of the three viscoelastic slugs
present resonances, that is, a special frequency range of the
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FIGURE 11 | Left: Illustration of an instantaneous velocity profile in a cross section of a rectangular microchannel, computed theoretically following [63]. Right:

Illustration of the time behavior of the angle (given by the arctan of the slope) along the channel width (red), and along the channel height (blue), for a channel whose

width is three times its height.

FIGURE 12 | Comparison between predicted and measured contact angles

for a slug of PEO1 solution pulsated at frequency of 120 Hz, and a pressure

drop amplitude of 225 Pa. Blue and red lines correspond to the contact angle,

obtained from experimental measurements, at the left and right walls of the

microchannel, respectively; black line corresponds to the theoretical

prediction. Agreement between theoretical and experimental results is

noticeable, particularly because their oscillation is in phase.

oscillatory pressure gradient that maximizes the amplitude of
flow velocity.

We have also developed a continuum-mechanics linear model
of viscoelastic slugs, containing both, the elasticity of the fluid
and the elasticity given by air-fluid interfaces, through surface
tension. The slug model gives excellent agreement with our
experimental results at low-amplitude pressure drops. Such an
agreement was a necessary condition for model validation.
The dynamic permeability at all frequencies coincides very
well for PEO1 and PEO5 solutions, both, at small frequencies
and at resonance. Coincidence of experimental and theoretical
resonances provides an alternative strategy for measuring

relaxation times. We validated this strategy with relaxation
times reported in the literature for PEO1 and PEO5 solutions,
and estimated the relaxation time for PEO8. With such
estimation, the dynamic permeability for PEO8 gives the correct
slope as a function of frequency (in log-log scale), at small
frequencies, and gives a very good agreement around resonance.
It is worth mentioning that viscoelastic fluids, in general,
have several relaxation times. If one uses a single-relaxation-
time model, this one should correspond approximately to the
larger characteristic time experimentally observed. Our model
for viscoelastic slugs could be extended, in a more or less
straightforward manner, to models with several relaxation times.
The problem for validation in that case, would be the lack
of experimental information in the literature of the several
relaxation times reported for a specific molecular weight and
a specific concentration of a polymer solution obeying a
specific model.

Finally, we have compared the dynamics of the contact
angle, and found that theory and experiments predict similar
amplitudes and exactly the same phase shift with respect to
the oscillatory pressure drop. In our experiments, the interface
motion is negligible close to the wall, when compared to the
motion of the interface at the center of the channel. For this
reason, we have not included slip in our model and the contact
line displacement is not a concern for our relatively small-
amplitude pressure drops.

This is the first time that experimental resonances of
the dynamic permeability of viscoelastic fluids, confined at
microscales, are reported in the literature. Our results are relevant
for flow and shear rate control, with potential applications to
many systems, like organ-on-a-chip devices where the natural
mechanical conditions of cells are emulated [14–17]; and
biofluids, which are typically viscoelastic, are present. Our results
could also be useful to study how cells would respond to different
imposed, non-physiological, external stresses [66–71].
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