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In this paper, we propose a novel static CT system: triple planes CT (TPCT) system.

Three source-detector planes in different horizontal directions are placed in the system.

Line-array carbon nanotube sources with different voltages and sandwich detectors are

used. Compared to conventional cone-beam CT and common inverse-geometry CT, the

TPCT enables fast scanning and six-energy imaging. 1-D U-Net is applied to correct the

severe scatter caused by the special geometry. The limited-view problem is solved by

the hybrid reconstruction algorithm. A Monte-Carlo simulation is performed on a thorax

phantom. Both the reconstruction results and decomposition results have good image

quality and show the feasibility of our proposed TPCT imaging system.

Keywords: static CT, multi-energy imaging, inverse-geometry, hybrid reconstruction, material decomposition

INTRODUCTION

In recent years, technological advances in sources, detectors, electronics, and mechanics have
driven the development of CT imaging [1, 2]. Improved spatial and temporal resolution, reduced
patient dose, and artifacts, as well as multi-energy imaging, are being achieved [3]. Most of the
progress is based on the third-generation CT. In the system, the entire FOV is covered by the
fan-shaped X-ray beam. Hence, the translation of the sources is not needed [4]. The scan duration
is reduced to a few seconds, which eliminates the motion artifacts to a great extent. However, the
single-rotation cardiac imaging requires at least 50ms temporal resolution to avoid the artifacts
introduced by heartbeat [5]. Current clinical gantry-based CT scanners have a rotation time of
about 300ms. The rotation time limit of the current CT system is about 200ms due to mechanical
structure limitation [5].

Electron beam computed tomography (EBCT) was first proposed for cardiac imaging in 1983
[6]. The EBCT system’s temporal resolution can reach 50ms, but the system is obsolete because of
its high cost and poor signal-to-noise ratio (SNR) of the reconstruction images. Inverse-geometry
computed tomography, or IGCT, is first proposed in 2004 [7]. Different from the conventional CT
in which x-rays emit from a small source spot toward large detector arrays, the IGCT consists of
multiple X-ray sources distributed in a large area and a smaller detector [8]. The IGCT system
increases the sampling rate and reduces the cone-beam artifacts. A variety of related geometries
has been published in the past decade. A team from GE Global Research proposed a multi-source
IGCT in 2007 [9–11] and updated the system designs, hardware, and reconstruction algorithms in
the following years [12–16]. The inverse-geometry dedicated breast CT system, which consists of
a large-area x-ray source and a narrower photon-counting detector, was investigated in 2009 [17].
Its scatter performance was evaluated, too [18]. Cao et al. proposed a new CT architecture with
three stationary sources and three rotating detectors for cardiac imaging [19]. An IGCT system
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with multiple stationary source arrays and one rotating detector
is designed by Hsieh et al. [20], and the corresponding
reconstruction algorithm and results are presented [21, 22].
However, most of the previously published IGCT systems are
non-stationary or semi-stationary.

Carbon nanotubes (CNTs) based field emission sources
have been applied to fixed gantry CT systems. Compared to
conventional thermionic sources, CNT sources can operate
at room temperature, be electronically controlled, and have
instantaneous responses [23]. The first application of CNTmulti-
beam X-ray sources in a stationary CT system was a micro-CT
system with square and hexagonal geometries [24]. A rectangular
fixed-gantry system was proposed in 2014, specifically for
airport checkpoint baggage screening [25]. Recently, Zhang
et al. proposed the symmetric-geometry CT system and the
corresponding direct filtered back projection and linogram
reconstruction methods [26, 27]. Because of the complex CT
structure and under-sampling problem, multi-energy imaging is
difficult to achieve in the existing CNT sources CT systems.

In this paper, we propose a new stationary CT architecture:
triple planes CT (TPCT). In the TPCT system, three source-
detector planes in different horizontal directions are placed
longitudinally to obtain projection data from different views.
Three different voltages are set to three line-array carbon
nanotube (CNT) sources. Line-array sandwich detectors are
applied in the system. Scatter is estimated in the projection
domain using 1D U-Net to correct the scatter artifacts. A

FIGURE 1 | The diagram of the TPCT system. The blue blocks represent the sandwich detectors. The red lines and dots represent the carbon nanotubes and source

spots. The yellow belt represents the table.

hybrid reconstruction algorithm is proposed to enable six-energy
imaging. The Monte Carlo simulation of the thorax phantom
is performed. The reconstruction and decomposition results
are in good quality, proving the feasibility of our proposed
TPCT system.

This paper is organized as follows. In Section Methods, the
CT system, including the CT design, the scatter correction and
hybrid reconstruction algorithm, is detailed described. In Section
Results, the reconstruction results and decomposition of the

simulation are presented. Finally, the discussion and conclusion

are given in Section Discussion And Conclusion.

METHODS

CT Design
In the proposed TPCT system, three source-detector planes are
implemented. Figure 1 shows the diagrams of the TPCT system.

In each source-detector plane, one CNT multi-beam source
with 128 spots and three line-array sandwich detectors are
placed along the four sides of a rectangle. All spots are
arranged in the array with equal spacing. An iron filter is
placed in front of each source. The pre-collimators and the
post-collimators in the axial direction are applied to shield the
scattered photons in the axial direction. The total pixel number
of the line array detectors is 1092. A sandwich GOS detector
is applied in the system. A copper filter is placed between the
two layers.
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FIGURE 2 | The architecture of 1D U-Net.

Three sources-detectors planes in different horizontal
directions are placed longitudinally. The centers of all the planes
coincide in the horizontal direction. Three different voltages, 140,
110, and 80 kV, are set to three multi-beam sources, respectively.
When the TPCT is scanning, all the focal spots of one multi-
beam source are scanned sequentially. The sources of different
planes are scanned simultaneously. The emitted photons deposit
in both layers of the detectors. Therefore, projection data of
six energies are obtained without the movement of the sources
and detectors.

Scatter Correction
1D U-Net Convolution Network for Scatter Correction
Because of the special geometry of the TPCT, the incident
angle of partial X-rays can be extremely large, which generates
more scatter photons. The scatter photons absorbed by the
detector influence the detector’s energy deposition, resulting in
scatter artifacts.

Conventional scatter correction methods either use hardware
such as primary modulation to avoid the influence of scattering
[28, 29] or make use of software-based algorithms to predict
and compensate the scatter artifacts [30, 31]. However, primary
modulation is not applicable in the TPCT system because
photons arriving at the same detector pixel come from different
directions. Software-based correction methods are not feasible
because it is difficult to construct an accurate physical model for
complex geometry.

In the past several years, deep learning has become a powerful
tool in CT imaging [32]. In the field of scatter correction,
ScatterNet [33], DRCNN [34], and DSE [35] have been proposed.
Inspired by the previous researchers and focusing on our
problem, we propose the 1D U-Net convolution network for
scatter correction in the projection domain. The architecture of
the network is shown in Figure 2.

Common cone-beam CT scatter correction neural networks
use 2D data as the inputs and outputs of the network. As
for TPCT, the 1D data is used instead. The projection data
of the TPCT is a 2D matrix. Each column of the matrix,
a 1D vector, represents photons’ projection emitted from
one source spot toward all detector pixels. Because different
source spots are scanned sequentially and do not emit the
photons simultaneously, the influence caused by scattering only
exists between different detector pixels of the same source
spot. Therefore, the 1D neural network model is reasonable.
Compared to 2D networks, using 1D data instead of 2D
data dramatically reduces the computing time and increases
training samples.

Balancing the calculation complexity and the network’s
generation ability, the depth of the network is set to 7.
In each tier, there are two convolution layers and one
down/up-sampling layer. The size of the convolution kernel
is 1 × 3. Shortcuts are applied between the down-sampling
tiers and the up-sampling tiers. ReLU is chosen as the
activation function. Batch normalization is applied. The scattered
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FIGURE 3 | The diagram of the scatter-correction phantom. The materials represented by numbers 1–5 are: adipose tissue, bone, blood and iodine, lung tissue, air.

projection data are the inputs of the network. The actual
scatter of the projections, which are obtained by subtracting
the scatter-free results from the scattered results, are the
outputs of the network. A simplified thorax phantom is
used for training, which is described in Section Design of
the Scatter Correction Phantom in detail. One-eighth of the
total projection data is used for training. Adam algorithm
is used for backpropagation. The start learning rate is 0.01.
Exponential decay is applied. Batch size is set to 4. The total
training epoch is 300. The projections of different energies are
trained, respectively.

Design of the Scatter Correction Phantom
A simplified thorax phantom simulated by Monte Carlo
simulation is used to train the 1D U-Net convolution
network. The diagram of the phantom is shown in Figure 3.
The phantom used for training has a similar contour and
materials as the thorax phantom we used for evaluation
described in Section Monte Carlo Simulation. However, the
detailed shape and locations of the materials are different.
Because the scatter photons are low-frequency signals and
only 1D vectors but not the 2D projections are used as
training data, the network has good generalization performance.
It can be used for scattering correction of other human
thorax phantoms.

Multi-Energy Reconstruction
Hybrid Reconstruction for Six-Energy Imaging
Multi-energy CT imaging is enabled by the implementation of
photon-counting detectors [36, 37]. However, limited by the
small FOV and unaffordable cost, photon-counting detectors
are not in clinic application [38]. Double sources and
sandwich detector techniques have been developed for double
energy CT imaging. In recent years, Yu et al. proposed a
“TwinBeam” configuration for triple-energy or quadruple-energy
imaging [39].

In the TPCT system, three different voltages are set to the
multi-beam sources in three different planes (planes A, B, &
C). The plane-A projections are scanned in 80 kV, the plane-B
projections are scanned in 140 kV, and the plane-C projections
are scanned in 110 kV. By applying the sandwich detector, the
projections from six different spectra are obtained. However,
reconstructing the multi-energy images causes severe artifacts
because it is a typical limited-angle reconstruction problem.
Compressed sensing (CS) has been applied to limited-angle CT
reconstruction in the past decade [40–43]. In the TPCT system,
the projections from all three planes compose the full-view data.
Therefore, for six-energy imaging, two-thirds of projection data
are missed, which is too difficult for the CS-based algorithms
to solve.

Recently, Zhang et al. [44] proposed the MLCE algorithm
for limited-angle dual-energy CT reconstruction. Inspired by his
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FIGURE 4 | The hybrid reconstruction flowchart of the 140 kV low-energy images.
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FIGURE 5 | The structure of the fully connected network.

FIGURE 6 | The diagram of the pre-calibrated phantom. The materials represented by numbers 1– 6 are: adipose tissue, bone, muscle, blood and iodine,

lung tissue, air.
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FIGURE 7 | The diagram of the thorax phantom.

TABLE 1 | Material types and densities.

Number Material types Density

1 Adipose tissue 0.95 g/cm3

2 Bone 1.92 g/cm3

3 Muscle 1.06 g/cm3

4 Blood and iodine (95% Blood + 5% Iodine) 1.32 g/cm3

5 Lung tissue 0.26 g/cm3

6 Air 1.3 × 10−3 g/cm3

work, we propose the hybrid reconstruction algorithm for the six-
energy TPCT imaging. The 140 kV low-energy reconstruction
process is presented as an example. The flowchart is shown
in Figure 4. The plane-A and plane-C projections of 140
kV low energy are missed. A pre-calibrated phantom, which
contains the common body materials, is pre-scanned. Plane-A
projections of 140 kV low-energy, prj′A,140,low, and 80 kV low-
energy, prj′A,80,low, are obtained. Plane-C projections prj′C,140,low
and prj′C,110,low are also obtained. Images µ

′
A,140,low, µ

′
A,80,low,

µ
′
C,140,low, µ

′
C,110,low are reconstructed from the corresponding

projections respectively:

µ
′

A,140,low = H−1
low · prj′A,140,low (1)

µ
′

A,80,low = H−1
low · prj′A,80,low (2)

µ
′

C,140,low = H−1
low · prj′C,140,low (3)

µ
′

C,110,low = H−1
low · prj′C,110,low (4)

TheHlow represents the system matrix corresponding to the low-
energy detectors. After the reconstruction, two neural networks
are trained using the reconstruction images:

ϕ80→140,low = argmin
ϕ

Loss(ϕ80→140,low

(

µ
′

A,80,low

)

,

µ
′

A,140,low) (5)

ϕ110→140,low = argmin
ϕ

Loss(ϕ110→140,low

(

µ
′

C,110,low

)

,

µ
′

C,140,low) (6)

ϕ represent the two networks.
Images of the thorax phantom are reconstructed using the

Plane-A and Plane-C projections:

µA,80,low = H−1
low · prjA,80,low (7)

µC,110,low = H−1
low · prjC,110,low (8)
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FIGURE 8 | The spectra of all three voltages. The intensities have been uniformed for each spectrum.

Reconstruction images µ
′
A,80,low and µ

′
C,110,low are used as the

input data of the network to predict the 140 kV images:

µA,140,low = ϕ80→140,low(µA,80,low) (9)

µC,140,low = ϕ110→140,low(µC,110,low) (10)

The predicting images are then projected for the
final reconstruction:

prjA,140,low = Hlow · µA,140,low (11)

prjC,140,low = Hlow · µC,140,low (12)

The detailed structure and training configuration of the
networks are described in Section Design of the Fully-Connected
Neural Network.

Design of the Fully-Connected Neural Network
The diagram of the network is shown in Figure 5. A three-
hidden-layer fully-connected neural network is applied to map
the pixels from one energy to the other energy. To enhance the
network’s stability, a 3 × 3 image patch around the mapping
pixel is used as the input data. The output is a pixel. Therefore,
the input layer dimension is 9, and that of the output layer is 1.

The dimensions for all three hidden layers are 10. The activation
function is ReLU. Batch size is set to 32. MSE loss function and
Adam optimization algorithm are used. The start learning rate
is 0.05, and the exponential decay is applied. All the pixels of
the pre-calibrated phantom images are used for training. For
each tube voltage, the projections of the two planes are missed.
There are two energies (low energy and high energy obtained
by the sandwich detector) and three different tube voltages (80,
110, and 140 kV). Hence, 12 networks with the same network
configurations need to be trained.

Design of Pre-calibrated Phantom
In the fully connected neural network training, we use the
reconstruction results of a pre-calibrated phantom. The diagram
of the phantom is shown in Figure 6. Different body materials,
including adipose tissue, muscle, bone, blood, and iodine, are
set in this phantom. This pre-calibrated phantom is simulated
using analytical simulation with MATLAB software. The X-ray
spectra used in the analytical simulation are the same as those
used in the Monte Carlo simulation, presented in Section Monte
Carlo Simulation.
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FIGURE 9 | Reconstruction results of different algorithms and energies. From top to bottom: 140 kV high energy, 140 kV low energy, 110 kV high energy, 110 kV low

Energy, 80 kV high energy, 80 kV low energy. From left to right: scatter-free full-view (scatter-free-FV) results, scattered (scattered-FV) results, scatter corrected

(scattered-corrected-FV) results, triple plane CT (TPCT) results. The red square in the left top image is the ROI. The display window is [−1000, 2000] HU.
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RESULTS

Monte Carlo Simulation
A Monte Carlo simulation using the Geant4 toolkit [45]
is performed for the TPCT system. A modified thorax
phantom is scanned in the simulation, for the chest CT
is a powerful tool for diagnosing thoracic diseases [46].
The cross section of the phantom is shown in Figure 7.
Body materials of the phantom are selected from ICRU
46 [47]. The selected body materials include adipose tissue,
bone, muscle, iodine, and blood. They have similar elemental
components. The locations of the materials are labeled in
Figure 7. The detailed materials types and densities are described
in Table 1.

Three different voltages, 140, 110, and 80 kV, are set to three
multi-beam sources. The spectral of all three tube voltages are
shown in Figure 8. The currents of the tube are set to 25mA. The
spot exposure time of the 110 and 140 kV scanning is 1.5ms, and
that of the 80 kV scanning is 4.5ms. Twenty eight servers run the
simulation in parallel. Each server has two Intel Xeon Gold 6135
8-cores CPU. The total running time is about 58 h.

The angle-based SART [48] is used for image reconstruction.
TV [49] constraints optimized with gradient descent method are
applied. The iteration time is 30. For each iteration, 10 times
TV minimization is applied. Non-negative constraints are added
after each iteration. Decomposition results are shown by applying
the image-domain decomposition algorithm [36, 50]. The basic
materials contain bone, blood and iodine, soft tissue, and air.

To illustrate the proposed scatter correction algorithm and
the hybrid reconstruction algorithm’s effectiveness, the full-view
scanning simulations with scatter correction, and without scatter
correction are performed. Each tube voltage is set to the CNT
sources of all three planes. Therefore, the hybrid reconstruction
algorithm is not needed for full-view scan imaging. Other data
processingmethods and configurations are the same as themulti-
energy TPCT imaging.

Reconstruction Results
The six-energy reconstruction results of different algorithms are
shown in Figure 9. The scatter-free full-view (scatter-free-FV)
simulation results have the best image quality. The artifacts are
the least among the results of all the algorithms. In the scattered
full-view (scattered-FV) simulation results, cupping artifacts
caused by scatter photons are apparent. The artifacts are severer
with the decrease of the energy, which leads to the inaccuracy of
the linear coefficients. In the scatter-corrected full-view (scatter-
corrected-FV) simulation results, the cupping artifacts are vastly
reduced. The TPCT results are almost consistent with the scatter-
corrected-FV results and similar to the scatter-free-FV results,
which shows the feasibility of the TPCT imaging.

The quantitative evaluations show similar conclusions. The
mean error square (MSE) is calculated to evaluate the accuracy
of the reconstruction of different algorithms. The scatter-free-FV
are set as the references. The MSE results are shown in Table 2.
The MSEs of the scattered-FV results in all energies are much
higher than that of other algorithms, which shows the severe
impacts of scatter artifacts in the proposed CT geometries. The

TABLE 2 | The MSEs of different algorithms.

Energy Scattered-FV Scatter-corrected-FV TPCT

140 kV High 5,071 2,209 4,919

140 kV Low 11,866 2,117 6,804

110 kV High 7,124 3,954 3,795

110 kV Low 14,786 4,205 4,751

80 kV High 16,443 9,605 1,0143

80 kV Low 20,987 7039 6842

Unit: HU. Bold values are the best results among different algorithms.

MSEs of the TPCT results are similar to the scatter-free-FV
results and much smaller than that of the scattered-FV results.

Themean values and standard deviations (STDs) of the region
of interest (ROI) are calculated and compared among different
algorithms. The location of ROI is shown in the red rectangle in
Figure 9. Table 3 presents the comparisons. The mean values of
the scatter-corrected-FV results and the TPCT results are close
to the scatter-free-FV results’ mean values. However, the mean
values of the scattered-FV results deviate from the scatter-free-
FV results a lot. The STDs comparisons show similar conclusions.
The scatter-free-FV results have the smallest STDs. The STDs of
the TPCT results are small and close to the scatter-free-FV STDs.

Decomposition Results
The image-domain decomposition results of different algorithms
are shown in Figure 10. In the decomposition results of all
algorithms, the soft-tissue images and air images are classified
correctly. The bone images, blood, and iodine images are
misclassified in the scattered-FV results because of their close
linear attenuation coefficients. However, in the scatter-corrected-
FV results, they are classified correctly. They are similar to the
scatter-free-FV results, proving the scatter correction algorithm’s
successful application in this special CT geometry. The TPCT
decomposition results are extremely similar to the scatter-
corrected-FV results, which show the hybrid reconstruction
algorithm’s feasibility.

DISCUSSION AND CONCLUSION

In this paper, we propose a novel static CT system for
multi-energy imaging. The motivation for the TPCT system
is to enable multi-energy imaging while maintaining high
temporal resolution. For the conventional helical CT system, the
rotation time and maximum tube current limit higher temporal
resolution. The conventional thermionic source’s maximum tube
current is about several hundred milliamperes and <500mA.
It is the heat dissipation system that restricts the max current.
For the TPCT system, by applying multiple spots and field
emission sources, heat dissipation is not a problem. In theory,
the maximum current is proportional to the area of the carbon
nanotubes. At the current stage, the maximum current of the
TPCT prototype can reach 100mA. The design target of the
maximum current is 1,000mA. In this case, if the amount
of exposure is 100 mAs, the temporal resolution can reach
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TABLE 3 | The mean values and STDs of the ROI.

Energy Mean values STDs

Scatter-free-FV Scattered-FV Scatter-corrected-FV TPCT Scatter-free-FV Scattered-FV Scatter-corrected-FV TPCT

140 kV High −46 −70 −47 −36 5.56 17.08 10.58 11.52

140 kV Low −50 −113 −47 −68 10.53 36.74 14.01 21.55

110 kV High −42 −70 −30 −28 /// 0 8.73 22.10 9.62 10.31

110 kV Low −32 −99 −15 −25 13.14 43.45 27.11 27.94

80 kV High 26 −26 56 51 20.65 42.72 39.32 15.81

80 kV Low −59 −132 −70 −57 19.14 52.95 28.02 20.23

Unit: HU. Bold values are the ground truth (for Scatter-free-FV algorithm) and the results that are closest to the ground truth among different algorithms (for Scattered-FV,

Scatter-corrected-FV and TPCT algorithms).

FIGURE 10 | Decomposition results of different algorithms and body materials. From top to bottom: soft tissue, bone, blood, and iodine, air. From left to right:

scatter-free full-view (scatter-free-FV) results, scattered (scattered-FV) results, scatter corrected (scattered-corrected-FV) results, triple plane CT (TPCT) results. Display

windows is [0, 1].
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FIGURE 11 | The 110 kV low-energy scatter-free-full-view reconstruction

results without TV constraints. The display window is [−1000, 2000] HU.

0.1 s, which can satisfy the temporal resolution requirement of
cardiac imaging.

The special geometry of the proposed TPCT system
introduces extra artifacts, even in the full-view data results.
Figure 11 shows the scatter-free-full-view reconstruction results
without TV constraints. The artifacts are apparent in the images.
It was caused by the line-array geometry and uneven angular
distribution of different rays. By applying TV penalty term
in the iterative reconstruction, most of the streak artifacts in
Figure 11 can be eliminated. However, the strength of the TV
term needs careful adjustment to avoid the loss of image details.
Because of the large amount of calculation in the Monte Carlo
simulation, it is difficult to increase the dose to the clinical
application level, which might degrade the image quality. All
the factors undoubtedly increase the difficulty of high-quality
image reconstruction.

The scatter effect is another problem. Because of the large
incident angles, the scatter effect of the TPCT system is much
severer than the conventional fan-beam CT system. Hence it
needs correct. Because the analytical simulation is difficult to
simulate the scatter artifacts, the Monte-Carlo simulation is
needed. The computation burden of the Monte-Carlo simulation
is enormous for CT imaging. It is challenging to simulate
sufficient Monte Carlo data to train machine-learning-based
algorithms applied in the TPCT imaging. Though the proposed
machine learning algorithms have been proved to be valid in
our work, the generalization and stability need further proof in
future work.

However, some limitations exist in this study. First of all, in
the current CT design, the time interval between different planes’
scans, which is at the level of a few hundred milliseconds, can
cause motion artifacts. These motion artifacts could degrade the
material decomposition quality to a great extent. The solution
is to set all the detectors in the same plane and all the source

spots in another plane. A ring-shaped static CT system based
on the above idea is under design. Second, in the current dual-
layer detector design, a filter is applied between the low-energy
detector and high-energy detector. This design could reduce
the efficiency of photon detection in the second-layer detector.
The solution is to use another type of scintillator, which is only
sensitive to low-energy photons, for the first-layer detector. We
will negotiate with the manufacturer about the choice of a low-
energy scintillator and hope to change the low-energy scintillator
in future work. Third, the proof-of-concept results are based on
an ideal Monte Carlo simulation. However, the CNT technique
is not fully developed. Therefore, some non-ideal factors, such as
the consistency of different source spots, the stability of the x-ray
source spots when exposed for a long time, and the spectrum’s
angular distribution, may degrade the image quality. Finally, the

scatter correction neural network uses the scatter-free projection

obtained from the Monte Carlo simulation, which is not easy
to obtain in the actual system. One feasible method is to add a

post-collimator to each detector pixel and collect the scatter-free

projection data for only one pixel in each scan. Unavoidably, the

workload of this calibration is huge.
The good quality of the reconstruction results and

decomposition results verify the feasibility of the TPCT
design. It is an attempt to break through the limitation of existing
CT systems. In future work, we will focus on the performance in
the real system. Thoughmost of the physical process is computed
in the Monte-Carlo simulation, some effects, such as the CNT
sources’ stability, are not considered. At present, a real TPCT
prototype is in manufacturing. The scatter correction and hybrid
reconstruction algorithm will be verified in the real CT system in
the future.
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