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Monte Carlo (MC) and kinetic Monte Carlo (kMC) models are widely used for studying the

physicochemical surface phenomena encountered in most deposition processes. This

spans from physical and chemical vapor deposition to atomic layer and electrochemical

deposition. MC and kMC, in comparison to popular molecular methods, such as

Molecular Mechanics/Dynamics, have the ability to address much larger time and spatial

scales. They also offer a far more detailed approach of the surface processes than

continuum-type models, such as the reaction-diffusion models. This work presents a

review of themodern applications of MC/kMCmodels employed in deposition processes.
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INTRODUCTION

Monte Carlo (MC) and kinetic Monte Carlo (kMC) are widely used methods in many fields
of science and engineering: From materials science and polymers properties [1], astrophysics
and black holes mergers [2] to computational geometry and volume approximation [3]. Their
popularity in materials science stems from their inherit ability to simulate the molecular level
of materials seamlessly. In MC/kMC, the particles (molecules, atoms, beads) move stochastically
according to specific rules (events/processes), transferring the system randomly over the
phase-space and approximating the mean values of various properties. In contrast to other
molecular methods such as molecular dynamics (MD), the system in MC cannot easily be
trapped in local energy minima and even if it is trapped, it can be “kicked out” to other states
by incorporating sophisticated events. Furthermore, kMC filters out vibrational movements,
allowing it to run over much larger spatial and time scales than MD. Especially in film growth,
snapshots of MC/kMC simulation can be directly related and compared to scanning tunneling
microscopy images.

MC/kMChave notable applications in the study of film deposition processes—probably themost
important in the fabrication of semiconductor devices. Because of their importance, deposition
processes have extensively studied via MC/kMC models either standalone or combined with other
models in the context of multiscale modeling [4]. Nevertheless, there is no current review of the
works that use MC or kMC concerning film deposition. This work is a critical review of the works
on deposition processes utilizing MC/kMC models published within the last 5 years. Following
the introduction, the deposition processes are shortly presented and the works that use MC/kMC
models are reviewed. The paper ends with summary and outlook.
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THE MC AND KMC METHODS FOR
DEPOSITION PROCESSES

In MC and kMC algorithms, sequential events are performed
stochastically. MC solves the steady state Master Equation (ME)
and kMC the transient one. The transient ME reads,

∂pj (t)

∂t
=

∑

i6=j pi (t)Tij −
∑

i6=j pj (t)Tji (1)

where pj(i) is the probability of the system to be found in state
j(i) at time t. Tij and Tji denote the transition rate or transition
probability from state i to j and vice versa.

Each event occurs at a certain probability/rate to form
a Markov chain [5]. To generate the Markov chain the
desired probability distribution pi(j) must obey the detailed
balanced condition,

piTij = pjTji (2)

pi(j) are Boltzmann distributions,

pi(j) = exp

(

−
Ei(j)

kbT

)

(3)

where Ei(j)is the energy of the system in state i(j). Metropolis et al.
[6] proposed that,

Tij =



















1, if 1E ≤ 0

exp
(

− 1E
kbT

)

, if 1E > 0

(4)

so that the system will unconditionally move from state i to j if

1E < 0 and with a probability exp
(

− 1E
kbT

)

if 1E > 0, where

1E = Ej−Ei. Practically, a random number ξ is chosen between

(0, 1] and if ξ < exp
(

− 1E
kbT

)

, the system moves to the state j,

otherwise the move is rejected. In this way, different states of
the system are generated and the thermodynamic average of a
quantity qi reads

〈

q
〉

=

∑

i qipi
∑

i pi
(5)

kMC method solves Equation (1). The most popular algorithm
proposed by Bortz et al. [7] is termed as the N-fold method. In
the N-fold method random transitions from i to j are performed
unconditionally based on the transition rates, so that more likely
transitions are selected more often. Every transition event i is
assigned a rate which reads,

ri = vi exp

(

−
Ei

kbT

)

(6)

where νi is a frequency prefactor, Ei is the energy barrier and T
is the temperature. Practically, the simulation starts by defining

all rates (rate catalog) ri of all possible processes that describe the
physical problem. The total rate, R =

∑

i ri, is first computed and
then a process n is randomly chosen according to,

n
∑

i=1

ri

R
< ξ1 <

n+1
∑

i=1

ri

R
(7)

where ξ 1 is randomly chosen in (0, 1) and a single event is
performed. The time advances as t = t + 1t with 1t being,

1t = −
lnξ2

R
(8)

where ξ 2 is an additional random number chosen in (0, 1). R is
recalculated based on the new system state. The algorithm stops
when the desired time interval is reached.

kMC rates must obey also the detailed balance condition
(Equation 2), even if the system is not in equilibrium, to ensure
the dynamic evolution will correspond to a physical system [8].
kMC rates depend on both the particle and the lattice type that
participate in the process and can be calculated via Transition
State and Harmonic Transition State Theories (TST – HTST)
[8], Density Functional Theory (DFT) and ab initio methods
(e.g., [9–12]).

Focusing on the deposition processes, the notion of lattice is
of great importance. The lattice represents the deposition surface
and is composed of sites upon which all events occur, simplifying
the construction of the rate catalog. Depending on how the
lattice is represented, the atomistic information can either be
presented in full detail (e.g., [13]) or in a coarse-grained way
where microscopic neighboring sites are coalesced into coarse
cells (e.g., [14, 15]). Off-lattice kMC [16] methods have also been
proposed in atomistic representation where the rate catalog is
computed “on the fly” in every step.

In MC/kMC the number and types of processes that occur
upon a lattice site differ depending on the physical/chemical
phenomena of interest. For deposition processes, adsorption,
desorption, surface diffusion, and surface reaction events are
used. This set of events is customized to capture the physical
and chemical mechanisms unique to each deposition process
(Figure 1). The ultimate goal of anMC/kMCmodel is to describe
the interactions of particles with the surface, define the growth
rate and predict the profile of the growing film on the surface.

DEPOSITION PROCESSES

During any deposition process the material is deposited upon
a surface either by physical or chemical processes. In physical
processes, the material is injected as a gas and sticks on
the deposition surface with a probability (or rate). Physical
Vapor Deposition (PVD), which encompasses sputtering and
evaporation, belongs to this category of deposition processes.
In chemical processes, the material is grown on the deposition
surface through surface reactions. Examples of chemical
deposition processes are Chemical Vapor Deposition (CVD),
Atomic Layer Deposition (ALD) and electrochemical deposition.
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FIGURE 1 | Schematic representation at the molecular level of the basic principles in deposition processes. In PVD, particles are adsorbed in the substrate. In CVD,

particles (here an arbitrary molecule is shown) react on the substrate surface to grow the film. In ALD, multiple precursors (here A and B) are injected into the reactor

though pulses in a cyclic way of pulses-purges and grow the film through self-limiting surface reactions. In electrodeposition, the voltage (V) is applied causing the

particles from the cathode to move to the anode through an electrolyte where the film is grown through adsorption or surface reactions. In MC/kMC methods, an

activation energy is assigned to each event. In MC, if the event leads the system to a smaller energy, it is accepted unconditionally. If not, it is selected with a

probability according to Equation (2). In kMC, an event is selected from a predefined rate catalog containing all possible rates and performed unconditionally. Then the

system evolves in time according to Equation (4). The four basic events - adsorption, reaction, desorption and diffusion- whose combination can describe a deposition

process, with their activation energies, Ea, Er, Ed, and Edif are shown.
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Physical Vapor Deposition
PVD is performed in vacuum chambers where the coating
material is evaporated—via a method such as electron or laser
beam, arc discharge or sputtering—and is guided to the substrate.
Upon hitting the substrate, the vapor condenses to form a film.
It is used extensively for the production of metallic nanorods.
The applications of the nanorods, e.g., integrated circuit, metallic
glue, lithium-ion batteries and fuel cells to name a few, demand
conformal shell layer with minimized defects. Compared to CVD
and ALD, which offer highly conformal and uniform films on
nanostructures, PVD entails a lower cost, higher availability of
materials, greater growth rates, and no need for high substrate
temperatures. PVD is thus the preferred method for large-scale
fabrication. During PVD, the basic growth mechanisms are
adsorption and surface diffusion, making MC/kMC models very
popular to study the formation of nanorods.

In a series of works, Cansizoglu et al. [17, 18] and later
Yurukcu et al. [19], studied the growth of nanorods via MC.
They applied their MC model in PVD of Ag on In2S3 nanorods
and were able to assess the favorable conditions that lead to
a conformal shell coating (Figure 2A). They concluded that a
wider angular distribution of incident atomic flux can provide
conformal coatings around nanowires. Wang et al. [20] coupled
Computational Fluid Dynamics (CFD) simulations with an MC
model to predict the columnar growth of Cu nanorods for
different operating pressures of a plasma reactor. Du and Huang
[21, 22] used kMC to verify their theory for the transition
from thin film to nanorod Cu growth. They found a critical
coverage condition at which multiple-layer surface growth form
for the onset of nanorod growth. Yang et al. [23] created a kMC
model for metallic nanorods growth considering 3D Ehrlich–
Schwoebel (ES) diffusion effects. They concluded that larger
3D ES barrier leads to multiple steps formation and eventually
nanorods formation.

Alongside nanorods works, Pflug et al. [24] studied the
growth of ZnO:Al during reactive sputtering by expanding direct
simulation MC to include surface reactions. Chernogor et al.
[25, 26] performed MC computations to study the properties of
TiCrN-Mo2 N-Ni films during arc discharge PVD. Chen et al.
[27] proposed a kMC model for predicting the grain boundary
during MoS2 growth. Finally, Evrard et al. [28] proposed a
multiscale framework based on an MC model to predict film’s
thickness as a function of the mass flux reaching the deposition
surface during magnetron sputtering.

Chemical Vapor Deposition
CVD is the most widely used deposition process in industry.
Applications range from coatings and integrated circuits
to powders and nanomaterials. During CVD, a compound
(precursor) containing thematerial to be deposited, is transferred
to the substrate for deposition where the film is grown via
surface reactions. The deposition of two-dimensional (2D)
materials is one of the main applications of CVD in the
literature of the past 5 years. 2D materials, such as graphene
and transition metal dichalcogenides (TMDs e.g., MoS2,
WSe2, WS2), have attracted considerable interest due to their
potential in the semiconductor industry, particularly applied

to electronic and spintronic devices. Such devices demand
high quality orientationally-ordered films with low nucleation
density and low number of defects, properties supported
by CVD.

Most published works focus on graphene growth. During
CVD, graphene can grow in different shapes, such as hexagons,
multiple-lobed islands, snowflake-like structures or hexagons
with dendritic edges. The shape and size of these graphene
domains are affected by many process and physical parameters
such as deposition flux, temperature and state/orientation of
the substrate. To predict the growth shape, new diffusion
processes, whose activation energies are calculated via DFT,
are designed. Gaillard et al. [9] showed that zigzag edges of
graphene flakes arise from low fluxes and higher deposition
rates and lower temperature conditions produce less compact
islands formations. Their predicted shapes are in qualitative
agreement with experimental reports for hexagons, multiple-
lobed and snowflakes with fractal shapes. Additives, such as N2,
does not affect the shape of graphene flakes [29]. By introducing
etching process on their rate catalog, Chen et al. [30, 31] predicted
dodecagon with a hexagonal hole, double hexagonal rings,
honeycomb-like networks and nanoribbons. In a recent work
[32], they studied graphene growth on Cu (1 1 1) as a function
of deposition flux and temperature. They concluded that at high
temperatures, an increase in the deposition flux leads to graphene
transforming from a circular shape to an intermediate compact
hexagonal shape, before finally transitioning to a fractal with six-
fold symmetry. Göltl et al. [33] by combining experiments and
kMC computations proposed a qualitative description for the
growth of high aspect ratios nanoribbons on a Ge (0 0 1).

Because of the 2D nature of graphene, most works only
consider the early stages (monolayer) of growth. The mechanism
of graphene growth depends on the specific substrate. Graphene
growth on transition metals such as Ni, Co, and Fe, is a
precipitate of carbon atoms dissolved in the substrate, making
carbon solubility a key indicator for the growth rate. Graphene
growth on a Cu substrate is due to the diffusion of carbon
atoms on the Cu surface with the latter having low solubility and
catalyst activity. Enstone et al. [34] proposed an MC model for
graphene growth on a Cu substrate to study the effects of the
substrate’s roughness on graphene nucleation. They showed that
the key factors which determine the island size and formation
are roughness amplitude and mobility parameters (Figure 2B).
Conversely, on active catalytic surfaces, such as Ir, Rh, and Ru,
the interaction of carbon-substrate atoms is strong. Since the
graphene and substrate lattices are of differing structures, the
graphene spreads like a carpet, forming moiré patterns of super
unit cells of hundreds of atoms. Jiang and Hou [35], used a
multiscale “standing-on-the-front” (SOF) kMC [36] approach
for graphene growth on an Ir surface. In SOF-kMC the growth
kinetics are determined by the attachment and detachment of
different carbon clusters at a growth front. Their computations
showed that the rate-dominating event for concave growth-front
segments is carbonmonomer attachment—and five-atom carbon
clusters attachment for other segments—leading to time-resolved
growth behavior that was consistent with scanning tunneling
microscopy experiments.
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FIGURE 2 | (A) PVD of Ag core/shell on In2S3 nanorods: MC results for four different conditions: (a,e) Uniform incident flux, α = 0◦ (α is the angle between the

incoming flux and the surface normal to the substrate), (b,f) angular flux ∼cos(θ) with α = 0◦, (c,g) uniform flux with α = 30◦ and (d,h) angular flux ∼ cos(θ) with α =

30◦. Reprinted with permission from Metropolis et al. [6] - Published by the IEEE. (B) Graphene CVD: MC results for varying strength of surface roughness parameter

ξ and mobility parameter Ts for (a) ξ = 1.2, Ts = ∞ (b) ξ = 1.5, Ts = ∞ (c), ξ = 1.5, Ts = 0 and (d) ξ = 1.2, Ts =0. The color represents roughness. Reprinted with

permission from Yang et al. [23] - Published by the PCCP Owner Societies. (C) Electrodeposition in Li metal anode: kMC results for (a) uniform Li deposition in LiF

electrolyte, (b) dendrite growth in ROLi electrolyte. The red particles represent the Li metal which is being deposited, and the dark-blue particles represent the Li+ ions

which are diffusing. The process conditions (η - activation overpotential and T – temperature) are also shown. Reprinted with permission from Ding et al. [67] -

Published by the AIChe. (D) MoS2 CVD: kMC results for the morphology of MoS2 as a function of the Mo density gradient, n(r) – r distance from Mo source (a) no Mo

density gradient, n(r) = r0 (b–d) n(r) = r1, n(r) = r1.5, and n(r) = r2 (e–h) corresponding SEM images. Reprinted with permission from Jiang and Hou [35] - Published by

the ACS. (E) SiNx ALD: Thickness profile in a micro-structure with aspect ratio equal to 5 for parasitic CVD (no-ALD) reactions at different substrate temperatures (a)

150◦C, (b) 250◦C and (c) 350◦C, determined by kMC computations. Reprinted with permissions from Poodt et al. [56] - Published by the IEEE.

TMDs, such as MoS2, WSe2, and WS2, have gain the
attention of the semiconductor industry due to their relatively
inert surfaces and thickness-dependent electrical and optical
properties [37]. The factors that control the size and shape
of the evolving monolayer during CVD of TMDs is still an
open issue. The first works [10, 38] attempted to connect the
reactor operating conditions to the geometric characteristics of
TMDs. Both works applied kMC models that take into account
the explicit formation of chemical bonds. Govind Rajan et al.
[38] developed a kMC model based on the terrace-ledge-kink

formalism. They were able to accurately predict the geometric
shape, size, and aspect ratio of triangular and hexagonal MoS2
and WS2 structures and link them to the CVD reactor operating
conditions. Nie et al. [10] performed kMC coupled with DFT
computations to study the deposition of a WSe2 monolayer
on graphene. They constructed a phase diagram of regions of
triangular compact, fractal and dendritic structures of WSe2
based on various operating conditions. Yue et al. [37] detailed
the growth of WSe2 grains and Wu et al. [39] included
growth anisotropy during the growth of WS2 on quartz by
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incorporating local substrate effects in their kMC model. Chen
et al. [11] developed a combined DFT–kMC model to elucidate
the mechanism for ultrafast growth of regular triangular WSe2
monolayer with compact edges on Au (111). They concluded that
this ultrafast growth was due to fast kink nucleation and ultrafast
kink propagation along the edge. Li et al. [12] studied MoS2
growth and concluded that Mo concentration gradient is the key
factor for the morphological evolution of MoS2 from dendritic
shape to compact triangular geometry (Figure 2D).

Besides 2D materials, in the context of nanoparticle and
nanorod growth, MC simulations [12, 40], multiscale modeling
[41, 42] and enhanced multiscale modeling with Artificial Neural
Network (ANN) [43–46] have been performed. “Classical” kMC
models have also used for the deposition of diamond [47], AlN
[48] and GaAs [49] film, plasma enhanced a-Si:H CVD [50],
hybrid MD/kMC [51] and for growth in extereme pressure
conditions [52].

Atomic Layer Deposition
ALD is a subset of CVD that is based on sequential and
self-limiting surface reactions. In contrast to CVD, multiple
precursors are cyclically pulsed and purged to grow the desired
material. ALD offers exceptional conformality on high aspect
ratio micro-structures, high thickness and film composition
control [53] which makes it prevalent in modern complementary
metal–oxide–semiconductor (CMOS) and dynamic random-
access memory (DRAM) fabrication processes. Concerning
deposition inside micro-structures, MC/kMC methods have
been used for over three decades in the context of CVD [4].
Nevertheless, CVD could not provide good step coverage in high
aspect ratio structures, for which ALD came as a solution.

Schwille et al. [54, 55] proposed a new MC method to study
the deposition inside micro-structures. Their direct simulation
MC-derived method models only the walls of the geometrical
structure, rather than partitioning the entire domain into grid
cells. This assumes that deposited particles can only collide with
the molecules of the carrier gas and can only interact with
the walls of the structure [55]. The simplification drastically
decreased the computational demands. Poodt et al. [56] proposed
an MC model to study the step coverage inside pores by
considering reactor pressure effects through a gas-phase collision
model whose frequency is determined by the mean free path
of the precursor molecules. They concluded that ALD is in the
diffusion-limited regime for various experimental conditions,
even when low reactor pressures are used. Cremers et al. [57] used
a 3D MC model to compare step coverage in arrays of holes and
pillars and concluded that the latter are suitable for fabrication
processes where large surface areas are desired, such as in sensors,
solar cells, fuel cells, and batteries. Muneshwar et al. [58] used
a scalable kMC model to study the effects of parasitic reactions
(no-ALD) in the step coverage inside high aspect ratio features
(Figure 2E). They concluded that it is essential that parasitic side
surface reactions must be restricted, either by operating a lower
temperatures or adjusting dosages.

Furthermore, a series of MC/kMC studies regarding ALD
of 2D materials [59, 60] for conductive bridge random access
memory cells, quantum dots [61] and nanoparticle reactivity [62]

were also published. In a series of works, Christofides et al. [63–
68] conducted multiscale simulations of plasma assisted ALD
processes, combining CFD and kMC models to characterize
and control the process. Taken a step further, they enhanced
their computations with an ANN to characterize the microscopic
domain film growth dynamics.

Electrochemical Deposition
(Electrodeposition)
During electrodeposition, a thin layer of one metal is coated
on top of a different metal. An electrical current within a
conductive substrate reduces the cations within an electrolyte,
growing them as a thin film. Electrodeposition has become
an increasingly popular method of fabrication for the next
generation of batteries. Conventional Li-ion batteries are
reaching their theoretical energy density limits, pushing
researchers to investigate alternative materials. Li metal anodes
are conventionally used because of their high energy density.
However, Li metals show irregular deposition patterns such as
dendrite formations. The irregularities result in poor cycling
efficiency, capacity fade, and can cause batteries to short-circuit
[69], disqualifying its commercial viability. Sitapure et al. [69]
studied the multiscale formation of dendritic structures during
Li metal anode electrodeposition, using MD computations for
the heterogeneous solid-electrolyte interphase (SEI) and kMC
for the growth of the dendrites. This formulation considered
the effects of the mechanical properties of the heterogeneous
SEI in dendritic formation (Figure 2C). Vishnugopi et al. [70]
constructed a kMC model based on self-diffusion processes
without accounting for the existence of SEI. Rather, they
considered three types of self-diffusion: terrace diffusion,
diffusion away from a step and interlayer diffusion. Their
computations showed that, neglecting interlayer diffusion,
the growth mode of metal undergoes two transitions as the
deposition rate increases. The transitions are from film-type
to mossy and from mossy to dendritic. When included in the
model, interlayer diffusion favors the deposition of smooth films,
even at high deposition rates.

Besides Li anodes metal studies, Carim et al. [1, 71] used
an MC model along with experiments of photoelectrochemical
growth to study the spontaneous growth of highly ordered,
nanoscale lamellar morphologies of Se-Te films. In a series of
works, Li et al. [72–74] applied a 3D kMC model to study the
electrodeposition of Cu2ZnSnS4 for photovoltaic applications.
Zargarnezhad and Dolati [75] combined experiments and kMC
computations for the electrodeposition of Ni. Crevillén-García
et al. [76] proposed a kMC model based on Gaussian process
(GP) emulation to predict the final shape of the film. The
authors concluded that the use of GP greatly accelerates the kMC
computations without substantial precision loss.

SUMMARY AND OUTLOOK

MC and kMC models that have been used during the last 5 years
to study the physicochemical phenomena of deposition processes
were discussed. The various categories of deposition processes
(PVD, CVD, ALD and electrodeposition) were introduced and
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selected applications were highlighted. This work maintains
a broad perspective of process types and applications, and
contributes to recent reviews regarding the computational
approaches for the theoretical investigation of graphene growth
[77, 78], multiscale modeling in CVD [4] and the implementation
of surface reactions in kMC [79].

Though old in conception, MC/kMC methods continue to
provide a deep insight of the physical/chemical mechanisms
during deposition of novel high-end materials by introducing
simple, yet effective, customized processes. MC/kMC are
expected to play an important role on the study of Xenes
materials [80] which—in contrast to the other 2Dmaterials—can
be produced with deposition processes alone. Algorithmically,
emergent deep learning techniques provide promising methods
to produce detailed and realistic rate catalogs with minimum
input from the user. This, combined with parallel processing
techniques, is expected to increase the robustness and
applicability of kMC methods.
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