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We present a molecular dynamics and theoretical study on the diffusion of interacting
particles embedded on the surface of a sphere. By proposing five different interaction
potentials among particles, we perform molecular dynamics simulations and calculate the
mean square displacement (MSD) of tracer particles under a crowded regime of high
surface density. Results for all the potentials show four different behaviors passing from
ballistic and transitory at very short times, to sub-diffusive and saturation behaviors at
intermediary and long times. Making use of irreversible thermodynamics theory, we also
model the last two stages showing that the crowding induces a sub-diffusion process
similar to that caused by particles trapped in cages, and that the saturation of the MSD is
due to the existence of an entropic potential that limits the number of accessible states to
the particles. By discussing the convenience of projecting the motions of the particles over
a plane of observation, consistent with experimental capabilities, we compare the
predictions of our theoretical model with the simulations showing that these stages are
remarkably well described in qualitative and quantitative terms.
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1 INTRODUCTION

In several physical and biological systems the mass transport phenomena is carried out in surfaces
with non vanishing curvatures. The diffusion of bio-molecules and other particles on the surface of
liposomes, drops and other curved entities is of high relevance due to its potential applications in
biomedicine and technology [1–4]. Characteristic examples of this phenomena can be found in the
diffusion of proteins on curved membranes or in the surface diffusion of molecules and chemical
solvents in catalytic surfaces [5–8].

In these curved domains, many geometric aspects relating the motion of the particles on surfaces
have been studied in recent years [9–14]. These studies are relevant in the understanding of applied
problems such as nucleation, spinodal decomposition, adsorption, and phase transitions, since the
dynamics of the particles is modified due to the curvature of the surface on which the molecules are
embedded [15–18].

In particular, the most relevant quantity to measure in these particle motions is the mean square
displacement (MSD). However, most of the previously refereed studies provide geometric
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information of the MSD and the effective diffusion coefficient
only for the case where the interaction of the particles occurs with
the surface and not among particles themselves. In this
simplification, many expressions can be found in the literature
for approximating the short and long time behavior of the MSD,
see Ref. [9] and references therein. However, for the case of
interacting particles, there are only few numerical works studying
the influence of interaction and confinement in theMSD [19–21].

In this work we will consider how the surface diffusion
displacements are influenced by the interaction of the particles
and the projection of their displacement in a plane of observation.
This is because for most experimental cases of interest, the
geodesic trajectories of the particles cannot be followed at all
times, and only the projection in a plane of observation can be
measured [11, 22, 23]. This fact emphasizes that for diffusion over
closed surfaces, the observed motility depends on the curvature of
the surface and on the plane of observation [24–26].

We present the results of the MSD for interacting particles in a
crowded spherical surface by using Molecular Dynamics (MD)
simulations and implementing five different pairwise-interaction
potentials between the particles in a relatively high surface density
medium (ρp � 0.92). The particles are free to move on the entire
spherical surface of radius R. To keep the particles on the surface,
we use the algorithm described by Juffer et al. [27]. The
continuous interaction potentials used are different cases of
the generalized form of the Mie potentials [28]: LJTS,
WCA(12.6), WCA(50.49). Besides, some simple discontinuous
potentials like the shoulder-square (SS) and the well-square
(SW) were adapted to their continuous-mathematical form
described by Munguía-Valadez et al.1

With the aim to provide a physical interpretation of the results
of these numerical calculations, we formulate an analytic model
based on the generalized Smoluchowski equation with time-
dependent coefficients [29–34]. Using this tool, we can
identify how the change of perspective, confinement and
crowding are incorporated in an effective diffusion coefficient
that takes into account the entropic confinement and the
anomalous diffusion. The model used here was derived in the
context of mesoscopic non-equilibrium thermodynamics
(MNET) and has been widely used in order to obtain kinetic
equations for transport phenomena, like diffusion-adsorption
processes, anomalous diffusion, activated processes, diffusion
in pores, and diffusion in the presence of entropic barriers
[35–39]. In particular for our purposes, MNET has been
successful in describing diffusion on other confined systems
[38, 40–42].

The comparison between our numerical simulations and
thermodynamic-based model allows us to propose a new
interpretation of the observed dynamics of the MSD for
diffusion of interacting particles over a sphere, and to compare
the different subdiffusive regimes associated with the hardness or
softness of the particle collisions. We have chosen a spherical

geometry in order to rule out the effects of different local
curvatures in the surface. This will also allow us to recover
previous theoretical results deduced for the sphere in absence
of interaction.

Regarding the organization of work, in Section 2 we present
our Molecular Dynamics simulations on the diffusion of finite
sized-particles over an spherical surface for different interaction
potentials among particles. Then, we study the dynamics of the
diffusion and the behavior of the MSD using the results provided
by a Smoluchowski description which is presented in Sections 3.1
and 3.2, for free and interacting particles, respectively.
Comparison between simulations and model is presented in
Section 4. Finally, discussion and concluding remarks are
provided in Section 5.

2 MOLECULAR DYNAMICS SIMULATIONS

We present the details of the simulations as well as a brief
description of the interaction potentials used in this work.

2.1 Interaction Potentials
The continuous interaction potentials are defined through:

ϕn,m(rij) � ( n
n −m

)(n
m
)m/(n−m)

ε[(σ
rij
)n

− (σ
rij
)m], (1)

where ϕn,m(rij) is the most general form of the Mie potential [28].
For example, we can write the Truncated and Shifted Lennard-
Jones (LJTS) interaction by choosing n, m � 12, 6, and then

ϕLJTS(rij) � {ϕ12,6(rij) − ϕ12,6(rc), rij ≤ rc,
0, rij > rc,

(2)

FIGURE 1 | Potentials of interacting particles used for the simulations.
(A) Potential of Truncated and Shifted Lennard-Jones. (B) WCA(12, 6)
potential and the hard sphere pseudo-potential WCA(50,49). (C) and (D)
Square-Shoulder potential continuous and continuous Square-Well
respectively, given by Eq. 4.

1Munguía-Valadez J, Chávez-Rojo MA, Moreno-Razo JA, Sambriski EJ (under
review). The generalized continuous multiple step potential: model systems and
related properties. J Chem Phys.
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where σ(� 2a) is the particle diameter, rij �
∣∣∣∣ri − rj

∣∣∣∣ the distance
between the centers of mass of the i-th and the j-th particles, ϵ the
potential well depth, and rc(� 2.5σ) the cutoff radius. On the
other hand, a generalization of the Weeks-Chandler-Anderson
potential (WCA) [43, 44] can be written as

ϕWCA(n,m)(rij) �
⎧⎪⎪⎪⎨⎪⎪⎪⎩

ϕn,m(rij) + ϵ, rij ≤(n
m)1/n−m

σ,

0, rij >(n
m)1/n−m

σ,

(3)

where rij � (n/m)1/n−mσ is the value that corresponds to the
minimum potential. In our case, we use the parameters
n, m � 12, 6, [WCA(12, 6)] and n, m � 50, 49, [WCA(50, 49)]
to incorporate pseudo hard-sphere interaction models into the study,
see Figure 1B [44].

The Square-Well (SW) and Square-Shoulder (SS) potentials can
be approximated with the Generalized Continuous Multiple Step
Potential (GCMS), which incorporates a contribution of excluded
volume followed by multiple steps that model repulsive barriers or
attractive wells as the casemay be. Its simplified form can be written as:

ϕGCMS(σ,ω, q, a0, rij) � ϵ⎡⎢⎣( ω

rij − σ + ω
)q

+ a0
1 + exp[q(rij − σ − ω)/ω]⎤⎥⎦, (4)

where ω defines the spatial extent of the particle core in units of σ, q
is related to the hardness of the potential, and a0 is a factor that
defines an attractive step (a0 < 0) or a repulsive one (a0 > 0). The
parameters used to reproduce the SS and SW are: ω � 0.5, q � 500,
a0 � 1 and a0 � −1, respectively, see Figure 1C y Figure 1D.

2.2 Simulation Method
In this work all quantities are assumed to be expressed in
conventional reduced units, with m, σ and ϵ as the units of mass
(set equal to 1), distance, and energy, respectively. According to this
convention, the temperature (Tp) is in units of kBT/ϵ where kB is
Boltzmanns constant, the density (ρp) in units of ρσ2, the time (δtp)
in units of δt(ϵ/mσ2)1/2, and the energy (ϕp) in units of ϕ/ϵ. A
monodisperse system of spherical particles was studied with the
restriction of moving on the surface of a sphere of radius R � 9.3σ.
To study the dynamic behavior of each system,Molecular Dynamics
simulations were performed in the canonical assembly (NVT) for a
total ofN � 1000 particles embedded in the spherical surface, with a
surface density given by ρp(� N/A) � 0.92. The R and ρp values
were taken for compatibility with previous studies by Vest et al.
[45–47]. The system was placed in a thermal bath at a temperature
Tp � 1.0 set constant by using the isokinetic method; the integration
of the equations of motion was carried out using the velocity-Verlet
algorithm [48], with the restriction fi(ri) � |ri|2 − R2 � 0 (see Ref.
[27]) and a time-step δtp � 10− 3 for LJTS, WCA(50, 49) and
WCA(12, 6) systems, and with δtp � 10− 4 for SS and SW systems.

The simulations were run by 106 time-steps for LJTS,
WCA(50, 49) and WCA(12, 6), and by 107 time-steps for SS
and SW to reach thermodynamic equilibrium, then for 3 × 107

and 4 × 108 time-steps, respectively, for the calculation of the

mean square displacement. Some representative trajectories of a
tracer particle for each potential are plotted in Figure 2.

The results of our simulations for the MSD are plotted in
Figure 3. At the right side we plot the geodesic MSD over the
sphere with the saturation valor of (π2 − 4)R2/2. At the left, we
plot the MSD measured when the displacements of the particles
are projected the plane of observation XY, giving the saturation
value of 2R2/3. These saturation values for long times only
depend on the geometric configuration and therefore are the
same for free and interacting diffusing particles [10].

The MSD plotted in Figure 3 shows four different stages: 1) the
ballistic regime where the MSD increases as t2, 2) a transition
between ballistic and diffusive regime where the slope of the
MSD decreases and changes of concavity, 3) the subdiffusive
regime where, as we will calculate below, the MSD increases as tα

with α(1 and, finally, for long times, 4) the saturation regime where
theMSD no longer increases since the domain of the sphere is finite.
These four regimes are seen in the geodesic and projected version of
the MSD plotted at right and left of Figure 3, respectively. Some or
all of these four stages have been found both in numerical
simulations [9, 49–52] and experiments, mainly for protein and
lipid diffusion on cell membranes [53–56].

The form of the plots for the MSD in Figure 3 depends on
the combined effect of the curvature of the surface, the
interaction of the particles and, in the case of the projected
displacement, the projection on the observation plane. In the
next section we will deal with the connection between these
different effects and their effect in the measured effective
diffusion coefficient.

3 THE MSD OF FREE AND INTERACTING
PARTICLES

Commonly, experimental setups for measuring the diffusion of
particles on curved surfaces use confocal microscopy techniques
[33, 57, 58]. Due to the focal length inherent to these techniques,
the measure of the motions of the particles under study is
preferentially performed in terms of their projection to the
focal plane [22, 23]. In view of this, in the present section we
study the equivalence between the description of the free
diffusion over the surface (the geodesic displacement) and
compare with the evolution of its projection in the planar
disk constrained by the sphere, see Figure 4. First, we will
deduce an expression for the MSD of free particles moving at a
flat disk by considering how the entropic restriction of the
movement (imposed by the fact that the particles cannot travel
beyond the radius of the disk) is reflected in the transport
properties that are used to describe the motion. Then, we will
modify the MNET description to include the interaction and
crowding of particles.

3.1 The MSD of Free Punctual Particles
From a thermodynamic point of view, the problem can be tackled
by estimating the equivalent force keeping the system confined to
diffuse in the planar disk delimited by the surface of the sphere of
radius R, see Figure 4. This equivalent force can be written in
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terms of a Taylor expansion. To first order, this correspond to an
harmonic-like potential of the form

U(r)x1
2
κ0r

2. (5)

The potential here is of an entropic origin, since it is due to the
fact that the particles cannot leave the sphere projection or,
equivalently, the planar disk. The maximum value of this
potential, associated with the equivalent force, can be
estimated by using the equipartition theorem [59]. Comparing
the mean kinetic energy of the particles, K � (3/2)kT (which
corresponds to one half for each degree of freedom in the three
dimensional description), with the maximum potential energy
available for the trapped particles, Umax � (1/2)κ0R2, we can
estimate the value of the effective restorative coefficient κ0 as

κ0(R) � 3kBT
R2

. (6)

Hence, the projected motion of the particles constrained to
diffuse in a disk under the influence of the equivalent harmonic
force can be described by means of the Smoluchowsky
equation

zP
zt

� D0∇2P − D0

kBT
∇ · (PF), (7)

where kB and T are Boltzmann constant and temperature,
respectively. Since the equivalent force has radial symmetry,
assuming an initial configuration with the same symmetry
allow us to reduce the calculation of the MSD to the
contribution in the radial coordinate r. In this case, we have

FIGURE 2 | (A) Representative instantaneous configuration of the system with N � 1,000 particles on the spherical surface of density ρp(� N/A) � 0.92 and with a
radius of R � 9.3σ. (B–F) Path of a tracer particle over the spherical surface for the different interaction potentials.

FIGURE 3 | MSD of interacting particles over the sphere with the potentials given in Figure 1. The geodesic arc, 〈s2〉, and the projected displacement in the XY
plane, 〈r2〉, are plotted at left and right, respectively.
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zp
zt

� D0

r
z

zr
[r zp

zr
+ κ0r2

kBT
p] (8)

where the force that constraint the particles motions
is F � −∇U , with U given by Eq. 5, and the gradient
and Laplacian operators are represented in polar
coordinates.

The mean square displacement in the constrained disk system
is therefore given by

〈r2〉 � ∫  R

0
∫ 2π

0
r2prdr. (9)

The time evolution of the MSD is obtained by taking the
derivative

d〈r2〉
dt

� ∫ r2
zp
dt

dA, (10)

And substituting Eq. 8. Assuming zero flux boundary
condition: zp/zr(R) � 0 in the border of the disk and the
conservation normalization equation, ∫ R

0
prdr � 1, we can

prove, using successive integration by parts, that

d〈r2〉
dt

� 4D0 − 2D0

kBT
κ0〈r2〉. (11)

The comparison of the previous result with the result of
diffusion in an infinite planar surface, 〈r2〉 � 4D0t, shows that
the effect of the confinement is proportional to the ratio of the
potential and kinetic energies:

d〈r2〉
dt

� 4D0(1 − 3
2
〈U〉
〈K〉), (12)

where the average here is over the ensemble of non-interacting
particles. Eq. 11 is readily solved using that 〈r2〉→ 0 when
t→ 0 as

〈r2〉 � 2kBT
κ0

[1 − e− 2κ0D0t/kBT]. (13)

Substituting the estimated value of κ0 given in Eq. 6, valid
when particle interactions are negligible, we obtain

〈r2〉 � 2R2

3
[1 − e− 6D0t/R2]. (14)

This result has been obtained by using different methods in
Ref. [10] and, as expected, only depends upon geometrical
considerations resulting from averaging methodologies applied
directly to the Laplace-Beltrami diffusion equation.

This result describing the projection of the surface to the disk
can be contrasted to the result of particles really moving on a
planar disk of radius R, where K � kBT (since there are only two
freedom degrees), κ0 � 2kBT/R2, and therefore, from Eq. 11, we
have

〈r2〉2D � R2[1 − e−4D0t/R2]. (15)

Comparison between Eqs 14, 15 shows that the displacement
in a sphere respect to a planar projection has an average reduction
by a factor of 2/3 for long times. This reduction factor in the
displacements can be deduced also by evaluating the ratio
between the effective diffusion coefficient measured on a
planar region, D0, with respect to that measured in the
observation plane, D⊥. The result is

D⊥

D0
� 1
2
(1 + 〈n2

z〉), (16)

Where 〈n2z〉 is the geometric average of the quadratic vertical
component of the normal vector [10, 59]. For the sphere we have
nz � cos θ, from where it is straightforward deduced that 〈n2z〉 �
1/3 giving the expected result D⊥/D0 � 2/3.

3.2 The MSD of Interacting Non-punctual
Particles
In the previous subsection we have shown that the entropic
restrictions, present by the fact that tracer particles move over
a surface with a finite number of accessible states, are responsible
for the observed saturation value reached by the MSD at long
times. However, as we have seen in Figure 3, the simulations
show that the time behavior of the MSD at intermediate times
scales with a time dependence tα with α≤ 1. Therefore, for certain
interaction potentials, anomalous diffusion is observed. This fact
requires that the model developed in Section 3.1 should be
generalized to cope with particle interaction.

This generalization goes along the same lines of Santamaría-
Holek et al. [32], where a Smoluchowski description with

FIGURE 4 | Projection on an equatorial plane of the Brownian motion
which takes place over the surface of a sphere of radius R. The polar radial
coordinate of the particle r is measured on the plane.
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time-dependent coefficients was used to demonstrate that the
exponent characterizing the sub-diffusion is controlled by the
nature of the local cages and the free space at disposal for their
motion. In our case, since the single particle MSD reported here
accounts for the motion of independent particles in a crowded
media, the description of the diffusion can be given also in terms
of the generalized Smoluchowski equation for the single-particle
distribution function [61]. This equation for the probability is the
counterpart of the respective generalized Langevin equation with
memory effects, commonly used to describe microrheological
experiments and has the peculiarity of being equivalent in the
long-time regime to the Smoluchowski equation with time
dependent coefficients [29, 30]. This fact was generalized in
Refs. [31, 33, 62] for the case of power-law dependent
memory kernels which are equivalent to time dependent
diffusion coefficients of the form

Ds(t) ≈ D0(t
τ
)α− 1

, (17)

where τ is a characteristic time of the anomalous diffusion
process. In this equation, the exponent α ∈ (0, 1] characterizes
how strong sub-diffusion is and, as it was shown in Ref. [32], has
the general form

α � (1 − B1
a
ξ
) 3kBT

κ0R2
. (18)

Besides the entropic effect introduced through the ratio
kBT/κ0R2, the Eq. 18, through the factor 1 − B1(a/ξ), contains
the two main ingredients mentioned previously, namely, the free-
area at disposal to perform diffusion a/ξ, and the nature of the
local cages through the coefficient B1. The characteristic length ξ
is related with the free-area in which the finite particles can move
in a surface of total area A: ξ � A1/2

freexR(1 −Ma2/R2)1/2 where M
is the number of particles forming the cage. In this case, we have

α � (1 − B1
aR

R2 −Ma2
), (19)

This expression for the sub-diffusion exponent shows that it
only depends in the radii of the particles and sphere, and on the
parameter B1. This parameter indirectly depends in the nature of
the interaction potentials used. In the context of hydrodynamics
[63], it was related with the correction introduced by
hydrodynamic interactions over the motion of a particle when
this motion takes places near to a solid wall. Since these
interactions are related to the potential interactions among
particles, one may conjecture that the parameter B1 is a
measure of the effect that different interaction potentials have
on the cages’ dynamic structure and, therefore, of the different
values that the sub-diffusion exponent may take.

Even in this approximation, it results difficult to estimate
theoretically the parameters in Eq. 18. However, it is clear that the
exponent of the subdiffusive process is linked to the shape of the
interacting potential, the curvature of the surface and the
projection of the forces to the observation plane. In order to
find its value for the different potentials in Figure 1, we will adjust
the data of the numerical simulations, using the Smoluchowski

equation, but now in terms of this time dependent diffusion
coefficient as we detail below.

Therefore, we will consider that the single particle
Smoluchowski equation describing the dynamics of a tracer
particle in an effective medium of N − 1 interacting non-
punctual particles takes the form

zp
zt

� Ds(t)
r

z

zr
[r zp

zr
+ 1
kBT

κ0r
2p], (20)

Where now the time dependent coefficient is given through Eqs.
17, 19. From the last equation, repeating the same procedure of
the last section, the temporal evolution of the MSD is obtained
to be

〈r2〉 � 2kBT
κ0

{1 − exp[ − 2κ0
kBT

(∫t

0
Ds(t′)dt′.)]}. (21)

Using Eq. 6 we finally have

〈r2〉 � 2
3
R2{1 − exp[ − 6

R2
(∫ t

0
Ds(t′)dt′)]}, (22)

Which is the general expression for the MSD of the tracer
particles valid for the whole time interval. From this equation,
it is possible to deduce the temporal behavior of the diffusion
coefficient for all the stages of the process in terms of the
numerical data provided by the simulations as

Ds(t) � R2

6
(d〈r2〉/dt)(t)

((2/3)R2 − 〈r2〉(t)). (23)

Notice that this equation reproduces the expected behavior for
short and long times. For short times 〈r2〉→ 0 and
d〈r2〉/dt→ 4D0 and therefore Ds →D0. For long times, it is
expected that the MSD saturates and, therefore, d〈r2〉/dt→ 0
with Ds → 0.

At the other hand, when (Eq. 22) is used in combination with
the diffusion coefficient in Eq. 17, it accounts only for the process
once the sub-diffusion stage has started. At intermediary times, it
accounts for the sub-diffusion associated with particle
interactions and cage diffusion effects and, for long times, it
account for the fact that the particles have a restricted number of
accessible states in a finite domain. In the next section we will use
the numerical simulation in order to find the general behavior of
the temporal diffusion coefficient and the exponents of sub-
diffusion for the potentials we have considered in Section 2.

4 COMPARISON BETWEEN MODEL AND
SIMULATIONS

We have shown that the projection on the equatorial plane of
the geodesic MSD, directly measured in the numerical
simulations, is an equivalent form to characterize the
diffusive dynamics of the particles. We have explained
how the saturation value of the MSD rescales due to the
restricted number of accessible states, giving rise to entropic
constrictions on the dynamics of the particles.
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For short and intermediate times, our methodology allows us
to consider how different aspects modify the behavior of theMSD
of interacting particles forced to diffuse in the surface of the
sphere. All these aspects are clearly represented in Figure 5,
where we plot the time-dependent diffusion coefficient, Ds, given
in Eq. 23 for the potentials chosen, and illustrated in Figure 1. For
constructing this plot, the data from the functions 〈r2〉(t) and
d〈r2〉/dt obtained from numerical simulations are directly
substituted in (Eq. 17) for Ds(t).

The first aspect to notice is the reference diffusion
coefficient, D0. This is marked as a dashed line in Figure 5
and represents the surface diffusion coefficient in an infinite
planar surface, and negligible interaction potential among
particles. In Figure 5 it is seen that, for the used potentials,
the value of the diffusion coefficients augments according to
the order: SW, LJTS, SS, and WCA(12, 6). The color key is the
same as in Figure 1.

The second aspect to notice in the temporal dependence of the
diffusion coefficient Ds(t) is the emergence of sub-diffusion due
to the crowding effects. This results in different slopes of the curve
Ds(t) at intermediary times and, therefore, corresponds to
different values of the sub-diffusion exponent α. In order to
compare quantitatively the sub-diffusion for the different
potentials, in Figure 6, we adjust the data from numerical
simulations using (Eq. 22) with the temporal dependence of
the diffusion coefficient in (Eq. 17) using the least squares
method. The value of the local diffusion coefficient D0 and the
sub-diffusion exponent α together with the fits of the data are
given in Figure 6.

Figure 5, show that the value of the diffusion constant D0 is
smaller for hardest potentials (WCA(12, 6) and SS) than for softer
potentials (WCA(50, 49), LJTS and SW). The potentials having
wells also show this tendency since the diffusion constant for the
LJTS is larger that of the SW potential. The attractive part of the
potentials decreases, in turn, the kinetic energy of the particles
surrounding the tracer particle and, therefore, the energy

availability to perform position fluctuations. This
interpretation is clear after a comparison between the
potentials WCA(50, 49) and WCA(12, 6), which have a similar
functional form but different degree of penetrability. Another
aspect to be noticed is the steepest drop of the diffusion
coefficients (lower α) for the potentials with a tilted repulsive
part after r � 1, that is, SS and WCA(12, 60). A better
understanding of the effect of the shape and hardness of the
interaction potentials on the diffusion constants and the sub-
diffusion process will require its own work.

Finally, the third aspect to notice is that both the ballistic and
long-time behaviors of the MSD appear in all cases since not
depend on the interaction potential. Because of this, they do not
provide information of the fluid medium where the diffusion
occurs. As it is seen in Figure 5, the final drop of the diffusion
coefficient to zero occurs earlier as the diffusion coefficient is
lower, as expected.

Our work shows that the deviations of the MSD relative to the
planar behavior represent the effect that the particle interaction
and crowding effects have on the dynamics. This effect is coupled
with the presence of an entropic force restricting the number of
accessible states. We prove that these two effects are well captured
by the projected diffusion coefficient Ds, given in Figure 5 and
which has been reported in previous numerical simulations and
experiments [53, 64].

The excellent agreement in Figure 6 among simulation
results and the theory proposed indicates that particle
interactions control the cage effect and the sub-diffusion
regime. The delay induced by the crowded scenario appears
since the transient stage, and its influence is captured by the
memory effects that the effective diffusion coefficient Ds(t)
incorporates. We have found that the value of the parameters
used for fitting the MSD curves depend upon the used
potentials and further numerical and theoretical studies
are necessary in order to show the relation between the
form of the potential interaction and the surface diffusion
coefficient. Similar commentaries can be done concerning
the specific value for the radii of the particles and the surface
density. These values allowed us to capture the effect of the
surface density and the form of the potential on the sub-
diffusion observed. Nonetheless, a more detailed study on
the dependence of the diffusion properties on this factor will
require a future work.

5 CONCLUSION

We have studied the statistical and dynamical properties of a
system of interacting particles constituting a fluid embedded on a
sphere’s surface. To understand the link between the microscopic
properties of the fluid and the observedMSD, we have proposed a
diffusion model incorporating memory and entropic effects that
allowed us to derive a simple and powerful expression for the
projected time-dependent diffusion coefficient. This expression
allows us to characterize the dependence of the diffusive
dynamics on the particle interactions and surface curvature.
This approach takes into account the change of perspective

FIGURE 5 | Projected surface diffusion coefficient Ds(t) as a function of
the time for the interacting particles with potentials given in Figure 1. The
dashed lines represent the reference value D0 in a planar surface.
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inherent to the experimental measure of diffusion of particles on
closed surfaces. The formalism proposed in this work reproduces
also some limiting cases previously studied in the literature and
exemplifies, with the use of ideas emerging from irreversible
thermodynamics, how we can provide a more flexible description
that helps to interpret complex phenomena occurring at the
surface.

In this work, we have shown in Figure 3 that the dynamics of
the MSD reflects four stages. Two, at short times tp ≤ 10− 1s, are
associated with the ballistic regime and how it ceases; and other
two (tp ≥ 10− 1s) associated with the diffusion regime in presence
of cages at the intermediate and long time regimes, corresponding
to anomalous diffusion and saturation, respectively. Using the
ideas of the MNET we use the Smoluchowski equation for
describing the process once the diffusion regime starts and
this is shown Figure 6 for the intermediary and long time
behaviors of the MSD. In contrast, modeling the regimes at
short times will require another kind of kinetic mechanism.
However, it is worth mentioning that, under the perspective of
biological applications of surface diffusion in crowded membrane
environments we discuss below, only the subdiffusive regime is
accessible to measurements with the actual experimental time-
resolution capabilities and therefore, this does not constitute a
limitation to our conclusions.

In the realm of applications, this study allows us to establish
a connection with models and experiments studying the
diffusion of several tracers in the cytoplasm of living cells
which often exhibit heterogeneous distribution of
macromolecular crowders [65–67]. This crowding is
extremely important in the surface membrane and might
affect the properties of anomalous diffusion. It is known,
for example, that going from a less to a more crowded
region will slow down the dynamics, both in terms of the
exponent and diffusivity [68–70]. This results very important
since the slow transport in the cell membrane of lipids and

proteins is linked with protein cluster formation, phase
segregation, lipid droplet formation, signal propagation and
other crucial functions occurring on the cell surface which can
be enhanced by the presence of sub-diffusion [71, 72].

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be
directed to the corresponding author.

AUTHOR CONTRIBUTIONS

IS-H, AL-D and JM-R designed the research. AL-D and JM-V
performed the calculations and methology. IS-H, JM-R, AL-D
and JM-V performed analysis. IS-H, JM-R, AL-D and SH wrote
the original draft. All authors contributed to the analysis and
discussion of the data and the writing of the paper.

FUNDING

SIH is grateful to projects UNAMDGAPA-PAPIIT IN114721 and
LANCAD-UNAM-DGTIC-276. ISH acknowledges UNAM-
DGAPA for financial support under grant number IN117419.

ACKNOWLEDGMENTS

Authors appreciate the technical support of Carlos Sair Flores
Bautista, Alejandro de León Cuevas, Jair Santiago García Sotelo
and Luis Alberto Aguilar Bautista from Laboratorio Nacional de
Visualización Científica Avanzada (LAVIS-UNAM)

FIGURE 6 | Comparison between the projected MSD obtained from simulations (colored solid lines) and theory (black lines) according to Eq. 22. The values of the
parameters used are included in each plot. The scaling factor in Eq. 17 is τ � 1 for all cases.

Frontiers in Physics | www.frontiersin.org March 2021 | Volume 9 | Article 6347928

Ledesma-Durán et al. Entropic Effects of Interacting Particles

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


REFERENCES

1. Moreno-Razo JA, Sambriski EJ, Abbott NL, Hernández-Ortiz JP, de Pablo JJ.
Liquid-crystal-mediated self-assembly at nanodroplet interfaces. Nature (2012)
485(7396):86. doi:10.1038/nature11084

2. Holly C. Gaede and Klaus Gawrisch. Lateral diffusion rates of lipid, water, and a
hydrophobic drug in a multilamellar liposome. Biophys J (2003) 85(3):1734–40.
doi:10.1016/S0006-3495(03)74603-7

3. Nuytten N, Hakimhashemi M, Ysenbaert T, Defour L, Trekker J, Soenen SJ,
et al. Pegylated lipids impede the lateral diffusion of adsorbed proteins at the
surface of (magneto)liposomes. Colloids Surf B Biointerfaces (2010) 80(2):
227–31. doi:10.1016/j.colsurfb.2010.06.009

4. Danelian E, Karlén A, Karlsson R, Winiwarter S, Hansson A, Löfâs S, et al. Spr
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