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The paper studies the dynamics of the classical susceptible-infectious-removed (SIR)

model when applied to the transmission of COVID-19 disease. The model includes the

classical linear incidence rate but considers a nonlinear removal rate that depends on

the hospital-bed population ratio. The model also includes the effects of media on public

awareness. We prove that when the basic reproduction number is less than unity the

model can exhibit a number of nonlinear phenomena including saddle-node, backward,

and Hopf bifurcations. The model is fitted to COVID-19 data pertinent to Saudi Arabia.

Numerical simulations are provided to supplement the theoretical analysis and delineate

the effects of hospital-bed population ratio and public awareness on the control of

the disease.

Keywords: SIR model, variable recovery rate, hospital beds, backward bifurcation, Hopf bifurcation

1. INTRODUCTION

The severity and the global scale of the COVID-19 pandemic have pushed research in many
areas including the modeling of the disease dynamics with the goal of using such models to
better understand the effects of intervention strategies on the disease control [1–5]. Several factors
are known to affect the disease dynamics including the incidence rate, recovery rate, quarantine
strategy, and awareness effects. Classical susceptible-infectious-removed (SIR) epidemic models
were used extensively in the literature for modeling infectious diseases. Thesemodels are structured
on the numbers of susceptible (S), infectious (I), and removed (recovered or deceased) individuals
(R). When these classical models are used with the standard linear incidence rate and linear
recovery rate they are known to predict at most one endemic static equilibrium and cannot exhibit
bistability and periodic behavior. In fact, the model dynamic behavior depends mainly on the
basic reproduction number. The disease is controlled and subsequently eliminated if the basic
reproduction number is less than one and keeps spreading otherwise [6–8]. However, in practice
infectious diseases can exhibit periodic oscillations and other nonlinear phenomena during the
outbreak. Therefore, several studies attempted to model such nonlinear behavior. In this regard,
nonlinear incidence rates were shown to play a key role in producing rich dynamics in epidemic
models including periodic behavior [9–13].

The recovery rate is also an important parameter in the SIR model. Many of the studied SIR
models in the literature assumed a constant recovery rate with the implicit assumption that health
resources are sufficient to tackle the disease. However, the COVID-19 pandemic has shown that
health services even in the most developed countries were overwhelmed during the first wave of
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the pandemic. It is therefore more realistic to consider a
nonlinear recovery rate that incorporates factors such as
hospitals capacity and efficiency of treatment. In this regard,
various studies have analyzed epidemic models that incorporated
nonlinear expressions of the recovery rate [14, 15]. Shan and
Zhu [14], in particular, showed that the SIR model with linear
incidence rate and nonlinear recovery rate can exhibit rich
nonlinear phenomena such as saddle-node, backward, Hopf, and
Bogdanov-Takens bifurcations.

Another parameter that can also affect the dynamics of the
disease is public awareness and the role played by the media
in raising such awareness. The media continuously alert the
susceptible individuals regarding the severity of the disease and
the need to take preventive measures which can lead to a decrease
in the disease transmission [16, 17].

In this paper we propose to re-investigate the simple SIR
model which is based on the standard incidence rate. We propose
two modifications to the model: we assume a nonlinear removal
rate that depends on hospital beds availability, and we model the
media effects on public awareness in the form of a nonlinear
rate with a saturation constant. We show that the proposed
model can predict backward and Hopf bifurcations. Numerical
simulations are provided to supplement the theoretical proofs.
These simulations make use of parameter values fitted to
COVID-19 data in Saudi Arabia.

A note should be made about the important issue of model
validation. One objective of this work is to identify the parameters
of the proposed model using real data pertinent to Saudi Arabia
and then use the computed parameter values to analyze the static
and dynamic behavior of the model. This parameter estimation is
known as the inverse modeling problem. This inverse problem
is important for model calibration and to allow public health
officials to make reliable predictions about the pandemic. Various
approaches were used in the literature for this purpose. These
include least squares method that minimizes the sum of squared
residuals [2] and variational method applied to time-depended
model parameters [18]. Comunian et al. [19] provided a critical
analysis of the inverse problem. The inverse problem is known to
lack uniqueness of solutions [20] and also to lack the continuous
dependence of the parameters to be identified on the data, so
that any small errors in the data can lead to large discrepancies
in the parameters to be identified. Moreover, the fitting can
provide a tool for extracting some key quantities of interest,
such as the basic reproduction number, that are not explicit
in the epidemiological data streams. Unfortunately, as pointed
out rightfully in [21] most epidemiological data streams are
not designed for modeling. The challenge for data collection
and fitting becomes more severe when the proposed model is
highly structured. The balance between model structure and
quality of fit was made clear in a number of studies concerning
Saudi Arabia, where simple SIR models were shown to provide
better fits to COVID-19 data than more complex network-based
models [22, 23].

The rest of the paper is structured as follows. The model
is presented in section 2, then in section 3 we study the
model positivity, boundedness of its solutions and derive the
basic reproduction number. Section 4 discusses the existence of

equilibria while section 5 covers the stability of the disease-free
equilibrium. In section 6, we study the bifurcations of the model.
Numerical simulations are presented in section 7 followed by
concluding remarks.

2. THE DIMENSIONAL MODEL

The basic SIRmodel under study is described by the following set
of equations:

dS

dt
= µN −

β1SI

N
−

β2SI
2

(M + I)N
− µS (1)

dI

dt
=

β1SI

N
+

β2SI
2

(M + I)N
− (γ + µ)I (2)

dR

dt
= γ I − µR (3)

In these equations, S and I denote the numbers of susceptible
and infectious individuals. R, on the other hand, represents
the removed (recovered or deceased) individuals. In order to
simplify the model we did not include a separate equation for the
deceased individuals. We assume a linear incidence rate β1I with
β1 representing the transmission rate. The term β2I

M+I represents
the decrease in the disease transmission as result of increased
public awareness due to media. This awareness can lead the
public to take preventive measures. The parameterM represents
the half-saturation constant. We assume that β1 is always larger
than β2.

A rigorous functional description of public awareness is quite
challenging. The expression used to quantify public awareness
due to media was adopted from [17], but it is not unique. Other
expressions were proposed in literature. Liu et al. [12] modeled
the psychological effects of media by assuming the transmission
rate β1 to be an exponential decreasing function that depends on
numbers of reported infectious individuals. Feng et al. [16], on
the other hand, used a simple constant parameter to quantify the
effects of media on public awareness. The parameter γ represents
the removal rate. Since the model considers R to represent both
the recovered or deceased cases, γ also accounts for the fatality
rate i.e., the rate at which infected people decease. Unlike many
epidemic models where γ was assumed constant, we assume
in this work that γ depends explicitly on the hospital-bed to
population ratio (B) and the number of infectious individuals (I).
The parameter (B) is generally considered by health authorities to
be a key indicator of the adequacy of public health services [24].
The following relation which was first used in [14] is adopted in
this work:

γ (B, I) = γ0 + (γ1 − γ0)
B

I + B
(4)

γ1 is the value taken by γ (B, I) when B → ∞ and/or the number
of infectious individuals is very small i.e., I → 0. γ1 therefore
represents the maximum removal rate when the number of
hospital beds is more than sufficient and/or when there are few
infectious individuals. γ0 is, on the other hand, the value taken by
γ (B, I) when B → 0 and/or the number of infectious individuals
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is very large i.e., I → ∞. γ0 therefore represents the minimum
per capita removal rate that can be sustained in the face of a large
number of infections. Both values of γ0 and γ1 also depend on
the inherent characteristics of the specific disease (COVID-19).
In fact, when B is large, then the health system can provide a good
recovery rate, so that the removed individuals R includes mostly
recovered people. On the other hand, when B is small, then
the health system cannot provide care to infected persons, and
removed persons are mostly deceased persons. In other words,
γ0 should be close to the “natural” fatality rate.

3. MODEL ANALYSIS

The model is rendered partially dimensionless by defining:

s =
S

N
, i =

I

N
, r =

R

N
, m =

M

N
, b =

B

N

Equations (1–3) become:

ds

dt
= µ − β1si−

β2si
2

(m+ i)
− µs (5)

di

dt
= β1si+

β2si
2

(m+ i)
− (γ + µ)i (6)

dr

dt
= γ i− µr (7)

with

γ = γ0 + (γ1 − γ0)
b

i+ b
. (8)

The initial conditions of the system (5–8) are given by: s(0) =

s0 > 0, i(0) = i0 ≥ 0, r(0) = r0 ≥ 0.
In the following we prove that the proposed model is well-

posed by showing that it satisfies the positivity condition.
It can be noted that by adding Equations (5–7) we can deduce

that the time derivative of n(t): = s(t)+ i(t)+ r(t) is always zero
and therefore n(t) = 1 for every t and the solutions are therefore
always bounded.

3.1. Positivity of Solutions
We start by showing that the model solutions are always positive
for non-negative initial conditions.

Theorem 1. Let s0, i0, r0 ≥ 0. The solution of Equations (5–
8) with (s(0), i(0), r(0)) = (s0, i0, r0) is non-negative, that is
s(t), i(t), r(t) ≥ 0, for t > 0.

Proof: The first equation (Equation 5) can be written as

ds(t)

dt
= µ − s(t)

(

β1i(t)−
β2i(t)

2

(m+ i(t))
− µ

)

,

ds(t)

dt
= µ − s(t)y(t) (9)

where

y(t) = β1i(t)−
β2i(t)

2

(m+ i(t))
− µ.

Integrating Equation (9) we obtain the following expression:

s (t) =

(∫ t

0
µ e

∫ τ
0 y(u) du dτ + s0

)

e−
∫ t
0 y(τ ) dτ > 0.

This implies that s(t) is positive for all t. From Equation (6) we
have:

di(t)

dt
≥ −(γ + µ)i(t). (10)

Integrating Equation (10) we obtain:

i(t) = i0e
−

∫ t
0(γ+µ) dτ > 0.

It can also be shown in the same way that

dr(t)

dt
≥ −µr(t)

which gives

r(t) = r0e
−

∫ t
0µ dτ > 0.

We conclude therefore that the model solutions are
always positive.

4. EXISTENCE AND CLASSIFICATION OF
EQUILIBRIA

In this section we study the number of real and positive
equilibrium solutions of the system (Equations 5–8). The model
has always a disease-free equilibrium given by E0(s, i, r) =

(1, 0, 0). The non-trivial equilibria are obtained by setting the
right sides of equations (Equations 5–7) to zero. The equilibrium
condition of (7) is given by r = γ

µ
i and Equations (5) and (6) are

independent of r, so that they can be treated as an independent
sub-system. From Equation (6) we have:

s =

(

(γ0 + µ) i+ b (γ1 + µ)
)

(m+ i)
(

i+ b
)

((β1 + β2) i+ β1 m)
(11)

Substituting Equation (11) into Equation (5) leads to the
following cubic polynomial:

E1(i) = a3i
3 + a2i

2 + a1i+ a0 = 0 (12)

where a0, a1, a2 and a3 are defined by

a3 = − (γ0 + µ) (β1 + β2) ,

a2 = − (γ1 + µ) (β1 + β2) b− (γ0 + µ) β1m

+ (β1 + β2 − γ0 − µ) µ ,

a1 = (−β1 (γ1 + µ)m+ µ (β1 + β2 − γ1 − µ)) b

+ µ (β1 − γ0 − µ)m,

a0 = µbm (R0 − 1)
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TABLE 1 | Number of positive roots of Equation (12).

Case a3 a2 a1 a0 R0 Number of changes

in sign

Number of positive

roots

1 – + + + R0 > 1 1 1

2 – + + – R0 < 1 2 0, 2

3 – + – + R0 > 1 3 1, 3

4 – + – – R0 < 1 2 0, 2

5 – – + + R0 > 1 1 1

6 – – + – R0 < 1 2 0, 2

7 – – – + R0 > 1 1 1

8 – – – – R0 < 1 0 0

where

R0 =
β1

γ1 + µ
(13)

is the basic reproduction number derived following the
techniques presented in [25].

We can see from Equation (12) that the coefficient a3 is always
negative. The coefficient a0, on the other hand, is positive when
R0 > 1 and negative when R0 < 1. The possible number of
positive roots can be obtained by the Descartes rule of signs as
shown in Table 1.

Theorem 2. The system (5-7)

1. has a unique steady state solution if R0 > 1 and whenever
cases 1, 5, and 7 are satisfied;

2. can have more than one steady state solution if R0 > 1 and
case 3 is satisfied;

3. can have two steady state solutions if R0 < 1 and cases 2, 4,
and 6 are satisfied.

The results of Table 1 can be described qualitatively using
bifurcation diagrams. It can be seen from the table that forR0 <

1 [cases (2,4,6,8)] there can be either two solutions or no solution.
For R0 > 1 there can be only one solution. The possibility of
three solutions (case 3) can be ruled out since it can be shown that
the cubic equation (Equation 12) for case 3 can not predict three
positive solutions. Therefore, only two expected behavior can be
found as far as the bifurcation diagram (R0 − i) is concerned.
Figure 1A shows the case of two endemic equilibria for R0 < 1
and one endemic equilibrium for R0 > 1. Figure 1B shows, on
the other hand, the case of the existence for R0 < 1 of only the
disease-free equilibrium (no endemic solution) and one endemic
equilibrium forR0 > 1.

The steady state multiplicity forR0 < 1 (Figure 1A) indicates
the possible existence of a backward bifurcation where a stable
endemic equilibrium coexists with the disease-free solution.

Before proceeding to the stability analysis, another useful
relation can be obtained for the case of R0 < 1. The analysis
of the coefficients ai(i = 0, 3) (Equation 12) shows that the
following inequalities are always satisfied:

β1 − β2 − γ1 − µ < β1 − β2 − γ0 − µ < β1 − γ0 − µ

since γ1 > γ0 and β2 > 0. (14)

Therefore, if the last term in Equation (14) is negative i.e., β1 ≤

µ + γ0 the other terms of Equation (14) are also negative and
therefore a3 and a2 are always negative which means that no
positive solution can exist under this condition.

5. STABILITY OF THE DISEASE-FREE
EQUILIBRIUM

In this section we study the stability of the disease-free
equilibrium point E0.

Theorem 3. For the nonlinear dynamical system (Equations 5–
6)

1. if R0 < 1 then E0 is an attracting node;
2. if R0 > 1 then E0 is a saddle;
3. if R0 = 1 then E0 is non-hyperbolic, and

(a) if a11 =
(

β2
m +

γ1−γ0
b

−
β1

2

µ

)

6= 0, E0 is a saddle-node.

(b) if a11 = 0 and a22 =
(

β2 γ1
µm +

β1 (γ1−γ0)

µb
−

β1
2γ1

µ2

)

< 0 then E0

is an attracting node.

Proof: The Jacobian matrix J(E0) of the system (Equations 5–6)
at E0 is given by

J(E0) =

[

−µ −β1

0 β1 − γ1 − µ

]

. (15)

The eigenvalues of the matrix Equation (15) are λ1 = β1 − γ1 −

µ = (γ1 + µ)(R0 − 1) and λ2 = −µ. Therefore, we can see that
if R0 < 1 then E0 is an attracting node and is a saddle ifR0 > 1.

In the case ofR0 = 1 the first eigenvalue is zero (λ1 = 0) and
E0 is a non-hyperbolic point. In order to examine the nature of
E0 we make use of the center manifold theory. We first transform
themodel (Equations 5–6) into the origin. Let u = s−1 and v = i
then we have:

du

dt
= µ − β1 (u+ 1) v−

β2 (u+ 1) v2

m+ v
− µ (u+ 1) (16)

dv

dt
= β1 (u+ 1) v+

β2 (u+ 1) v2

m+ v
−

(

γ0 +
(γ1 − γ0) b

v+ b
+ µ

)

v.

(17)

Expanding the system (Equations 16–17) in a second order
Taylor series around (u, v) = (0, 0) yields

du

dt
=− µu− β1v− β1uv−

β2 v
2

m
(18)

dv

dt
=(β1 − γ1 − µ)v+ β1uv+

(

β2

m
+

γ1 − γ0

b

)

v2. (19)

WhenR0 = 1 then β1 − γ1 − µ = 0 and the system (Equations
18–19) becomes:

du

dt
=− µu− β1v− β1uv−

β2 v
2

m
(20)

dv

dt
=β1uv+

(

β2

m
+

γ1 − γ0

b

)

v2. (21)
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FIGURE 1 | Qualitative diagrams showing the two possible bifurcation behavior expected in the model. (A) backward bifurcation; (B) forward bifurcation (The stability

nature of the branches is ignored).

The Jacobian matrix of the system is

J =

[

−µ −β1

0 0

]

(22)

with eigenvalues
[

0
−µ

]

. (23)

We can therefore rewrite the system (Equations 20–21) as
follows:

dx

dt
= a11x

2 + β1xy, (24)

dy

dt
= − µy+ a22x

2 + a33xy (25)
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with

a11 =

(

β2

m
+

γ1 − γ0

b
−

β1
2

µ

)

,

a22 =

(

β2 γ1

µm
+

β1 (γ1 − γ0)

µb
−

β1
2γ1

µ2

)

,

a33 =
γ1 β1

µ
.

If a11 6= 0 i.e., b 6=
(β2

1m−β2µ)

µm(γ1−γ0)
then it can be seen from (Equations

24–25) that E0 is a saddle-node.

If a11 = 0 i.e., b =
(β2

1m−β2µ)

µm(γ1−γ0)
then we restrict the

system (Equations 24–25) to the center manifold parameterized
by y = h(x) = c1x

2 + c2x
3 where c1 and c2 are parameters that

need to be determined. The dynamics on the center manifold can
be shown to be described by:

x′ =
β1a22

µ
x3 + higher orders

y′ =− µy+ higher orders.

Therefore, E0 is stable if a11 = 0 and a22 < 0. Substituting the
condition a11 = 0 into a22 yields

a22 =β2
1 −

β2µ

m
. (26)

The condition a22 < 0 requires that

β2
1 <

β2µ

m
, (27)

otherwise point E0 is unstable.

6. BIFURCATION

6.1. Backward Bifurcation
In this section we set up the conditions under which the model
exhibits a backward bifurcation.

Theorem 4. The system (Equations 5–6) exhibits a backward

bifurcation whenever b < bcr =
γ1−γ0

(γ1+µ)2

µ
−

β2
m

and no backward

bifurcation otherwise.

Proof: We examine the existence of a backward bifurcation
using the methodology described in [26]. First, we make the
transformation of variables as follows: x1 = s, x2 = i. The
model (Equations 5–6) is rewritten as follows:

dx1

dt
= f1 = µ − β1 x1 x2 −

β2 x1 x2
2

(m+ x2)
− µ x1 (28)

dx2

dt
= f2 = β1 x1 x2 +

β2 x1 x2
2

(m+ x2)
− (γ + µ) x2. (29)

We assume the bifurcation parameter to be β1. The condition
R0 = 1 corresponds to β1 = γ1 + µ: = β∗

1 . For β1 =

β∗
1 , the Jacobian matrix of the system (Equations 28–29) at the

disease-free equilibrium E0 = (1, 0) is given by

J =

[

−µ −β1

0 β1 − β∗
1

]

. (30)

The right eigenvector of this matrix at the zero eigenvalue is

W = (w1,w2)
T = (−

β∗
1

µ
, 1). Similarly, the left eigenvector is

given by V = (v1, v2) = (0, 1). The stability parameters (a) and
(b) that determine the conditions for the existence of a backward
bifurcation can be found by the methodology explained in [26].
The coefficient (a) is given by:

a =

2
∑

k,i,j = 1

vkwiwj
∂2fk

∂xi∂xj
, (31)

which is reduced (since v1 = 0 and v2 = 1) to

a = w1w1
∂2f2

∂x21
+ 2w1w2

∂2f2

∂x1∂x2
+ w2w2

∂2f2

∂x22
. (32)

The different derivatives evaluated at E0 are given by

∂2f2

∂x21
= 0

∂2f2

∂x1∂x2
= β∗

1

∂2f2

∂x22
=

2(γ1 − γ0)

b
+

2β2

m
.

Substituting yields

a =
2(γ1 − γ0)

b
+

2β2

m
−

2β1(µ + γ1)

µ
(33)

On the other hand, the bifurcation parameter b is given by

b =

2
∑

k,i = 1

vkwi
∂2fk

∂xi∂β1
(34)

which is reduced to

b = w2
∂2f2

∂x1∂β1
+ w2

∂2f2

∂x2∂β1
, (35)

and can be shown to be equal to 1.
We conclude therefore that since b = 1 is always positive

then the system exhibits a backward bifurcation when a>0. The
condition a>0 is equivalent to

γ1 − γ0

b
>

(γ1 + µ)2

µ
−

β2

m
(36)

It can be seen that in the absence of media effects i.e., β2 = 0
the condition Equation (36) can be satisfied for some values of
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hospital-bed to population ratio (b). However, in the presence of
media effects β2 6= 0 and if the right hand side of the inequality
is negative i.e.,

β2

m
>

(γ1 + µ)2

µ
, (37)

then the inequality (36) is always satisfied for any values of b.
This means that media awareness also plays a critical role in the
occurrence/absence of a backward bifurcation. If, on other hand,
the inequality (37) is not satisfied then a backward bifurcation
occurs when

b <
γ1 − γ0

(γ1+µ)2

µ
−

β2
m

(38)

6.2. Hopf Bifurcation
In this section we study the Hopf bifurcation of Equations (5 −
−6). The Jacobian matrix is

J(s, i) =

[

J11 J12

J21 J22

]

, (39)

where

J11 = −[β1 i+
β2 i

2

m+ i
+ µ], (40)

J21 = −[β1s+
β2 s i (2m+ i)

(m+ i)2
],

J21 = β1 i+
β2 i

2

m+ i
,

J22 = β1 s+ 2
β2 s i

m+ i
−

β2 s i
2

(m+ i)2
+

(γ1 − γ0) bi
(

i+ b
)2

− γ0

−
(γ1 − γ0) b

i+ b
− µ.

We use the fact that along the steady state solution we have

β1 i+
β2 i

2

m+ i
+ µ =

µ
s ,

β1 s+
β2 s i

m+ i
− γ0 −

(γ1 − γ0) b

I + b
− µ = 0.

FIGURE 2 | (A,B) Results of fitting the model to COVID-19 data in Saudi Arabia for a period of 90 days starting from March 2, 2020. Blue solid line (model

predictions); red points (actual data).
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Thus, we have

J22 =
β2 s i m

(m+ i)2
−

(γ0 − γ1) bi
(

i+ b
)2

,

Trace(J) = J11 + J22 =−

(

β1 i+
β2 i

2

m+ i
+ µ

)

+
β2 s i m

(m+ i)2

−
(γ0 − γ1) bi

(

i+ b
)2

. (41)

TABLE 2 | Model parameters.

Parameter Value Source

b 6.322× 10−7 [29]

m 2.87× 10−6 Fitted

β1 0.0964 Fitted

β2 2× 10−5 Fitted

γ0 0.038 Fitted

γ1 0.0485 Fitted

µ 4.21× 10−5 [28]

We can write this equation as follows:

Trace(J) =−
8(i)

(m+ i)2
(

i+ b
)2

µ
(42)

where

8(i) = B5 i
5 + B4 i

4 + B3 i
3 + B2 i

2 + B1 i+ B0 (43)

with

B5 = µ (β1 + β2) ,

B4 = µ2 + 2 (β1 + β2)
(

b+m
)

µ + β2 γ0m,

B3 = µ (β1 + β2) b
2 + β1 µm2 +mµ (2µ − β2)

+ ((4β1 µ + γ0 β2 + γ1 β2 + 4β2 µ)m

+ µ (γ0 − γ1 + 2µ)) b,

B2 = m1
2µ2 +

(

(2β1 µ + γ1 β2 + 2β2 µ)m+ µ2
)

b2

+
(

2β1 µm2 + 2µ (γ0 − γ1 + 2µ − β2)m
)

b

B1 =
(

β1 µm2 + µ (2µ − β2)m
)

b2 + µ (γ0 − γ1 + 2µ)m2b1

B0 = b2m2µ2. (44)

FIGURE 3 | Bifurcation diagram for b = 6.322× 10−7 showing a backward bifurcation. solid line (stable branch); dashed line (unstable branch); circles (unstable

periodic branches); LP (static limit point); HB (Hopf point); blue line (endemic equilibrium); red line (disease free equilibrium).
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The coefficients of Equation (44) are always positive when the
following condition holds

β2 ≤ γ0 − γ1 + 2µ (45)

Simple analysis shows that the maximum value of γ1 when the
right side of the condition (45) is positive satisfies

γ1,max ≤ 2µ + γ0. (46)

The other condition of Hopf point Det(J) > 0 can also be readily
derived. However, both Hopf conditions are not easily amenable
to analytical manipulations and therefore numerical simulations
are used to illustrate the Hopf-induced dynamics of the model.

7. NUMERICAL SIMULATIONS

In order to carry out numerical simulations we needed first to
choose carefully the values of model parameters that reflect the

disease parameters in Saudi Arabia, a country that has recorded
more than 362,000 cases as on December 25, 2020 [27]. Only two
model parameters were assumed constant: the natural death rate
µ which is 4.21 × 10−5 [28] and the hospital-bed to population
ratio which is 22 per 10,000 [29]. The rest of model parameters
(m,β1,β2, γ0, γ1) were fitted to COVID-19 data in the country.
The fitting was carried out with the help of the optimization
function (fmincon) of MATLAB. The COVID-19 data used for
fitting consist of infected cases and removed (recovered and
deceased) cases. The data was collected for a period of 90 days

starting from March 2 (the day of the detection of the first
COVID-19 case in the country) until June 2. The data is publicly
accessible via the COVID-19 dashboard of the Saudi Ministry of
Health [27]. The reason we restricted the data to this period is
to be able to compare the obtained reproduction number with
similar results available in the literature [30, 31].

Figure 2 shows the fitting results. Both the infected cases
(Figure 2A) and removed cases (Figure 2B) show a reasonable
quality of fit. Since the optimization task led to local optima, we

FIGURE 4 | (A) Time trace close to the Hopf point R0 = 0.896 of Figure 3. (B) Time trace for R0 = 0.899 of Figure 3 showing unstable oscillations growing in

magnitude until they collide with the static branch.
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were guided by the results reported in [22, 30, 31] in selecting
initial conditions and bounds on the fittedmodel parameters. The
optimum values of model parameters are shown in Table 2.

For bifurcation studies the basic reproduction number R0

was taken to be the main bifurcation parameter so the
transmission rate β1 can be calculated by β1 = R0(γ1 + µ)
(Equation 13). The bifurcation diagrams were obtained using the
continuation software AUTO [32]. Using the obtained values of
model parameters, the condition (Equation 38) for a backward
bifurcation to occur can be shown to be b < 2.01 × 10−4.
Figure 3 shows an example of bifurcation diagrams in the (R0 −

i) plane for b = 6.322 × 10−7. This is the actual value of
the dimensionless hospital-bed to population ratio, and can
be seen to be much smaller than the aforementioned critical
value. Saddle-node bifurcation can be seen to occur in this
case. A static limit point LP appears at R0 = 0.803. The
diagram is also characterized by the presence of a Hopf point
occurring at R0 = 0.896. An unstable limit cycle can be seen
to emerge from the Hopf point and disappears from homoclinic
bifurcation. Here we have a situation where the disease-free

equilibrium coexists with the endemic equilibrium for the range
of basic reproduction number extending from HB (R0 = 0.896)
to (R0 = 1).

Figures 4A,B show numerical simulations for the Hopf point
and the limit cycle. Figure 4A shows the birth of a limit cycle
close to theHopf point while Figure 4B shows an example of time
trace of an unstable limit cycle at (R0 = 0.899). The oscillations
grow in magnitude until they terminate as they collide with the
static branch (S = 1).

From an epidemiological perspective, the existence of a Hopf
point in the model and the nature of the Hopf bifurcation
(subcritical) has two effects on the dynamics of the disease
transmission: (1) The endemic equilibrium coexists now with
the disease-free solution for values of R0 ranging from the
Hopf point to R0 = 1. This means that even if the basic
reproduction number is reduced below unity, it is still possible
for the pandemic to persist unless the reproduction number
is reduced below the point associated with the Hopf point
(HB, R0 = 0.896). (2) The existence of a subcritical Hopf
bifurcation (as opposed to supercritical when a stable limit

FIGURE 5 | Bifurcation diagram for b = 2.5× 10−4 showing forward bifurcation; solid line (stable branch); dashed line (unstable branch); blue line (endemic

equilibrium); red line (disease free equilibrium).
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FIGURE 6 | (A–E) Locus of the Hopf point of Figure 3 in terms of the model parameters.

cycle surrounds an unstable equilibrium point) means that
the pandemic cannot have a stable periodic behavior and this
is consistent with the current situation in the country which
showed a steady decline in the disease active cases. Even if
initial conditions (S, I) would fall close to the limit cycle, the
resulting unstable oscillations would increase in magnitude
but they will ultimately collapse and lead to the disease
suppression (Figure 4B).

Figure 5 shows, on the other hand, the bifurcation diagram
for b = 2.5 × 10−4, a value just larger than the aforementioned
critical point. The backward bifurcation disappears and we have
the occurrence of a forward bifurcation where the endemic
equilibrium is the only stable point. A forward bifurcation is of
course the outcome to aim for in a pandemic since if the basic
reproduction number is reduced to a value below unity, then the
disease outbreak is suppressed. Figures 3, 5 therefore showed the
important role the number of hospital beds plays in the control
of the pandemic. However from a practical point of view, the
current hospital-bed to population ratio (22 per 10,000 people)

is much smaller than the critical value. This means that a forward
bifurcation is unlikely.

Next, we examine the effects of variations inmodel parameters
on the occurrence of the backward bifurcation. This can be
suitably done by showing the location of the Hopf point when
these parameters are varied, as shown in Figures 6A–E obtained
also using AUTO. These figures are quite useful since they
illustrate the range of the backward bifurcation, that is the range
in term ofR0 of the stable coexistence of the endemic equilibrium
with the disease-free equilibrium. This sensitivity analysis is also
necessary given the unavoidable degree of uncertainty in the
fitted values of model parameters.

We start with the effects of media shown in Figures 6A,B. The
media effects are represented by two parameters: the awareness
rate β2 and the half-saturation constant m. It can be seen from
Figure 6A that the range of backward bifurcation decreased in
term of R0 since the Hopf point moves to large values. The
effect of m (Figure 6B) shows that as m increases the Hopf
point moves to larger values of R0 which means again a smaller
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range of coexistence with the disease-free equilibrium. We can
therefore conclude that the media also have an important role in
attenuating the backward bifurcation.

Figure 6C shows, on the other hand, the effects of the
minimum removal rate γ0. It can be seen that larger values
of γ0 decrease the range of the coexistence since the Hopf
point moves to larger values and closer to 1. The effect of
the maximum removal rate γ1 is shown in Figure 6D. Unlike
γ0, it can be seen that as γ1 decreases, the Hopf point moves
to larger values of R0. While it is true that the values of
γ0 and γ1 depend on the inherent properties of the virus
causing the COVID-19 disease, they also depend on health
care and basic clinical resources [14]. Their role is therefore
important in attenuating the backward bifurcation. Finally,
Figure 6E shows that as the hospital-bed to population ratio
b increases, the location of the Hopf point moves to larger
values of R0. This confirms the already obtained results that the
backward bifurcation is reduced with the increase in available
hospital beds.

8. CONCLUSIONS

The paper examined the dynamics of a SIR model applied to
COVID-19 disease with two modifications: (1) the removal rate
was assumed to be nonlinear and function of both the number
of infectious individuals and hospital-bed to population ratio;
(2) the model included public awareness due to media. The
model was validated using COVID-19 data pertinent to Saudi
Arabia. The model was shown to exhibit backward and Hopf

bifurcations. The Hopf point is subcritical and unstable limit
cycles terminate homoclinically. Therefore no stable periodic
behavior occurred in the model for the chosen set of parameters.
The main behavior observed in the model is a static coexistence
of the disease-free equilibriumwith the endemic point for a range
of the basic reproduction number extending from the Hopf point
toR0 = 1. The analysis also showed the important role played by
health care resources in term of hospital-bed to populations ratio
as well as the minimum andmaximum removal rates. In fact with
the country’s current health resources, a backward bifurcation is
the most likely outcome and can be attenuated by the increase in
the media awareness.
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