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Exploring the analogy between quantum mechanics and statistical mechanics,
we formulate an integrated version of the Quantropy functional. With this prescription,
we compute the propagator associated to Boltzmann–Gibbs statistics in the semiclassical
approximation as K � F(T)exp(iScl/h�). We determine also propagators associated
to different nonadditive statistics; those are the entropies depending only on the
probability S ± and Tsallis entropy Sq. For S ± , we obtain a power series solution for
the probability vs. the energy, which can be analytically continued to the complex
plane and employed to obtain the propagators. Our work is motivated by the work
of Nobre et al. where a modified q-Schrödinger equation is obtained that provides
the wave function for the free particle as a q-exponential. The modified q-propagator
obtained with our method leads to the same q-wave function for that case. The procedure
presented in this work allows to calculate q-wave functions in problems with interactions
determining nonlinear quantum implications of nonadditive statistics. In a similar
manner, the corresponding generalized wave functions associated to S ± can also be
constructed. The corrections to the original propagator are explicitly determined in
the case of a free particle and the harmonic oscillator for which the semiclassical
approximation is exact, and also the case of a particle with an infinite potential barrier
is discussed.
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1 INTRODUCTION

Nonextensive entropies depending only on the probabilities have been obtained in [1]. They belong
to a family of nonextensive statistical mechanics, relevant for nonequilibrium systems. Renowned
examples are Tsallis (Sq) [2, 3] and Sharma-Mital [4]; all of them can be obtained within the
framework of Superstatistics [5].

For the entropies depending only on the probability, there are two entropy functionals [1]:

S+ � ∑
l

(1 − ppll ), S− � ∑
l

(p−pll − 1),
where the index l runs over the states of the system and pl denotes the probability of the state l. These
expressions can be considered as building blocks for nonextensive entropies without parameters. For
example, one can consider S1 � (S+ + S−)/2. These entropies are noticeably distinct to
Boltzmann–Gibbs (BG) entropy for systems with few degrees of freedom; however, when
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the number of degrees of freedom goes to the thermodynamic
limit, they match perfectly with BG statistics Cabo [6]. This is
when the probability pl is small, the leading term in S+ and S−
expansions is the BG entropy. Therefore, in this limit, BG statistics
is recovered. They belong to the class of Superstatistics of [5] with
an intensive parameter χ2 distribution found in [1]. These
entropies have also been studied in [6–10].

There is a universality of the Superstatistics family [5]. As
it has been shown, for several distributions of the
temperature, the Boltzmann factor essentially coincides up
to the first expansion terms. This has as a consequence that
also the entropies associated to these Boltzmann factors have
all of them basically the same first corrections to the
usual entropy. Furthermore, the three entropies listed here
that depend only on the probability are expanded only on
the parameter y � plnp; this is always smaller than 1 giving
correction terms to the entropy which at any order are
smaller than the previous ones. So, that any function of y
proposed as another generalized entropy, depending only
on this parameter, when expanded in y will basically
coincide with one of the three ones studied here; clearly
demanding that the first term in the expansion is −y giving
BG entropy. Thus, the entropies S+, S−, and their linear
combinations can be considered as building blocks to
compute any possible modified entropies depending only
on the probability.

We are motivated by the concept of Quantropy developed by
Baez and Pollard [11] and by nonlinear quantum systems with
modified wave functions based on Tsallis statistics in [3, 12, 13].
For example, the work [13] developed a nonlinear quantum
mechanics with q-mathematics motivated by Tsallis entropy.
In recent years, there have also been other interesting
developments in the connections of nonextensive entropies
and quantum mechanics [14–25]. Also, the work [26] showed
extensions of nonlinear quantum equations arising from an
effective one particle treatment of many-body physics, such
that the nonlinearity represents the interactions, obtaining
wave function solutions that are q-distributions and including
the harmonic oscillator potential. There exists as well a
connection between nonlinear quantum equations and
nonlinear diffusion and Fokker–Planck equations [18, 20] that
also is noticed in [26]. Moreover, interesting applications of
nonextensive entropies to compute statistical and
thermodynamical properties of graphene and 2-dimensional
quantum structures [27–30] have been developed. We develop
a version of Quantropy in terms of the propagator of a quantum
mechanical theory. Our generalized propagators could be
connected to the appropriate quantum equations. Baez and
Pollard’s Quantropy is a functional of the amplitude on the
path integral a, with the same functional form as the entropy
in terms of the probability Q � −∫

X

a(x)lna(x)dx. Giving the
functional

ΦBP � −∫
X
a(x)lna(x)dx − α∫

X
a(x)dx

−λ∫
X
a(x)S(x)dx,

(1)

where α and λ are Lagrangemultipliers and x is a path in the space of
all possible paths X. From the search of extrema of this functional,
restricted to values of a normalized and an average of the action,
Baez and Pollard obtained the relation a � exp(iS/h� − 1 − α) with
λ � 1

ih�. Then, a ∼ exp(iS/h�) with the normalization fixed by the
Lagrange multiplier α. This scheme deepens on the relation
between Quantum Mechanics and Statistical Physics,
which has also been studied in different approaches [31,
32]. For example, in [33], the Fisher Information measure
is employed to explore this relation.

In Baez and Pollard’s approach, the energy is mapped to
the action S and the temperature to ih�. We consider the same
identification but instead we identify E with the classical
action Scl . Thus, we consider as the analog of the entropy a
functional in terms of the propagator, instead of the
amplitude a. This is an extrapolation of the Quantropy
[11] to an integration over all classical paths. It is worth
to mention that the analog to the microstate in statistical
mechanics is a particle path in quantum mechanics. Such that
as the partition function in statistical mechanics is the sum
over all the microstates, the quantum mechanical analog is
the sum over all the paths of the particle (Feynman path
integral). The standard expression for the propagator is given
semiclassically by K ∼ exp(iScl/h�). We use this fact to define a
kind of integrated Quantropy functional now in terms of the
propagator for BG statistics, which we extend to the modified
statistics S+, S−, and Sq.

This article is organized as follows. In Section 2, we obtain a
series expansion for the probabilities versus βE for the generalized
entropies depending only on the probabilities S+ and S−. In
Section 3, we continue these expansions to the complex plane.
In Section 4, we present a version of Quantropy for BG statistics,
S+ and S− and Sq. In Section 5, we study in particular the case of
the free particle propagator, obtained from the extrema of the
Quantropy in the cases of S+ and S− and Sq for q< 1 and q> 1. We
show that the Kq propagator results exactly in the q-exponential
that defines the q-wave function for the free particle [3]. In a
similar manner, we argue that the corresponding generalized
propagators K+ and K− provide us with a procedure to construct
Ψ+ and Ψ− for the free particle. Our method however gives the
possibility to construct Kq, K+, and K− also for problems with
interactions and by this mean to identify the corresponding wave
functions. We also provide a way to perform the normalization
inspired in Feynman andHibbs work [34]. Section 6 is devoted to
the analysis of the harmonic oscillator, and we exemplify with the
case corresponding to K+. Finally, in Section 7, we study the K+
propagator for the particle in an infinite potential barrier. In
Section 8, we summarize our results and present the conclusion.
In a Supplementary Appendix we present a numerical study of
the propagators.

2 PROBABILITY DISTRIBUTIONS FOR
SYSTEMS WITH MAXIMAL S+ AND S−

We start by developing a recurrent solution for the probability
distribution of the generalized entropy S+, introduced in [1]. On
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the contrary to BG statistics, for a system subjected to S+
extremization, probability normalization, and energy
conservation, there is not a simple inverse function of the
probabilities p vs. the values of the energy state E. We
overcome this difficulty by finding a series solution to the
extremum equation. There are other possible series solutions,
but we discuss here one that has a good convergence. At the end
of the section, we give also the probability expansion for the
entropy S−, which is obtained by an equivalent Ansatz.

The functional to maximize the S+ entropy subjected to
probability normalization and averaged energy is given by [7, 8]:

Φ+ � ∑
l

(1 − ppll ) − γ∑
l

pl − β∑
l

Elp
pl+1
l . (2)

β and γ are Lagrange multipliers and El is the energy of the
state l, with probability pl . The average values of energy and
the normalization value have been omitted for simplicity.
The extrema of (2) given by δΦ+

δpl
� 0 gives a relation between

the energy E and the probabilities p (we have omitted the
index l):

βE � ( − γp−p − 1 − ln p)(1 + p + p ln p) . (3)

Notice that we omit the subindex l from the quantities. Setting
the Lagrange multiplier γ to −1, we first expand the previous
equation around p � 0 that accounts to consider the expansion
around y � plnp � 0. That is, for the exponential of minus
equation (3), one gets

e−βE � p−p2 lnp2 +1/2p3(lnp2 +2lnp3 + lnp4)
+1/6p4(−3lnp2 −8lnp3 −9lnp4 −6lnp5 − lnp6)

+1/24p5(12lnp2 +44lnp3 +70lnp4 +68lnp5 +42lnp6 +12lnp7 + lnp8)+ . . . .
(4)

We make the following Ansatz to solve equation (4).

p � e−βE⎛⎝1 +∑
n�1

cne
−nβE⎞⎠, (5)

where cn can be functions of βE. Plugging (5) in (4), to have the LHS
equal to the RHS, the coefficients multiplying the powers of e−nβE
with n> 1 have to vanish. This gives a recurrent expression for the
coefficients cn which for the first four coefficients is solved as

c1 � x2,

c2 � 1/2x2( − 1 − 2x + 3x2),
c3 � 1

6
x2(3 + 4x − 6x2 − 24x3 + 16x4),

c4 � 1
24
x2( − 12 − 16x + 60x2 + 116x3 + 30x4 − 300x5 + 125x6).

(6)

We have denoted βE as x. The coefficients (6) give the
following approximate solution for the probabilities versus βE:

p+ � e−x + e−2xx2 + 1
2
e−3xx2( − 1 − 2x + 3x2)

+ 1
6
e−4xx2(3 + 4x − 6x2 − 24x3 + 16x4)

+ 1
24
e−5xx2( − 12 − 16x + 60x2 + 116x3 + 30x4 − 300x5

+ 125x6) + . . . . (7)

In Figure 1, we compare the exact value of p vs. βE with the
power series solution (7) till 3rd order and with the Boltzmann
distribution e−βE .

Probability Expansion for the Entropy S− -
Consider the other generalized entropy dependent only on the
probabilities S−. For this entropy, the functional to extremizeΦ− reads

Φ− � ∑
l

(p−pll − 1) − γ∑
l

pl − β∑
l

Elp
1−pl
l . (8)

β and γ are Lagrange multipliers, and El is the energy of the
state l and pl its probability. Finding the extrema of (8) as δΦ−

δpl
� 0

and proposing the same Ansatz (5), we obtain a set of equations
that can be solved to give the recursive probability solution:

p− � e−x(1 − e−xx2 + 1
2
e−2xx2( − 1 − 2x + 3x2)

+ 1
6
e−3x( − 3x2 − 4x3 + 6x4 + 24x5 − 16x6))... (9)

3 MODIFIED AMPLITUDE EXPANSIONS

In this section, we use the series solutions for the probabilities in
terms of the energy obtained in the previous section, to perform
an analytic continuation to the complex plane. Considering a as
the amplitude of a path, this is a new complex variable
substituting the probability pl , and A as the action replacing
βEl . This identification will allow to study modified Quantropy
functionals, for the definition of Baez and Pollard (equation (1)),
as well as our definition (18). The usual Quantropy solution will
give an exponential a ∼ e

iA
h� . In our approach, this would be the

propagator K ∼ e
iScl
h� . We want to analyze the new statistics S+ and

S−. We will find a functional dependence of a vs. A (K vs. Scl) that
deviates from the exponential dependence.

The main idea is to complexify first the power expansion
solution (7) since the amplitude is a complex number, such that
we have a solution to the extrema of the modified Quantropy. The
functional to extremize reads

ΦBP,+ � ∫  (1 − a(x)a(x))dx − α∫

a(x)dx − λ∫A(x)a(x)a(x)+1dx.
(10)

Finding the extrema of (10) w.r.t. a, i.e., solving δΦBP,+
δa(x) � 0, one

gets

A
ih�

� ( − ca−a − 1 − lna)
(1 + a + alna) � F(a(A

ih�
)). (11)
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FIGURE 1 | Probability versus βE. The blue line represents the BG statistics distribution. The dots represent the exact dependence in (3), S+ statistics distribution,
while the continuous red curve overlapping with the dotted line represents the power series solution (7) till order 3, i.e., up to the e−4x correction.

FIGURE 2 | Real parts of the modified propagator (blue line) vs. standard propagator (yellow line), for the free particle for the modified statistics S+. We set the mass
and the Planck constant to unity. The quantum regime is given by Scl ≈ h�. Imposing Scl(h�which translates for fixed x � 1 in ta1/2, for fixed t � 1 translates in x2(2.
Notice that in the quantum regime Scl ≈ h�, there are differences between the standard and the modified propagator. In the classical regime, there are many oscillations
caused by the series expansion that should sum up when computing more terms. When Scl ≪ h�, then both results coincide. The difference between the results of
the modified propagator and the standard free particle is that the modified propagator result could be interpreted as the particle with an effective potential; this would give
a spatially bounded wave function.
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The range of validity of the propagators expressions depends
on the convergence of the imaginary series solution to this
equation. The series is obtained by doing the replacement βE
by A

ih� and p by a in (3). Also, the Lagrange multipliers have to be
mapped: β to λ and α to γ. The minus sign gives the right sign
after a rotation on the argument of the exponential (similar to a
Wick rotation). As the series solution continuation of (7), we
obtain the following expression:

a+(Aih�) � eiA/h�(1 − A
h�

2

ei(A/h�)

− 1
2
(A2/h�2)( − 1 + 2i(A/h�) − 3(A2/h�2))ei2(A/h�)

− 1
6
(A2/h�2)(3 − 4i(A/h�) + 6(A2/h�2) − 24i(A3/h�3)

+16(A4/h�4))e3i(A/h�) + . . .). (12)

Since A has units of action, the argument of the exponentials and
the terms on the expansion are adimensional. Substituting this
expression on the constraint equation (11), we obtain the real

and imaginary parts of F(a(A
ih�)). In Figure 2, the relevant

difference of the propagators K+ obtained employing (12) with
respect to the standard one can be observed in the region of Scl ≈ h�.

Using the parameter λ � 1
ih�
in (12), the expression for the

amplitudes becomes

a+(A) � e− λA(1 + (λA)2e− λA

+ 1
2
(λA)2(−1−2λA + 3(λA)2)e− 2λA

+ 1
6
(λA)2(3 + 4λA − 6(λA)2 − 24(λA)3

+16(λA)4)e− 3λA + . . .). (13)

It is not difficult to observe that all terms of this expansion can
be written as derivatives with respect to the parameter λ. If we
derive with respect to λ, the usual amplitude we obtain is
z
zλe

−λA � −Ae−λA. Higher derivates can be written as

(λ
n
)m

zm

zλme
−nλA � (−1)m(λA)me−nλA, (14)

where m and n are positive integers. Thus, we rewrite (3) as

a+ � e−λA + λ
2

4
z2

zλ2
e−2λA

+ 1
2
(− λ

2

32
z2

zλ2
+ 2λ

3

33
z3

zλ3
+ 3λ

4

34
z4

zλ4)e−3λA
+ 1
6
(3λ2

42
z2

zλ2
− 4λ

3

43
z3

zλ3
− 6λ

4

44
z4

zλ4
+ 24λ

5

45
z5

zλ5
+ 16λ

6

46
z6

zλ6)e−4λA + . . . .
(15)

One can compute the corrections to any order. Those
corrections to the usual amplitude a0 � eiS/h� can be

interpreted as higher order interactions of the action at
different frequencies1.

Now, one can apply the same method to determine the
distribution arising from the Quantropy with statistics S−. We
also have to perform the extension to the complex plane. The
amplitude distribution for the modified Quantropy coming from
S− is given by the following:

a− �ei(A/h�)(1+(A/h�)2ei(A/h�)
−1
2
(A/h�)2(−1+2i(A/h�)−3(A/h�)2)e2i(A/h�)

+1
6
(3(A/h�)2−4i(A/h�)3+6(A/h�)4

−24i(A/h�)5+16(A/h�)6)e3i(A/h�) + ...). (16)

4 QUANTROPY IN TERMS OF THE
PROPAGATOR

In this section, we present as an alternative proposal a kind of
integrated version of the Quantropy of [1]. First, we do it for the BG
entropy and then for S+, S−, and Sq. The change in distribution
probabilities which arise from modified entropies in statistics is now
reflected in the quantum arena as modifications to the propagators.
The propagators between points in space-time (xa, ta) and (xb, tb) in
quantummechanics determine the probability amplitude of particles
to travel from certain position to another position in a given time. As
modified entropies in statistical physics lead to modified probability
distributions, distinct probabilities of propagation over all paths from
(xa, ta) and (xb, tb) will arise from a modified Quantropy.

In the work [11], the Quantropy functional associated with BG
statistics was formulated, and its maximization leads to the weight on
the path integral a ∼ exp(−λS) with λ � 1/ih�. We propose another
functional, which in a sense constitutes an integrated version of
Quantropy. Its maximization leads to the propagator
K(x) ∼ exp(−λScl(x)). The Wentzel–Kramers–Brillouin (WKB)
method [35] allows to compute the wave function in a semiclassical
approximation. In a sense, this is linked to our approach, in which we
maximize a functional which determines the propagator with a
semiclassical approximation in terms of the classical action Scl . This
is exact for the free particle, the harmonic oscillator as well as for other
cases [36, 37]. The procedure is applied to generalized entropy
functionals, giving a modified propagator. For the Tsallis statistics,
we obtain Kq(x) ∼ expq(−λScl(x)). This structure is the same as the
one of the wave function for the free particle of the Tsallis statistic
Ψq(x) � expq(i(kx − wt)), which has been proposed as solution of
the nonlinear quantum equations of [13]. According to Feynman
arguments, one can start with the free particle propagator and
determine the corresponding wave function, as discussed in [34].
Thus, our procedure allows to find a propagator which can be
identified with the wave function of interest. We should note that
the propagator resulting from our procedure will describe not only the

1For example, for a massive particle those will be contributions from multiples of
the particle mass. For the harmonic oscillator also, there will be contributions with
a tower of masses and frequencies.
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free particle but to a good approximation any other problem with its
corresponding classical action. Our method should give the wave
function solution for the problem of interest.

With the same method, we write functionals for S+ and S− and
obtain probability distributions; we can write the corresponding
Quantropies and obtain the propagators K+ and K− and
correspondingly extrapolate them to the wave functions Ψ+
and Ψ−. This would give us the quantum behavior for a given
action. The obtained propagators can be related to nonlinear
quantum systems studied in the literature [26].

To define our functionals, we use the semiclassical limit to compute
the propagator; this is K(x) � F(a, b)eiScl(x)h� , denoting the classical
action as Scl(x) and being F(a, b) a constant depending on the time
difference tb − ta. For the free particle and the harmonic oscillator as
well as other physical problems [36, 37], this is an exact result.

For the BG statistics, we define the Quantropy functional:

Φ0 � −∫ 

K(x)lnK(x)dx − α∫ 

K(x)dx − λ∫

(Scl(x)K(x))dx. (17)

The extrema condition δΦ0
δK(x) � 0 gives as solution the

propagator dependence K(x) � e−1−α−λScl(x), with λ � 1/ih�,
where the normalization constant α determines F(a, b).

The integrated Quantropy functional for the new S+ statistic is
studied in [1, 6–10] is given by the following:

Φ+ � ∫ (1 − K(x)K(x))dx − α∫

K(x)dx

− λ∫

(Scl(x))K(x)K(x)+1dx. (18)

The extrema condition δΦ+
δK(y) � 0 with functional derivatives

leads to the equation:

0 � ∫  ( − δ(x − y)K(x)K(x))(lnK(x) + 1)dx − α∫

δ(x − y)dx
−λ∫ Scl(x)K(x)K(x)+1δ(x − y)(lnK(x) + K(x) + 1

K(x) )dx, (19)

and by changing the variable notation y to x, this can be
written as

λScl(x) � −1 − lnK(x) − αK(x)−K(x)

1 + K(x) + lnK(x) . (20)

Using our knowledge to solve this type of equation from the
statistical physics case, presented in Section 2, this gives for the
modified propagator the following series solution:

K+(x) � N+e−λScl(1 − e− λScl(λScl)2
+ e−2λScl(λScl)2( − 1 − 2(λScl) + 3(λScl)2)
− 1
6
e−2Sclλ × ( − 3S2clλ2 − 4S3clλ3 + 6S4clλ4 + 24S5clλ5

−16S6clλ6) + . . .). (21)

where N+ is the normalization constant. This is obtained by
taking the normalization α � −1. A different normalization
would change the coefficients in the expansion (21).

The maximization constraint for the new S− statistic is given by

Φ− � ∫  (K(x)−K(x) − 1)dx − α∫ 

K(x)dx

− λ∫

(Scl)K(x)−K(x)+1dx. (22)

The extrema condition δΦ−
δK(x) � 0 gives the equation:

λScl(x) � 1 + lnK(x) + αK(x)K(x)
1 − K(x) − lnK(x) . (23)

Using our knowledge of this type of equation from the
statistical physics case, we obtain for the modified propagator
the series solution:

K−(x)�N−e−λScl(1+e(−λScl)(λScl)2
−e(−λScl)(λScl)2(−1−2(λScl)+3(λScl)2

+1
6
e−2Sclλ(−3S2clλ2−4S3clλ3+6S4clλ4+24S5clλ5−16S6clλ6)+...),

(24)

N− is the normalization constant. In the case of Tsallis statistics,
the functional is given by the following:

Φq � ∫ (1 − K(x)q)(q − 1) dx − α∫ 

K(x)dx − λ∫  

(Scl)K(x)qdx, (25)

and the solution to δΦq

δK(x) � 0 is

Kq(x) � Nqexpq( − λScl(x)),
� Nq(1 − (1 − q)λScl) 1

1− q.
(26)

We have still to discuss the normalization of the different
Kernels. This q-propagator is related to the q-wave function
for the free particle nonlinear quantum mechanics of [3]. We
explore this case which has been studied by other means in the
literature [3, 13, 24].

5 FREE PARTICLE PROPAGATORS

In this section, we write a modified propagator up to third order
for the free particle in the case of the statistics S+, S−, and Sq for
q � 1 − δ and q � 1 + δ with δ > 0. The values of q less or equal
than one are considered in order to compare the different
propagators. We determine when the corrections to the usual
propagator play an important role which turns to be in the
quantum regime characterized by Scl ≈ h�. First, we describe the
procedure; then, we describe the normalization; and in the last
subsection, we summarize our results.

5.1 Superposition of Kernels
Now, we proceed to describe a generalized Kernel. The
generalized complex probability distribution given by
expansion (21) can be regarded as a superposition of
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Kernels. Furthermore, the superposition will carry to the wave
functions. In order to normalize the superposition, we
consider that the total Kernel expansion integration is the
same as the usual (1 for the free particle), as is explicit in the
Quantropy functional (4). We show that this coincides with
the result for the normalization obtained from propagating the
wave function [34]. For the free particle, the unnormalized
Kernel is as follows:

K0(x, t; 0, 0) � (2h�ϵiπ
m

)(n− 1)/2(1
n
)1/2

exp(imx2

2h� t
),

where n is the number of divisions of the time interval and ϵ
is an infinitesimal time parameter that satisfies t � ϵn. This
expression arises from computing the path integral to get the
following:

K0(x, t; 0, 0) � ∫

eiS/h�Dx

� ∫ 

exp⎛⎝ im
2h�ϵ∑n (xn − xn−1)2⎞⎠dnx

� ( iπ
2A

)1
2(2iπ
3A

)1
2(3iπ
4A

)1
2 × . . .

×((n − 1)iπ
nA

)1
2

exp(iA(x0 − xn)2
n

), (27)

with A � m
2ϵh�. This calculation is performed dividing the integral in

multiple Gaussian integrals (see [34]). The normalization

constant is given by N � (2πih� ϵ
m )− n

2

; hence, the normalized
propagator reads

K1(x, t; 0, 0) � (2h�tiπ
m

)− 1/2
exp(imx2

2h�t
). (28)

We define the unnormalized Kernel for the free particle as

k(x, t; 1) � exp(imx2

2h�t
) � e−λA, (29)

and the first two corrections in K+ are given by

k(x, t; 2) � (mx2

h�t
)2

exp(imx2

h�t
) � (λA)2 z

2

zλ2
e−λA,

k(x, t; 3) � −(m2x4

8h�2t2
+ m3x6

8ih�3t3
+ 3

m4x8

32h�4t4
) × exp(3imx2

2h�t
),

� 1
2
( − λ2

32
z2

zλ2
+ 2

λ3
33

z3

zλ + 3
λ4
34

z4

zλ4)e−3λA.
Thus, the generalized Kernel associated with S+ entropy is

given by

K+(x, t) � N+(k(x, t; 1) + k(x, t; 2) + k(x, t; 3) + . . . ).
The normalization constant is determined by the requirement∫  ∞

−∞K+(x, t)dx � 1, and up to the first corrections is given by

N+ � 1
1+3/(16 �

2
√ ) � 0.883.... The reason for this normalization is

also understood by an argument presented in the following,
motivated by Feynmann and Hibbs procedure [34].

Let us also discuss the normalization of themodified propagator
with respect to the usual one, as shown in the standard case [34].
We start considering the original unnormalized Kernel for the free
particle computed from the path integral:

K1,0(x, t; 0, 0) � 2
N−1
2 (πih�t

mN
)N− 1

2

(N)− 1/2exp(imx2

2h�t
).

To determine the normalization constant in the Feynman and
Hibbs method, we can apply formulas (2–34) and (4-3) on their
book [34] to write the new infinitesimal Kernel between position
xi and xi+1, with Δxi � xi+1 − xi, in a time ϵ as follows:

K+(ii+1, i) � 1
A
exp(iϵ

h�
L(Δxiϵ ,

xi+1 + xi
2

,
ti+1 + ti

2
)),

(1 + (iϵ/h�)2L(Δxiϵ ,
xi+1 + xi

2
,
ti+1 + ti

2
)2

exp(iϵL(v, x, t)/h�) + . . . ).
(30)

The method consists in writing the wave function at a position
x at a time t + ϵ in terms of the wave function at position y � x + η
at a time t, explicitly

ψ(x, t + ϵ) � ∫ ∞

−∞
K+(x, y, ϵ)ψ(y, t)dy,

� ∫  ∞

−∞
1
A
exp(iϵ

h�
L(x − y

ϵ ,
x + y
2

, t)) × (1 + . . .)ψ(y, t)dy,
� ∫ ∞

−∞
1
A
exp(iϵ

h�
L( − η

ϵ, x +
η

2
, t)) × (1 + . . .)ψ(x + η, t)dη,

� ∫ ∞

−∞
1
A
exp(imη2

2h�ϵ )exp⎛⎝ −
iϵV(x + η

2
, t)

h�
⎞⎠ × (1 + . . .)ψ(x + η, t)dη.

(31)

In the quantum standard theory, the normalization constant
can be determined by expanding the LHS of (31) ψ(x, t + ϵ) �
ψ(x, t) + ϵztψ and the RHS ψ(x + η) � ψ(x, t) + ηzxψ + η2

2 z
2
xψ

and exp(−iϵV/h�) � 1 − iϵV
h�
+ . . .; then, we compare the leading

term ϵ0. This implies that

1
A0

∫ ∞

−∞
exp(imη2

2h�ϵ )dη � 1. (32)

In a similarly fashion, one gets for the first correction to K+
written in (30):

1
A
∫  ∞

−∞
exp(imη2

2h�ϵ )(1 − (mη2

2h�ϵ)
2

e
imη2

2h� ϵ + . . .)dη � 1.

It is worth to mention that the more important contribution to
(31) is given for small η′s, as well as in our generalized case. It is
necessary to check this argument; in order to verify, let us
consider the following integrals:
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∫

eiCw
2
dw � ����

iπ/C
√

, ∫

eiCw
2
w4dw � 3

��
π

√
4(− iC)5/2,

∫

eiCw
2
w2n+1dw � 0, n ∈ N.

The first correction gives the following relation:

A � A0(1 + 3
16

�
2

√ + . . .). (33)

The previous normalization factor is a general feature to
apply to any potential V(x, t), in particular is valid for the
cases discussed here. A similar expression holds for the
normalization of K− normalization, and this will be calculated
in the next section.

5.2 Analysis of the Propagators
Here, we summarize the propagators obtained with the
normalization methods described in previous subsections. The
results for K+ can be extrapolated to K− and Kq because the
method applied to obtain all of the propagators is the same.

Recall the standard propagator of the free particle from the
space-time point (0, 0) to (x, t) is given by

K1(x, t; 0, 0) � N0exp(imx2

2h�t
). (34)

The constant w.r.t. x is as follows: N0 �
���
m

2πih�t

√
. For the case of

S+ and S− statistics, the first two contributions to the modified
propagators (21) and (24) read:

K ± � N ± exp(imx2

2h�t
) × (1 ∓ exp(imx2

2h�t
)(imx2

2h�t
)2

+ . . .), (35)

with N+ ∼ N0. For the Tsallis statics, the associated propagator
(26) is given by the expression:

Kq(x) � Nq(1 + (q − 1)(mx2

2h�it
)) 1

1− q

� Nqexp(imx2

2h�t
)(1 − (q − 1)(m2x4

2h�2t2
) + . . . .). (36)

We calculate the normalization constants for K ± up to the
first correction and exactly Kq to get the following:

N+ �
�����
m

2πih�t

√
1(1 + 3

16
�
2

√ + . . . ), (37)

FIGURE 3 | Real parts of the modified propagator (blue line) vs. standard propagator (yellow line), for the free particle for the modified statistics S−. We set the mass
and the Planck constant to unity. Imposing Scl(h� for fixed x � 1 translates in ta1/2, and for fixed t � 1 translates in x2(2.
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N− �
�����
m

2πih�t

√
1(1 − 3

16
�
2

√ + . . . ), (38)

Nq �
�����
m

2πih�t

√ ������(q − 1)√
Γ( 1(q−1))

Γ( 1(q−1) − 1
2) . (39)

In the quantum regime Scl ≈ h�, the differences between the
propagators K+,K−,Kq, and K0 are shown in Figures 2–4. In
Figure 2 the K− propagator is compared to the usual one. Also,
Figure 3 shows a comparision of the K− propagator with the
standard one. The last Figure 4 shows a comparison between the
propagators for the Sq statistics Kq for q< 1 and q> 1 with the usual
one. The region of interest is the quantum regime with Scl ≈ h�.
Furthermore, in the classical regime, the oscillations of the standard
propagator grow averaging to zero as discussed in [34]. Thus,
we are interested in comparing the corrections arising from
different statistics in the quantum region of interest and, in the
plots, the differences between the standard and the modified
propagator can be observed. In the classical regime, there are
oscillations that should sum up when computing more terms.
When Scl ≪ h�, then both results coincide as shown in Figure 5.
The modified propagators could be interpreted as describing a

particle with an effective potential; this would give a spatially
bounded wave function.

6 THE HARMONIC OSCILLATOR

In this section, we apply the formulation of our modified
Quantropy of Section 4 for the case of the harmonic
oscillator. We compute the modified propagator constructed
by a superposition as it was done previously. The extension of
quantum systems employing the modified q-statistics has
been made only for the case of the free particle [13] with
different arguments. Our proposal allows to search the
manifestation of nonextensive statistics in nonlinear
quantum systems for generic potentials. We illustrate the
procedure calculating only K+, and the other propagators K−
and Kq could be similarly calculated.

For the harmonic oscillator with Lagrangian L � m
2 _x

2 − mω2

2 x2,
the path integral Kernel reads

K(a, b) � ( mω

2πih�sinωT
)1/2

× exp( imω

2h�sinωT
((x2a + x2b)cosωT

− 2xaxb)).

FIGURE 4 | Real parts of the modified propagator (blue line) vs. standard propagator (yellow line), for the free particle for the modified statistics of Tsallis for
q � 1.1. We set the mass and the Planck constant to unity. Imposing Scl(h�, it translates for fixed x � 1 in ta1/2 and for fixed t � 1 translates in x2(2.

Frontiers in Physics | www.frontiersin.org May 2021 | Volume 9 | Article 6345479

Cabo Bizet et al. Quantum Implications of Non-Extensive Statistics

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Next, following a similar procedure as for the free particle, we
compute the generalized Kernel and normalize it. The
unnormalized Kernel is given by the following:

K(x, t, 1) � exp( − 1
2
λmωcot(ωt)x2). (40)

Now, we compute the next terms of the Kernel up to third
order, which are as follows:

K(x, t, 2) � (λ
2
)2

z2

zλ2
exp(−2λA)

� 1
4
λ2m2ω2x4exp( − λmωcot(ωt)x2), (41)

K(x, t, 3) � 1
2
( − λ2

32
z2λ + 2

λ3
33

z3λ + 3
λ4
34

z4λ)exp(−3λA)
� ( − 1

8
λ2m2ω2cot2(ωt)x4 − 1

8
λ3m3ω3cot3(ωt)x6

+ 3
32
λ4m4ω4cot4(ωt)x8) × exp(−3

2
λmωx2cot(ωt)).

(42)

Thus, the total normalized propagator up to third order reads

K+(x, t) � N+���
2π

√ ((mωcot(tω)
ih�

)1
2

exp(−mωx2cot(tω)
2ih�

)
+ 1
4
(mωcot(tω)

ih�
)5

2

x4exp(−mωx2cot(tω)
ih�

) − 1
8
⎡⎣(mωcot(tω)

ih�
)5

2

x4

+ (mωcot(tω)
ih�

)7
2

x6 − 3
4
(mωcot(tω)

ih�
)9

2

x8⎤⎦exp(−3mωx2cot(tω)
2ih�

) + . . .)
(43)

where N+ � 1�����
cos(ωT)

√ 1(1+ 3
16
�
2

√ + 1
96
�
3

√ ). The relative normalization

of the modified propagator with respect to the normalization
of the usual propagator is a result obtained in Section 5 [see
formulas (31–33)]. This result is universal, i.e., independent
of the action. In Figure 6, we compare the propagator for
the harmonic oscillator for the standard Quantropy and
for the one based on S+ and S− statistics. We are interested in
the quantum regime given by Scl ≈ h�. There are noticeable
effects in that regime. Outside the quantum region, oscillations
grow as in the usual case [34]. This behavior occurs in the
classical region in which the modified Kernels will also not
contribute.

FIGURE 5 | Real parts of the modified propagator (blue line) vs. standard propagator (yellow line), for the free particle for the modified statistics of Tsallis for q � 0.9.
We set the mass and the Planck constant to unity. Imposing Scl(h�, it translates for fixed x � 1 in ta1/2 and for fixed t � 1 translates in x2(2.
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7 POTENTIAL BARRIER

In this section, we apply the formulation of Quantropy
developed previously to compute the propagators
associated to a particle in an infinite potential barrier given
as follows:

V(x) � { 0 x > 0
∞ x ≤ 0 .

The standard unnormalized propagator for this problem is
given as follows [38]:

K(x, t; x0, 0) � exp[ im
2πh�t

(x − xo)2] − exp[ im
2πh�t

(−x − xo)2],
(44)

where x0 is the initial position. It is important to specify the
initial position since the particle cannot be located at x ≤ 0; thus,
we set x0 � ϵ, where ϵ is a small positive non zero parameter. This
allows tomake a comparisonwith the free particle case. Notice that if
we set x0 � 0, the propagator vanishes since the x dependence is
quadratic.

Now, we compute the nonlinear propagator associated to
the statistics S+: K+(x, t; ϵ, 0) up to third order, which is given
by expression (24). Since our theory is nonlinear, the
superposition principle is not valid, i.e., we cannot
consider the difference between the propagators of two
free particles, like is done for the usual propagator
K(x, t; x0, 0), rather in the semiclassical regime, we
consider the logarithm:

Scl � h�
i
ln(K(x, t; x0, 0)), (45)

This allows to substitute Scl into the series expansion
(21) K+(x):

K+(x, t; ϵ, 0) � e
im(x− ϵ)2

2πh� t − e
im(− x− ϵ)2

2πh� t[ ] × [1 + (eim(x−ϵ)2
2πh� t

−eim(−x−ϵ)2
2πh� t )ln2(eim(x−ϵ)2

2πh� t − e
im(−x−ϵ)2

2πh� t )
+1
2
(eim(x−ϵ)2

2πh� t − e
im(−x−ϵ)2

2πh� t )2[3 ln4(eim(x−ϵ)2
2πh� t − e

im(−x−ϵ)2
2πh� t )

+2 ln3(eim(x−ϵ)2
2πh� t − e

im(−x−ϵ)2
2πh� t ) − ln2(eim(x−ϵ)2

2πh� t − e
im(−x−ϵ)2

2πh� t )
×] + 1

6
(eim(x−ϵ)2

2πh� t − e
im(−x−ϵ)2

2πh� t )3[16 ln6(eim(x−ϵ)2
2πh� t − e

im(−x−ϵ)2
2πh� t )

+24 ln5(eim(x−ϵ)2
2πh� t − e

im(−x−ϵ)2
2πh� t ) − 6 ln4(eim(x−ϵ)2

2πh� t − e
im(−x−ϵ)2

2πh� t )
−4 ln3(eim(x−ϵ)2

2πh� t − e
im(−x−ϵ)2

2πh� t ) + 3 ln2(eim(x−ϵ)2
2πh� t − e

im(−x−ϵ)2
2πh� t )]]. (46)

Note that the propagator is ill-defined if ϵ is zero. This propagator
oscillates faster than the usual propagator in x, and its amplitude is
greater. However, the global behavior of both propagators is quite
similar, and the oscillations and the amplitude grow as x increases.
For the time dependence in both cases, the propagator tends to zero
as t grows (see the set of graphics in Figure 7).

In the usual case, the propagator K(x, t; x0, 0) has the following
interpretation, the first part corresponds to the classical path of the
free particle from (x0, 0) to (x, t), while the second part corresponds
to the classical path of a free particle from (x0, 0) bouncing off the
wall and going to (x, t). The modified propagator expression
suggests a similar interpretation, i.e., the whole propagator can
be considered as the sum of both classical paths with the leading
terms given by the standard free particle and nonlinear corrections
which can be interpreted as an effective potential.

8 FINAL REMARKS

In this work, we explore the novel concept of Quantropy in
Quantum Mechanics (Q.M.), which constitutes the analog of the
entropy in Statistical Mechanics (S.M.). Mathematically,
Quantropy can be regarded as an analytical continuation of

FIGURE 6 |We set the unitsm � w � h� � 1. The left image shows the real parts of the normalized propagators for a fixed time t � 1, and the region Scl(h� is given by
|x|(1.765. The blue line corresponds to the modified propagator K+; meanwhile, the yellow one represents the usual propagator K(x, t, 1). The right plot is the
comparison between the propagators amplitude for x � 1 where the blue and the orange are the correction and the usual, respectively, and the quantum region is given
by ta0.464.
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entropy, performed under the identification of the energy in S.M.
to the action in Q.M., and the identification of the temperature to
the Planck constant, the map reads: E→ S and T→ ih�.

We establish a new definition of Quantropy, with the energy
mapped to the classical action E→ Scl , i.e., we consider that the
main entity is the propagator K(x) instead of the amplitude a(x)
of the path. Thus, we construct the propagator, a kind of
integrated version of the Quantropy Q0 � −∫

X

K(x)lnK(x)dx;
in this way, the functional corresponding to the BG under
the maximization procedure leads to K0 ∼ exp(iScl/h�).

We applied this concept to find the quantum mechanical
implications of modified entropies S+, S−, and Sq, and the
associated quantropies lead to generalized propagators, which
imply a modified wave functional quantum mechanics (modified
Schroedinger equation). Let us point out that the small
probabilities limit of modified entropies S+ and S− leads to
Boltzmann–Gibbs entropy. Similarly in the limit of small path
amplitude, one recovers the original Quantropy from the
modified functionals. This formalism could be a novel
framework to study nonlinear quantum mechanics as
those consider in [4, 12, 13]. We also provide an
understating of modified propagators associated with
Tsallis statistics, leading to wave functions corresponding
to q-distributions.

Also, the result for the Tsallis statistics implies a propagator
Kq ∼ expq(iScl/h�), where expq(x) is the q-exponential; this is
relevant since it makes contact with the Tsallis result of modified
wave function for the free particle, whose solution is
ψq ∼ expq(i(kx − ωt)). The connection is due to the
arguments of [34] in the discussion of the propagator for the
free particle K0 ∼ exp(iScl/h�). They show that the propagator K0

corresponds to the free particle wave function
ψ0 ∼ exp(i(kx − ωt)). Thus, analogously Kq will lead to ψq.
As a further work, we need to explore the relations in the
case of the modified propagators K+ and K−. They will give rise
to wave functions whose dependencies will be given by
Ψ ± � exp ± (i(kx − ωt)), also for the free particle. In this
case, we have a recurrent series solution but we do not have
exact expressions for these generalized exponentials. As
discussed, our proposal provides also generalized propagators
K+,K−, and Kq for problems with interactions; we illustrated this by
considering the K+ associated with the harmonic oscillator and the
infinite potential barrier.

There are hints from previous studies that the modified
entropies considered here can be interpreted as linked with
modified effective potentials. Therefore, these
modifications to the free particle could be related to a
usual quantum mechanics with an effective potential [9].

FIGURE 7 | We set the units m � h� � 1 and ϵ � 0.01; the graphic shows the real parts of the modified propagator (blue line) vs. standard propagator (yellow line).
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However, these effects could also lead to nonlinear
quantum equations explored in the literature with
modified wave functions [3, 12, 13, 26]. Furthermore,
what we found here based on the concept of Quantropy
could be linked to results for quantum systems in terms of
usual entropy vs. the density matrix [10]. A system
governed by a modified statistics (S+, S− or Sq) will lead
to modified density-matrix distributions.

Moreover, the modified “propagators” K+,K−, and Kq

actually are strictly no longer standard propagators
because they lack the usual propagation property. This
means that is not equivalent to propagate the particle from
(0, 0) to (t2, x2), than to first propagate it from (0, 0) to (t1, x1)
and then from (t1, x1) to (t2, x2). This occurs because, for
example,

∫

K+(0, 0; x1, t1)K+(x1, t1; x2, t2)dx1 ≠K+(0, 0; x2, t2).

This relates to the fact that in a quantum open systems where
these generalized entropies aremotivated, the nature of the processes
is non-Markovian. Those systems in consideration aremodeled with
Master Equations (Stochastic) [39]. We consider that this formalism
could be a natural framework to study nonlinear quantum
mechanics.

We would like to explore further processes where the modified
statistics in Quantropy play a central role. This could be done via
modified wave functions, which could be interpreted as the usual
quantum mechanics with an effective interaction [40] or from
nonlinear quantum equations. The modified wave functions will
correspond to the modified propagators obtained in this work. In
this work, we obtained the modified propagators for the free
particle, harmonic oscillator, and the infinite potential barrier
associated to the different statistics K+, K−, and Kq, discussing
the associated quantum behavior. We would also like to explore
in future work the quantum mechanical evolution of other
physical systems.
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