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We present the results of molecular dynamic studies of collective dynamics in a system

of hard disks confined to a narrow quasi-one-dimensional (quasi-1D) channel. The

computer simulations have been performed for the specific channel width of 3/2 of disk

diameter in which the disk arrangement at close packing resembles zigzag ordering

characteristic of a vertically oriented two-dimensional (2D) triangular lattice. In such

a quasi-1D system, which is intermediate between 1D and 2D arrays of hard disks,

the transverse excitations obey very specific dispersion law typical of the usual optical

transverse modes. This is in a sharp contrast both to the 1D case, where transverse

excitations are not possible, and to the 2D case, where the regular shear waves with

a propagation gap were observed. Other peculiarities of the dispersion of collective

excitations as well as some results of disk structuring and thermodynamics of the

quasi-1D hard disk system are presented and discussed for a range of hard disk densities

typical for fluid and distorted crystal states.

Keywords: hard disks, structure factors, collective dynamics, dispersion of collective excitations,

molecular dynamics

1. INTRODUCTION

Hard spheres and hard disks are widely accepted as the first choice approximation to model a
variety of soft condensed matter objects [1]. In spite of being a rather simple representation of the
substance, hard core-based model systems still are capable to recover a number of basic properties
and effects related to the structure, thermodynamics (e.g., phase transitions), and dynamics of real
systems. Recently, the interest has been revived in the properties of hard sphere fluid confined
to a narrow channel of the width that does not exceed two hard core diameters. In such system,
commonly referred to as quasi-one dimensional (quasi-1D) system [2], the hard-core particles
cannot pass the nearest neighbors and their motion is restricted by the neighbors. Of a particular
interest is the so-called single-file quasi-1D system with the width that does not exceed (1+

√
3/2)

of disk diameter [3] as then a disk cannot touch more than one neighbor from each side. This is a
substantial simplification that allows one to make a contact with the exact Tonks solution for the
purely 1D hard rod system [4]. The reasons for the interest to this system are both basic and applied.
The fundamental interest stems from the existence of the analytical transfer matrix approach for
the isobaric partition function [5–9] and the exact canonical partition function of this system,
which is recently derived in [10]. At present, the theoretical research in this area has been mostly
concerned with the efforts (i) to get an insight into the mechanism that governs transformation of
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the properties of hard core systems as their dimensionality
approaches 2 and 3 [5, 11], and (ii) to consider these systems
as glass formers, see [7–9, 12–14] and review [15]. The practical
interest stems from the possibility to use such a simple model
to capture properties of more complex systems, e.g., to explain
diffusion in zeolite and carbon channels [16–18], microfluidic
devices [19], in the technology of bio-integrated nanodevices [3]
etc. by treating the finite length axis of the quasi-1D system as the
pore width.

Confined many-particle systems are very versatile and
complex, and computer simulations are a perfect and in the
most cases only available tool to study their structure and
dynamics. It has been widely applied to study the structure
and single-particle dynamics in quasi-1D systems with various
model smooth/continuous particle–particle and particle–wall
interaction potentials. But even the quasi-1D systems partially
involving hard core particles and the quasi-1D systems of
pure hard core particles (that are the main subject of present
study) can be so different in their physics that comparison of
apparently similar effects in such systems often has no much
physical sense. For instance, in a quasi-1D system of hard core
particles suspended in a viscoelastic liquid solvent their effective
interactions are mainly of a hydrodynamic nature and the role of
confining walls is not so much in restricting particles’ motion as
in setting the boundary condition on the liquid solvent’s flow. At
the same time, in a quasi-1D system of pure hard core particles all
interactions are of an entropic nature. Another example concerns
a zigzag particle arrangement that very often is the object of
fundamental interest for different quasi-1D systems. However,
because of the difference in interaction potentials, the general
idea of the zigzag geometry is often the only thing in common.
For instance, a zigzag structure can occur both in quasi-1D
system with extremely short-range interaction such as a hard
core repulsion (e.g., see [9]) and in quasi-1D system with long-
range interaction such as a screened electrostatic repulsion in
dusty plasma (e.g., see review [20]). The difference between these
two interactions is known to be fundamental even in a purely
1D geometry in which the phase transition exists only for a
long-range particle–particle repulsion [21]. At the same time,
the computer simulations studies of dynamic properties of the
quasi-1D systems that contain only hard core particles, i.e., the
quasi-1D hard core systems, have been primarily performed in
the context of glassy dynamics. They were mostly focused on
the problems specific for the single particle dynamics such as
disk hopping time between different quasi-equilibrium states
and defects’ dynamics [7, 9, 12], and time dependence of
the particle displacement [9, 13]. The glassy behavior of hard
disk fluid confined to a narrow hard wall channel was also
studied theoretically in [7–9] by analyzing the transverse and
longitudinal equilibrium static pair correlation functions by the
transfer matrix approach [5].

Our recent computer simulations studies [22, 23] have
addressed the collective time correlation functions in the
bulk 2D and 3D hard core systems. What in the following
is referred to as collective dynamics means correlations in
the cooperative motion of a many-particle system. Such an
approach to understanding the dynamical processes is general for

studies of propagating waves (sound, shear, and heat ones) and
relaxation processes (thermal relaxation, structural relaxation,
stress relaxation, etc.). The corresponding collective dynamic
variables are defined via fluctuations of the conserved quantities:
number of particles, longitudinal and transverse components
of total momentum, and energy. All these collective dynamic
variables are known from the hydrodynamic approach and can be
used for theoretical description of the long-wavelength processes.
For the theoretical description of collective dynamics beyond the
hydrodynamic regime, the set of collective variables is extended
by the orthogonal ones (orthogonal to hydrodynamic variables),
which represent the longitudinal and transverse components
of stress tensor, energy current, etc. More precisely, computer
simulations [22, 23] were used to find how collective dynamics
of bulk hard spheres and bulk hard disks behaves on different
spatial scales. Rather unexpectedly the short-wavelength shear
waves were found in both cases from the well-defined peaks
of the transverse current spectral functions. Although nature of
shear waves in hard-core systems appears to be essentially the
same as in simple fluids [24], i.e., they emerge as the short-
wavelength excitations due to coupling of the transverse current
and transverse component of stress tensor, the hard-core fluids
are known for the absence of viscoelastic effects. Interestingly,
while there are no short-wavelength shear waves in a 2D hard disk
fluid at low particle densities, these were observed in the range of
higher densities by showing certain particular features just before
the freezing transition.

The present paper is devoted to a quasi-1D hard disk system.
An essential difference between the methods to study collective
dynamics in hard-core systems and those for models based on
analytic/continuous two-body potentials stems from the absence
of a local energy minima in the former case. Even in the case
of solids composed of hard spheres or hard disks, the particles
do not oscillate around the minimum of potential well, but are
moving ballistically in the cage formed by the nearest neighbors.
This difference gives rise to an interesting specific aspect of
the collective dynamics in a hard core system, namely, an
existence of strong correlations between the emergence of short-
wavelength shear waves and the caging phenomenon [25, 26],
which was noticed in the case of 2D hard disk system [22]. As
caging inevitably emerges in a hard disk system under quasi-
1D confinement, it is quite natural to expect the existence of
short-wavelength shear waves in this case as well. Then it is
not clear how the collective modes behave when additional
confinement is imposed, how the reflections from channel
boundaries affect the longitudinal and transverse excitations
originated from particle–particle collisions, how the single-
particle ballistic motions sum up to form a collective oscillation
modes. The case of transverse excitations is of particular interest
since latter are not present in the 1D prototype of the quasi-1D
hard disk system. All these issues remain unexplored. Therefore,
our aim is to perform molecular dynamics simulations of a
quasi-1D system of hard disks, calculate its static structural
properties, and make a link with the collective dynamics of the
system. The rest of the paper is organized as follows. In the
next section, we present the information on molecular dynamics
simulations; section 3 contains results of the static and dynamic
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properties of the studied systems. In the last section, we discuss
our findings.

2. MODELING AND SIMULATION DETAILS

The quasi-1D system is modeled by placing N hard disks of
diameter σ into elongated rectangular box formed by two walls
(lines) of length Lx ≡ L that are separated by a distance Ly ≡
H = σ + h with h < σ such that disks cannot pass each other.
The disk-disk two-body interaction is given by

u(rij) =
{

∞, rij < σ

0, rij ≥ σ ,
(1)

where rij = |rj − ri| is the distance between disk centers.
Additionally, both confining walls are impenetrable,

uw(ri) =
{

0, σ/2 < yi < h+ σ/2
∞, otherwise ,

(2)

thereby forming the hard-wall channel (or pore) of the width
H = σ + h and of the length L . The ends of the channel
are open and the periodic boundary conditions in x-direction
are employed.

Taking into account that width H = σ corresponds to
1D case, the range of channel widths σ < H < 2σ could
be considered as a bridge between 1D and higher dimensions.
Among continuous variety of the quasi-1D system width in this
range σ < H < 2σ there are two, H/σ = 1.5 and H/σ = 1+√
3/2 , when disk ordering at close packing is commensurate with

2D triangular lattice like milestones on the way from 1D to 2D.
To illustrate, Figure 1 presents two triangular hard disk arrays
that correspond to the most common horizontal (Figure 1A)
and vertical (Figure 1B) orientations of 2D triangular lattice that
differ by an angle of 30 degrees. The quasi-1D systems that
correspond to H/σ = 1.5 and H/σ = 1 +

√
3/2 are shown

by hollow disks that at close packing form two very distinct
crystalline zigzags. The main distinction concerns a number of
nearest neighbors interacting with each disk, i.e., two for H/σ =
1.5 and four in the case of H/σ = 1 +

√
3/2 . The narrower

quasi-1D systems is more close to the 1D system, while wider
quasi-1D system is more close to the 2D system. In the present
study, we are considering the narrower quasi-1D system with
width fixed at H/σ = 1.5.

The main body of simulations, in particular, those that
concern the collective dynamics, were performed by using
a collection of N = 200 hard disks at the fixed channel
width H with h/σ = 0.5 and the varied length, L/σ =
400, 350, 300, 250, 220, 198, 190, and 180. Thus, eight quasi-1D
hard disk systems that are characterized by different disk
linear density,

l =
Nσ

L
, (3)

were simulated. For convenience of comparison and discussion,
particular values of the linear density l , that corresponds
to each channel length L , are shown in Table 1 together

with corresponding values of the disk number density ρ =
Nσ 2/(HL) and packing fraction η = Nπσ 2/(4HL) , since
the latter are often used in the literature on quasi-1D systems.
The simulation runs with larger systems up to N = 2, 000
were performed as well and are properly indicated in the text.
Throughout the paper, the disk hard core diameter σ is used as
unit of length, while time is in units of (βmσ 2)1/2 . In simulations
we used β = σ = m = 1 , where β = 1/kT and m is the mass
of a disk.

Initially chosen N disks were located randomly inside the
channel of the shortest length L , i.e., the highest density
considered. Then initial disk configurations for lower densities
were obtained by increasing the channel length L . To handle the
collisions of hard disks with each other and with the channel hard
walls, we employ the event driven molecular dynamics (MD)
algorithm [27, 28]. According to this technique, the temperature
is kept constant by scaling appropriately the magnitude of
velocities of each hard disk such that kinetic energy of the
system agrees with the equipartition theorem. The directions
of the velocities of disk particles at the beginning of each run
were chosen randomly. Before calculating the averages for static
quantities, we ran MD simulations with assigned velocities, as
described before, to equilibrate the system.

Collective dynamics was studied via calculation of the density-
density, energy-energy, and longitudinal (L) and transverse (T)
current–current time correlation functions. In order to get
equally time-sampled positions of hard disks, i.e., the disk
trajectories, the positions of hard disks between the collisional
events were interpolated. Proceeding in this way, for the systems
of N = 200, 400, and 1,000 hard disks, we recorded the
trajectories and velocities along trajectory for each hard disk,
totally having dumped 100, 000 configurations for the systems of
N = 200 particles, but 40,000 configurations for the systems of
N = 400 particles, and only 20,000 configurations for the systems
of N = 1, 000 particles with the fixed reduced time interval
of 0.01.

The following Fourier components were sampled for each
configuration. The Fourier component of the particle density

n(k, t) =
1

√
N

N
∑

i=1

eikxi(t) , (4)

of the longitudinal component of current density

JL(k, t) =
1

√
N

N
∑

i=1

vx,i(t)e
ikxi(t) , (5)

and the transverse component of current density

JT(k, t) =
1

√
N

N
∑

i=1

vy,i(t)e
ikxi(t) , (6)

as well as of the energy density

e(k, t) =
1

√
N

N
∑

i=1

εkini (t)eikxi(t) . (7)
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FIGURE 1 | Disk zigzag ordering in a vertically (A) and horizontally (B) oriented 2D triangular lattice at disk close packing. In the present study, we are employing the

quasi-1D hard disk system of width H = σ + h with h/σ = 0.5 that at disk close packing resembles zigzag ordering shown in part (A). The driving force of such a

zigzag ordering is entropy, which in the case of hard disk system confined by hard walls is uniquely determined by excluded volume, as it is illustrated in (C,D). In the

case of 1D or 2D hard disk systems, excluded volume (the patterned area of width σ/2 around the disks and near the walls) depends on the distance between disks,

i.e., on the disk density only. For the quasi-1D system hard disk, the distance between disks and wall enters the play. In part (D), we illustrate how area (in some

relative units), accessible to the centers of other disks (the area of channel filled in blue) depends on the transverse position y0 = yi − h of the center of one individual

disk. One can see that such an area increases when disk moves to the channel walls and is minimal for its position at the middle of channel.

TABLE 1 | Density parameters (packing fraction η, number density ρ and linear density l) of the quasi-1D hard disk system with channel width H/σ = 1.5 and varied

channel length L for the case of N = 200 disks.

L/σ 180 190 198 220 250 300 350 400

η 0.5818 0.5512 0.5289 0.4760 0.4189 0.3491 0.2992 0.2618

ρ 0.7407 0.7018 0.6734 0.6061 0.5333 0.4444 0.3810 0.3333

l 1.1111 1.0526 1.0101 0.9091 0.8 0.6666 0.5714 0.5

Here xi is the position of disk i along the channel, vx,i(t), vy,i(t)
are the components of the ith disk velocity along the channel
and perpendicular to the channel, respectively, while εkini is the
kinetic energy of ith disk at time t . The wave vector k is defined
along the channel x−axis, compatible with the periodicity of
simulation box, as k ≡ kx = 2πm/Lx with m = 1, 2, 3, . . . .
Note that, due to a non-zero channel width H, the positions and
velocities of particles in quasi-1D systems have two components,
along ( x ) and perpendicular ( y ) to the channel. However, we are
using only wave vectors sampled along the channel. The reason
is that transverse collective excitations in atomistic systems can
propagate if at least two particles take part in the transverse
collective motion, i.e., the wave number is below π/σ . In the
case of a narrow channel of width H = 1.5σ the smallest
wavenumber, ky = 2π/H, is too large.

Having the Fourier components of energy and particle
densities, it is straightforward to calculate the Fourier
components of the heat density [24]

h(k, t) = e(k, t)−
fne(k)

fnn(k)
n(k, t) . (8)

Here fne(k) and fnn(k) ≡ S(k) are the static energy–density
and density–density correlators, respectively, while S(k) is the
static structure factor. The fluctuations of heat density permit
calculations of wavenumber-dependent specific heat at constant
volume Cv(k), which in the long-wavelength limit tends to its
macroscopic value. Another important quantity that can be
obtained from observed heat density dynamics is the Landau–
Placzek–like ratio, which gives information on the share of
contributions from relaxing and propagating processes to specific
heat Cv [24, 29].

The above-defined time-dependent Fourier components of
corresponding densities, equations 4 - 8, describe fluctuations
of conserved quantities in monoatomic fluids and form the set
of hydrodynamic variables of macroscopic collective dynamics.
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Having dynamic variables (4–8), we calculated the time-
dependent density–density correlation function,

Fnn(k, t) = 〈n(−k, t)n(k, t = 0)〉 , (9)

time dependent longitudinal and transverse current–current
correlation functions,

F
L/T
JJ (k, t) = 〈JL/T(−k, t)JL/T(k, t = 0)〉 , (10)

and time dependent heat density autocorrelation function,

Fhh(k, t) = 〈h(−k, t)h(k, t = 0)〉 . (11)

In what follows, the correlation functions (9–11) were
used for numerical time-Fourier transformation in order to
obtain the density–density dynamic structure factors S(k,ω),
longitudinal/transverse current spectral functions, CL/T(k,ω)
and the heat-density dynamic structure factor Shh(k,ω).

3. RESULTS

The system of hard disks in a narrow hard wall channel is
anisotropic [5]. The anisotropy is expected due to the system
setup L >> H , which results in two different pressure
components, i.e., the longitudinal, PL = FL/H , and transverse,
PT = FT/L . Here, FL and FT are the force per unit cross-section
exerted along the channel length L , and the force on a segment
of the horizontal wall of length L/(Nσ ) = 1/l , respectively.
These forces are both of entropic origin and rather sensitive to be
evaluated from computer simulations. Fortunately, these forces
can be found from the analytical canonical partition function of
a quasi-1D hard disk system reported in [10].

Figure 2 presents the dependencies PL(l) and PT(l) , as well
as FL(l) and FT (l) for three channel widths, H = σ + h , with h
fixed at: (a) h/σ = 0.141 , close to the 1D case; (b) h/σ = 0.5 ,
which is far from both lower 1D and higher single-file limits; and
(c) h/σ = 0.866 , which is very close to the terminate width
h/σ =

√
3/2 ∼ 0.866025 of a single-file system. At low linear

density, the transverse force FT is density independent, implying
that the vertical disks’ motion is ballistic, the vertical free path is
maximum, i.e., H − σ , the disks bounce between channel walls
and do not collide with other disks. As for the same low linear
density l . 0.8 , the transverse force is lower for a wider channel,
the frequency of disk bouncing between the horizontal walls has
to be lower for wider channels as well.

We see that, for low densities, the transverse pressure PT is
higher than the one along the channel. This is because in that case
PL is determined by a large disk separation along the channel,
whereas PT is determined by a short range of transverse motion
bounded from above by H − σ . As linear density increases
toward l ≥ 1 , disks start to mount one upon another, the vertical
free paths decrease and transverse pressure and force both rapidly
increase. For h/σ = 0.866 , Figure 2C, this results in PT to
be always higher than PL . However, for more narrow channels
with h/σ = 0.141 and h/σ = 0.5 , Figures 2A,B, before this
happens, at certain value of linear density, which is different

for each channel width H , the gaps between disks and walls in
transverse direction and the gaps between neighbor disks along
the channel become equal, and the pressures on the vertical and
horizontal boundaries coincide.

The density distribution profiles, ny(y), in the transverse
y−direction, obtained both from the analytical partition function
[10] and from MD simulations for quasi-1D hard disk system
of the width H/σ = 1.5 , are shown in Figure 3. While linear
density is low, l . 0.8 , the system is roughly homogeneous across
the channel as the density profiles ny(y) are nearly constant and
equal to the correspondent linear density l . In contrast, as linear
density increases, l > 1 , the disk distribution across the channel
shows the tendency of increase in the regions close to the channel
walls and decrease in the middle region of the channel. For the
highest studied linear density, l = 1.111 , the density profile
ny(y) exhibits an almost δ−like shape in the close proximity of
the channel walls and practically vanishes elsewhere.

The longitudinal static structure factor, S(k), is calculated
from MD simulations in a standard way as instantaneous-time
density–density correlator,

S(k) ≡ fnn(k) = 〈n(−k, 0)n(k, 0)〉. (12)

In Figure 4, we show the changes in the first peak of S(k) with
decrease of linear density l . Regarding the collective dynamics,
one of the most important features is location Kmax of the main
peak of S(k) , since the value of k = Kmax has the meaning of a
pseudo-Brillouin zone boundary in the considered quasi-1D hard
disk fluid at a particular density. In this region of wavenumbers,
de Gennes’s slowing down of the density fluctuations takes place,
which is ultimately reflected in the long tails of the density–
density time correlation functions. One can see that for linear
densities l > 1 the structure factor S(k) is typical for distorted
crystals, with the main peak shaped as the sheared-out delta
function. For linear densities l < 1 , one observes typical fluid-
like structure factor. In disordered systems where a structural
transition takes place, one can find different slopes of the main
peak of S(k) on both sides of the transition [30]. In Figure 5,
we show the main peak position Kmax of longitudinal static
structure factor S(k) as a function of the linear size L of system
that is proportional to the inverse 1/l of linear density. The
location of the main peak is changing from Kmax ≈ 7 for the
case of L/σ = 180 (the highest linear density l = 1.111 ) down
to the value Kmax ≈ 4.5 for L/σ = 400 (the lowest considered
linear density l = 0.5 ). Indeed, one can see that there is a kink in
the behavior of the maxima positions, which occurs in the region
of linear densities 0.8 < l < 1.01 . According to Figure 2B,
this range of linear densities corresponds in our system to the
thermodynamic state, where the transverse pressure PT is lower
than the longitudinal pressure PL . It worth to note that in a
quasi-1D system with channel width H/σ = 1.866 the latter
newer happens, i.e., always PT > PL (see Figure 2C), while there
is range of linear densities, 0.93 . l . 1.01 , where transverse
force FT is slightly smaller than longitudinal force FL . This
density range corresponds to packing fraction range from η =
0.35 to 0.45 (see Figure 10 of [9]), where the time dependence
of the mean-square displacement starts to develop a power-law
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FIGURE 2 | Density dependence of the longitudinal (L) and transverse (T) pressures and forces in quasi-1D hard disk system of different channel width H/σ = 1.141

(A), 1.5 (B), and 1.866 (C) calculated using the analytical canonical partition function [10].

time dependence due to the slow diffusion of defects in the zigzag
arrangement of disks, suggested in [12] as a mechanism for the
α relaxation.

The single-particle dynamics can be studied by means of the
velocity autocorrelation functions

ψ(t) =
〈v(t) · v(t = 0)〉
〈v(0) · v(0)〉

. (13)

The velocity autocorrelation functions were already obtained by
means of molecular dynamics simulations for the bulk 3D hard
sphere [31] and 2D hard disk [22] fluids. In both cases, the

authors found that there exists the packing fraction value ( η =
0.45 for 3D case and η = 0.65 for 2D hard disks) above which
the velocity autocorrelation function at short times develops a
negative minimum signaling of a nascent caging. In our case, an
anisotropic quasi-1D hard disk system shows essentially different
behavior for the directions along and across the channel. In
Figure 6, we show the velocity autocorrelation function ψ(t) ,
its xx- and yy-components, and how they depend on the disk
density. The xx-component, ψxx(t) , in the quasi-1D hard disk
system behaves in a way very similar to that for bulk 2D hard disk
system [22]. It has long-time tails for small linear densities l .
0.667 and changes to a shallow negative minimum at the largest
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FIGURE 3 | Transverse density profile, ny (y), of the quasi-1D hard disk system

with channel width H/σ = 1.5 and different disk linear density l : 1—1.111;

2—1.053; 3—0.909; 4—0.5. The symbols correspond to MD simulation data,

while solid lines result from the analytical canonical partition function [10].

studied linear density l = 1.111 (packing fraction η = 0.582)
due to collisions with the nearest neighbors.

The effect of reflections from the channel hard walls is
well seen in the transverse component, ψyy(t) , of the velocity
autocorrelation function. It took us by surprise that the
characteristic oscillation of ψyy(t) due to the wall reflections
changed its shape, and especially so for the intermediate
density l = 1.01 . Toward shorter times, it became more
shallow, transforming for the most dense system, l = 1.111,
into a very high-frequency heavily damped oscillation. This
effect is much better seen in the Fourier-spectrum Z̃yy(ω)
of the function ψyy(t) shown in Figure 7. The characteristic
oscillation due to hard wall reflection is changed starting from
l = 1.01 to shift toward higher frequencies with increasing
oscillation damping. This means that at high densities the zigzag
structuring of hard disks prevents their reflections from both
channel walls. Instead under zigzag ordering hard disks are
reflected from the single nearest wall and from two nearest
zigzag neighbors.

The xx- and yy-components of the velocity autocorrelation
function in a quasi-1D system were discussed so far only for
the case of hard core particles suspended in a viscoelastic liquid
solvent [32]. Similar to our Figure 6B, the authors observed a
negative minimum and a negative long time tail of the asymptotic
form ∼ −t−3/2 for the component parallel to the channel axis.
They also concluded that both findings take place only for sticky
boundary condition and does not occur if the solvent can slip
over the walls. Our finding of a negative minimum of the velocity

autocorrelation function in Figure 6B at the highest studied
linear density l = 1.111 is of a completely different nature as our
system consists solely of hard disks, which fly ballistically between
hitting hard obstacles. We did try to estimate the exponentials for
a negative long-time tail of ψxx(t) . However, even in our case of
saved 100,000 configurations with N = 200 particles, the noise
in the tails was very strong, which did not allow us to reliably
estimate the exponents. This shows that the lattice Boltzmann
simulations [32] are more appropriate tool for this purpose than
the Newtonian MD simulations.

Collective dynamics is usually studied via analysis of the
time correlation functions, which store the entire information
about collective excitations in the system and their coupling.
So far, the collective dynamics has been well-understood on
the macroscopic scales in bulk systems, but practically no
information is available in the literature on collective excitations
in confined low-dimensional systems consisting purely of hard-
core particles. The time correlations in the latter case can
be essentially different from that in the bulk systems. A
simple example of this difference is seen in the transverse
dynamics of considered quasi-1D hard disks system, which at
the smallest wavenumber accessible in our simulations always
shows damped oscillations due to reflection from the channel
hard walls. In contrast, in bulk 3d hard-sphere and 2D hard-
disk systems, where macroscopic hydrodynamics is valid, no
transverse excitations exist at small wavenumbers accessible in
simulations. It is seen in Figure 8 that the change of collective
transverse current autocorrelation functions with disk density
is practically the same as for the single-particle yy-velocity
correlations. This makes it evidence that the leading contribution
to the transverse current–current time correlation functions
comes from the particle reflections from the channel hard walls.

The longitudinal current time correlation functions allow one
to estimate the speed of sound for the smallest wavenumbers
accessible in simulations. In Figure 9, we show the obtained
dependence of the speed of sound on the channel length
L that is proportional to inverse 1/l of linear density
(see Table 1). As expected, the speed of sound shows a
monotonic decrease with increasing channel length, i.e., with
decreasing density.

Dispersion of the longitudinal and transverse excitations in
the studied quasi-1D hard disk system were obtained from the
peak positions of the longitudinal and transverse current spectral
functions CL/T(k,ω) that are the time-Fourier transforms of
the MD-derived longitudinal/transverse current–current time

correlation functions F
L/T
JJ (k, t). By employing well-established

methodology [24], the latter were analyzed for their peak
locations, which for different wave numbers k define the
dispersion, ωL/T(k), of longitudinal and transverse excitations.
Typical shapes of the spectral function CL/T(k,ω) are shown in
Figure 10 for the system of N = 200 particles and linear density
l = 1.01. As the shapes of the spectral functions are noisy, to
locate their peak positions and maxima, we made use of the
standard Bezier fit for noisy data. The simulations with larger
numbers of particles allowed us to access smaller wavenumbers
while the dispersion relations within the error bars remained
the same.
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FIGURE 4 | Static structure factor, S(k) of the quasi-1D hard disk system with channel width H/σ = 1.5 calculated according to the definition equation 12 by using

MD-generated 100,000 configurations of N = 200 disks. The sequence of panels (A–H) corresponds the linear density decreasing from l = 1.111 (A) to 0.5 (H)

according to Table 1.
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Figure 11 show the dispersions ωL/T(k) of longitudinal and
transverse excitations in the quasi-1D hard disk system. The parts
of Figures 11A,B present data for the linear densities l < 1 .

FIGURE 5 | Dependence of the main peak position, Kmax , of the static

structure factor S(k) of quasi-1D hard disk systems with the channel width

H/σ = 1.5 on the channel length L that is proportional to inverse 1/l of

linear density.

At first glance in this case the dispersion ωL(k) of longitudinal
excitations in quasi-1D hard disk system is very similar to that
already observed for a 2D hard disk system [22]. When linear

FIGURE 7 | Fourier-spectrum, Z̃yy (ω) , of the transverse velocity

autocorrelation function, ψyy (t) , shown in Figure 6C, at different linear

densities l = 1.111(L = 180), 1.053(190), 1.01(198), 0.909(220) , and 0.5(400).

FIGURE 6 | Velocity autocorrelation function, ψ (t) (A) and its longitudinal (the xx direction along the channel) (B) and transverse (the yy direction across the channel)

(C) components for quasi-1D hard disk system with channel width H/σ = 1.5 at different linear densities l = 1.111(L = 180), 1.053(190), 1.01(198), 0.909(220),

0.667(300), and 0.5(400).
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FIGURE 8 | Collective time correlation function of transverse momentum in

quasi-1D hard disk system with channel width H/σ = 1.5 evaluated at the

smallest wavenumbers kmin accessible in simulations, and for different linear

densities l = 1.111(L = 180), 1.053(190), 1.01(198), 0.909(220), 0.667(300) ,

and 0.5(400). The standard hydrodynamic shape of transverse current time

correlation function in fluids is the single-exponential one.

density is low, l = 0.5 , the dispersion ωL(k) only slightly
deviates from being monotonic. But as soon as linear density
increases, l = 0.909 , it shows well-defined minimum around
wavenumber values k ∼ 6 associated with position of the main
peak Kmax of longitudinal structure factor S(k) discussed in
Figures 4, 5. The deviation from hydrodynamic dispersion law in
the long-wavelength limit for both considered densities persists
to be “negative.” The “negative” dispersion concerns the negative
deviation of the dispersion curve ωL(k) at the boundary of
hydrodynamic regime from the linear hydrodynamic dispersion
law of acoustic modes in considered quasi1-D hard disk system.
These effects are similar to those observed in 2D hard disk
system with density increase [22]. In contrast, the dispersion
ωT(k) of transverse excitations is essentially different from
those in the case of 2D hard disk system [22]. Namely, for
both linear densities l < 1 we are observing rather flat
shape of the curve ωT(k) at reduced frequency ∼ 10 with
a tendency toward higher frequency values with increase of
linear density. In 2D hard disk system, the transverse excitations
are of acoustic nature. Moreover, the transverse excitations are
absent at low densities and there was observed a long-wavelength
propagation gap when they start to appear at higher densities.
It is therefore quite natural to attribute the flat transverse
mode in a quasi-1D hard disk system to disks’ reflections
from the channel hard walls. This issue is discussed in more
details below.

Parts (c) and (d) of Figure 11 show similar data for the
dispersions ωL/T(k) of longitudinal and transverse excitations
but for the range of linear densities l > 1. As for the dispersions
of longitudinal excitations, ωL(k) , we see the tendencies already
observed in Figures 11A,B under increase of linear density, i.e.,
the magnitudes of ωL(k) maxima are increasing while minima
become deeper, reaching zero-frequency values at density ρ =

FIGURE 9 | Dependence of the speed of sound cs in the quasi-1D hard disk

system with channel width H/σ = 1.5 on the channel length L that is

proportional to inverse 1/l of the linear density.

1.111 and being shifted toward larger wavenumber values k . The
later again is consistent with the shift for the position Kmax of the
first peak of the longitudinal structure factor S(k) in Figures 4, 5;
the “negative” dispersion in long-wavelengths region is preserved
as well. Such behavior of ωL(k) resembles one for the ordered
solids and in [33] is interpreted as a consequence of the
emergence a zigzag ordering in a squeezed quasi-1D system. The
dispersion of transverse excitations in Figures 11C,D does not
show notable changes too when the linear density was changing
to l = 1.01 . However, it does show dramatic changes at the
highest considered linear density l = 1.111 . Namely, (i) there is
a sharp increase of frequency ωT up to ∼ 70 ; (ii) the dispersion
curve ωT(k) itself exhibits bubble-like shape by splitting on
low- and high-frequency branches in the range of k -values that
coincide with location of the maximum of dispersion ωL(k) that
implies possibility of longitudinal-transverse excitation coupling
on atomic scale in a squeezed almost zigzag ordered quasi-1D
hard disk system.

The MD simulations allow one to study the fluctuations of
heat density in the system and their effect on collective dynamics.
We would like to remind that an adiabatic propagation of
sound in fluids causes small deviations of the local temperature
and instantaneous temperature gradients, which give rise to
relaxation processes of the local temperature via thermal
diffusivity. These relaxation process is directly connected with
entropy fluctuations and is responsible for the central peak
of dynamic structure factors S(k,ω). In Figure 12, we show
dynamic structure factors S(k,ω) as well as heat-density dynamic
factors Shh(k,ω) for three, the lowest wavenumbers in the
quasi-1D hard disk system at the highest linear density l =
1.111 . In both types of spectral functions, the side peaks are
caused by longitudinal acoustic excitations, while the central
peak for liquid state is caused by entropy fluctuations. In
our case of the confined, almost zigzag structure at linear
density l = 1.111 (channel length L/σ = 180 and
width H/σ = 1.5), the central peaks of S(k,ω) and
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FIGURE 10 | Typical longitudinal (L) and transverse (T) current spectral functions, CL/T (k,ω) , in the long-wavelength region at kmin = 2π/L (A) and for wave number

k = 17kmin (B) for the system of N = 200 disks and linear density l = 1.01. In (A), the transverse spectral function was multiplied by a factor 100 for eye

convenience. Blue line-connected asterisks show the Bezier fit applied for estimation of peak position of the noisy spectral functions.

FIGURE 11 | Dispersions of longitudinal (L) and transverse (T) excitations, ωL(k) and ωT (k) , in quasi-1D hard disk system with channel width H/σ = 1.5 at disk linear

density l = 0.5 (A), 0.909 (B), 1.01 (C), and 1.111 (D). The dashed straight lines in the small-k region correspond to hydrodynamic dispersion law ω = csk with the

corresponding speed of sound cs shown in Figure 9. The raw data for parts (C,D) were taken from our preceding paper [33].

Shh(k,ω) give evidence of the same temperature (sometimes
called entropy) relaxation processes typical for fluid state.
We calculated Shh(k,ω) for lower densities too, and observed

practically the same shape of Shh(k,ω) but with a larger
smearing of the central and side peaks in comparison with the
higher densities.
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FIGURE 12 | Dynamic structure factor, S(k,ω) , and heat-density dynamic factors, Shh(k,ω) , of the quasi-1D hard disk system with the channel width H/σ = 1.5

derived from MD simulations at the highest considered linear density l = 1.111 for three the smallest wavenumbers k1 < k2 < k3.

4. DISCUSSION

In dense, nearly solid-like states of a quasi-1D hard disk system,

we observed a rapid increase of the transverse frequency ωT(k)
in the long-wavelength region k ∼ 0 from ωT ∼ 12 for

linear density l = 1.01 in Figure 11C to the frequency ωT ∼
70 for linear density l = 1.111 in Figure 11D. The shallow
minimum in ωT(k) profile, observed for linear density l = 1.01

at wavenumbers k ∼ Kmax/2, also deepens and becomes well-
developed. Eventually, however, frequency ωT(k) at k ∼ Kmax/2
splits into a high- and low-frequency branches at linear density
l = 1.111 as shown in Figure 11D. The observed change in the
dispersion ωT(k) of transverse excitations as the system changes
from rarefied to dense can be explained by formation of the
zigzag structure. The transverse low frequency mode, which is
due to bouncing between the two hard walls, transforms into the
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FIGURE 13 | Left: Disks’ rearrangement in a pore that creates a window for two disks to exchange their vertical positions. Upper panel: disk in the pore at the

average distance along the pore, which is below the disk diameter σ and disks cannot exchange their vertical positions. To let disk 1 go down, disks on the left and

right of it get more dense. Mid panel: Disk 1 gets down through the window of size σ between disks 2 and 3. Now disk 2 may get up between disks 4 and 1. Lower

panel: The exchange of the vertical positions of disks 1 and 2 is accomplished. Now disk 4 potentially can move down. Right: Representative snapshots of disk

configurations taken from MD simulations of the quasi1-D hard disk system of the channel width H/σ = 1.5 to illustrate the schematics of disks’ rearrangement.

Shown are four the highest considered linear densities from the top to the bottom: l = 1.111, 1.053, 1.01, 0.909 that are discussed in Figure 14. The filled circles

indicate disks that are caged and cannot exchange their vertical positions.

FIGURE 14 | Distribution of actual horizontal distances, 1x , between the

nearest neighbor disks in quasi-1D hard disk system with channel width

H/σ = 1.5 at disk linear densities l = 1.111(1), 1.053(2), 1.01(3), 0.909(4) , and

0.5 (5) derived from MD simulations.

high frequency transverse oscillations between one wall and the
nearest neighbors in the zigzag structure. This is also supported
by the behavior of the transverse component of the velocity

autocorrelation function ψyy(t) in Figure 6C. Inspired by this
intriguing behavior, one of us developed an analytical theory [10]
of this system, which suggests that it is related to developing
window-like defects in the zigzag disks’ arrangement [33]. The
idea of defects of this kind (defect is a local less packing) has
been introduced [12] and employed [7–9, 12–14] to describe
glassy dynamics in terms of caged and uncaged states in the
disk arrangements in a quasi-1D hard disk system of the channel
width H/σ = 1.866 . In [33], such defects were associated with
the maximum contact separation of two disks along the channel,
which is equal to the disk diameter σ ; in [10], their distribution
was found analytically as a function of the linear density. As for
the densities l > 1, the horizontal contact distance between disks
and the actual horizontal distance between nearest neighbor disks
are very close, this distribution can be well representative of the
actual disks separations 1x, which is supported by the computer
simulation data.

At dense/close packing, the disks form perfect zigzag. As
confinement weakens, the tendency to the entropy increase
results in an emergence of progressively larger number of
window-like defects through which pairs of next neighbor disks
uncage and exchange their vertical positions (Figure 13). This
theoretical prediction of [10] has been confirmed from MD
simulations data for the distribution of the actual distances 1x

between next neighbor disks (Figure 14) and is in line with the
earlier result [8]. For high linear density, l = 1.111 , these are
distributed around1x/σ ∼ 0.89 close to the minimum possible
contact distance along the pore,

√
3/2 ≈ 0.87σ . However at

slightly lower linear density, l = 1.053, in addition to the
widening of maximum at 1x/σ ∼ 0.92 we see the appearance
of a sharp subpeak at 1x/σ = 1 . In contrast to the wide
maximum drifting toward larger 1x, the subpeak always remains
at 1x/σ = 1 , although its shape is changing: it becomes
more and more pronounced and finally exceeds the main peak,
signaling approaching a fluid-like state. It points to the exclusive
role that next neighbor disk center-to-center distance 1x = σ
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plays. Namely, creation of windows of the width of disk diameter
σ ( σ−windows) in the zigzag array, neither wider nor narrower,
is the most effective way to gain entropy by uncaging two disks
and making them extend their wondering to the whole channel
width. The described mechanism of disk’s caging/uncaging by
their neighbors in quasi-1D hard disk system is fundamentally
different to that in quasi-1D system with a long range screened
electrostatic repulsion in the dusty plasma [20] where particles
stay at finite distances and the zigzag can even transform into a
straight line.

In a pure 1D hard disk system, the vertical motion is
absent. In a densely packed quasi-1D hard disk system of the
width H/σ = 1.5 , it is also prevented by the full caging,
but it eventually appears as the confinement weakens. As for
sufficiently low density, the vertical disks’ motion from one
wall to another is possible, here one expects some contribution
to the dispersion relation from the nearly ballistic transverse
oscillation between the walls. As it comes from the maximum
vertical path H − σ , this contribution ωT1(k) to the frequency
ωT(k) at low density must be lowest possible. At high density,
however, the σ−windows are rare and disks can bounce at most
between one wall and the mid plane hence the lowest transverse
frequency ωT2 for higher densities is expected to be roughly
twice that for low density, ωT2 ∼ 2ωT1. The frequency ωT2 is
related to the maximal distance 1x at window nuclei, which
require local compression and must result in high frequency
longitudinal and transverse jitters. One can thus expect that the
lowest transverse frequency ωT2 and the highest longitudinal
and transverse frequencies appear near same wavenumbers k .
In addition, the group velocity at this wavenumber range has
to be zero as windows are not transferred by the waves. The
dispersion of the longitudinal and transverse excitations in quasi-
1D hard disk system obtained from MD simulations are in line
with this picture (Figures 11C,D). For linear density l = 1.01 ,
the peak at 1x = σ (Figure 14) indicates that σ−windows
in the zigzag structure are well-developed, the disk order is of
a short range, and frequency ωT1 can be identified with the
practically k−independent transverse frequency ωT(Kmax/2) ∼
10 in Figure 11C. At the same time, for linear density l =
1.111 , when there are almost no σ−windows (Figure 14), the
transverse spectrum splits into the lowest, ωT2 ∼ 20 ≈ 2ωT1,
and the highest frequency, ωT ∼ 100, at the wavenumbers k
where longitudinal frequency is maximum (see Figure 11D). At
wavenumbers k ∼ Kmax/2, the curves ωT1(k) and ωT2(k) are
plateaus, which indicate zero group velocities. The continuous
longitudinal and transverse modes for linear density l = 1.111
are related to the short free path oscillation of mutually caged
disks near the walls. Thus, the main properties of ωT(k), which
are directly related to the vertical motion, are in line with the idea
of the role of σ−windows in the zigzag arrangement.

The interpretation of computer simulation data in terms of
the vertical disk motion presented above is also consistent with
and well-illustrated by the theoretical dependence of the total
transverse force FT(l) in Figure 2B. Indeed, as discussed above,
for low linear density l , the transverse force FT is constant
implying the vertical motion to be ballistic because the free
path and free time are maximum. In contrast, for high linear

density l , the transverse force FT sharply grows with l, the disks’
arrangement is close to a dense zigzag, they cannot cross the
middle line of the channel so that the free path and time at
best are halves of their maximum values. Finally, this picture is
obviously in line with the disk density distribution across the
channel in Figure 3.

In conclusion, we would like to point out the novel
and unexpected development, which stems from the above
studies of the collective excitations. It is about a possible
Kosterlitz-Thouless scenario in quasi-1D hard disk system [33].
In 2D systems, melting proceeds via the Kosterlitz-Thouless
scenario [34]: a crystal develops defects, and their number is
growing continuously from zero at zero temperature until the
state becomes a liquid. The number of window-like defects in
a zigzag arrangement behaves exactly in this way [7, 9, 10, 12]:
it is zero only at dense packing and smoothly increases as
density goes down. But in the Kosterlitz-Thouless scenario, it
is essential that the spatial correlations decrease as a power law
at high densities and exponentially at lower densities. At the
same time, it is known that if the partition function of a system
possesses a transfer matrix property, which has been widely
accepted to be the case for a quasi-1D hard disk system, then
the correlations can only decay exponentially. Our search for
a different correlation behavior is motivated as follows. First,
our already published [33, 35] and tentative molecular dynamic
results on the system described here indicate that a power law
decay is possible. Second, it is shown in Appendix in [10] that
the transfer matrix property may be not so universal for quasi-
1D systems, which leaves a room for alternative theory. The work
is in progress.
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