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In this paper, we study the effect of dark energy on the extended thermodynamic structure
and interacting microstructures of black holes in AdS, through an analysis of
thermodynamic geometry. Considering various limiting cases of the novel equation of
state obtained in charged rotating black holes with quintessence, and taking enthalpyH as
the key potential in the extended phase space, we scrutinize the behavior of the Ruppeiner
curvature scalar R in the entropy-pressure (S,P)-plane (or equivalently in the temperature-
volume (T ,V)-plane). Analysis of R empirically reveals that dark energy parameterized by
α, significantly alters the dominant interactions of neutral, charged and slowly rotating black
hole microstructures. In the Schwarzschild-AdS case: black holes smaller than a certain
size continue to have attractive interactions whereas larger black holes are completely
dominated by repulsive interactions which arise to due dark energy. For charged or
rotating AdS black holes with quintessence, R can change sign at multiple points
depending upon the relation between α and charge q or angular momentum J. In
particular, above a threshold value of α, R is never negative at all, suggesting
heuristically that the repulsive interactions due to quintessence are long ranged as
opposed to the previously known short ranged repulsion in charged AdS black holes.
A mean field interaction potential is proposed whose extrema effectively capture the points
where the curvature R changes sign.

Keywords: black holes, thermodynamic geometry, anti de Sitter space, thermodynamics, quantum gravity

1 INTRODUCTION

Cosmological data points toward an accelerated expansion of our Universe due to the presence of a
large negative pressure leading to the conjectured existence of an anti-gravitational force, namely
dark energy [1–3]. Despite the prevalence of several theoretical models in efforts to explain
astronomical observations, the key traits of dark energy such as its source and nature still
remain mysterious. Some of the models for dark energy employ a cosmological constant Λ or a
quintessence field. Λ is a very small constant whereas quintessence energy is quite inhomogeneous.
Quintessence can be thought of as a fluid that fills the spacetime everywhere [4–6] and is modeled as
a time dependent scalar field ϕ(t) evolving toward its potential minimum. It is associated with

pressure, Pq � _ϕ
2
/2 − U(ϕ) and energy density, ρq � _ϕ

2
/2 + U(ϕ) where U(ϕ) is the potential

function. Often, it is useful to define a quintessential state parameter as, ωq � Pq/ρq and it is clear that

in general ωq ∈ (−1, 1) with the extreme limits corresponding respectively to _ϕ→ 0 andU(ϕ)→ 0. It
is generally believed that the late time evolution is because of the cosmological constant or
quintessence field permeating through the Universe. Therefore, if the quintessence fluid
encompasses the whole Universe, it is expected to also surround the black holes changing their
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spacetime geometry both near the horizon as well as at the
asymptotic cosmological horizon. In this context, a new
spherically symmetric quintessence black hole solutions were
found in (3 + 1)-dimensions by Kiselev [7] and the solution in
AdS space time is well studied in the literature from
thermodynamics point of view [8–14]. Here, we should
caution the reader about the usage of the terminology of
quintessence in Kiselev’s black hole metric which may be
different from the notion used in cosmology modeled by a
scalar field as discussed above. Few reasons follow. First,
Kiselev’s metric may not be a solution of field equations
derived from a gravitational action coupled to specified matter
Lagrangian (such as representing quintessence field). Instead, the
form of energy-momentum tensor in Kiselev’s approach is a
specific choice with free parameters, picked in a way to give
features of quintessence and inserted in to the field equations.
Furthermore, the stress-energy tensor used in the Kiselev’s metric
is anisotropic and does not represent a perfect fluid. Therefore,
our usage of the terminology of quintessence in Kiselev black hole
spacetimes considered in this paper is within the limitations of
these conditions (please see [15] for more clarity on these issues).
Despite these limitations, Kiselev’s quintessence black hole metric
is an interesting toy model, as being spacetimes which can be
explored, with some appealing mathematical as well as physical
features. For special limiting values of the equation of state
parameter (to be discussed later) the pure quintessence
geometry without mass or charge/rotation parameters can
model spacetimes with asymptotic geometry which is a softer
version of de Sitter or anti de Sitter spacetimes [16] and is of
interest. We also see in this paper that the additional contribution
due to quintessence helps in developing our understanding of the
behavior of black hole microstructues in a broader setting with
additional parameters.

An interesting aspect of black hole thermodynamics ensues
while generalizing the notion of ADM mass from asymptotically
flat to (A) dS spacetimes, namely the requirement of a dynamical
cosmological constant. A variable Λ plays a central role in
extending Smarr’s formula from flat to AdS spacetimes,
typically giving rise to the notion of bulk pressure P and a
novel concept of thermodynamic volume V [17, 18]. This
novel set up where the first law is augmented by a VdP term
coming from a dynamical Λ is known as extended black hole
thermodynamics [19–21]. In this approach, the ADM mass M of
the spacetime is identified with its enthalpy (rather than internal
energy U) as M � H � U + PV , with the new first law being
written as,

dH � TdS + VdP, (1)

where V � (zH/zP)S is the thermodynamic volume conjugate to
P. For charged black holes, there turns out to be an exact
identification of its phase transitions [19, 22, 23] (including
the matching of critical exponents) with the well known
liquid-gas transitions of a van der Waals fluid (vdW) [24],
putting them in the same universality class [24–29].
Thermodynamic quantities of charged rotating black holes in
AdS in extended phase space were found by Gunasekaran et al. in
[30]. Results were extended to Gauss-Bonnet-AdS black holes by

Cai et al. and Wei et al. in [25, 31]. All the above set ups have also
been generalized to black holes in AdS with quintessence in
interesting works. For instance, effects of quintessence on the
PV-critical behavior of charged AdS black holes was worked out
in [32] showing that the critical quantities are modified, but the
small/large black hole behavior remains the same. Further, the
effect of dark energy on the efficiency of black hole heat engines
has been studied in [33] showing that quintessence can improve
the efficiency, especially at the critical point. Maxwell’s equal area
law was used by Guo in [34] to show that phase transitions of AdS
black holes with quintessence can still be mapped to those of the
liquid-gas system. More recently, it has been shown that
quintessence alters the high temperature phase structure of
black holes undergoing the Hawking-Page transition [35]. In
fact, a novel black hole solution of charged rotating black holes in
AdS in the presence of quintessence, generalizing the Kiselev’s
metric was obtained by Xu andWang [36]. For this new solution,
the thermodynamics and phase transitions in the extended
thermodynamic space were discussed recently giving rise to a
novel equation of state [37]. Our aim is to take these studies [36,
37] forward to study the geometry of the spaces of
thermodynamic equilibrium states for these black hole
solutions and to get additional insights into the possible
microstructures of these black holes.

The fact that a black hole horizon can be assigned the notion of
a temperature indicates toward a microscopic description of black
holes where microstructures share the degrees of freedom of the
Bekenstein-Hawking entropy [38–42]. These microscopic
structures have associated with them, thermal degrees of
freedom and respect equipartition theorems (see for example
[43]). With this picture in mind, it is useful to think of the
microstructures of the black hole in parallel with the molecules
that constitute a fluid system in standard thermodynamics and
the study of thermodynamic geometry proves to be of outmost
importance in its usefulness in probing the nature of interactions
between the microstructures [44–73]. To the best of our
knowledge, Ruppeiner geometry for black holes was first used
in [44], to gain a statistical understanding of the underlying
degrees of freedom, with extensions to Reissner-Nordström, Kerr
and Reissner-Nordström-AdS black holes with internal energy
and electric potential (or angular velocity for Kerr black hole case)
as the fluctuation variables [47]. For example, based on empirical
analysis, it is now known that charged AdS black holes are
associated with both attraction and repulsion dominated
regions as shown in remarkable works [62, 63]. Extending to
theories with higher derivative terms, including those with a
Gauss-Bonnet term in the action, the attraction-repulsion
dominated regions are determined by their electric charge
(and Gauss-Bonnet coupling, αGB in d≥ 6) whereas, their
neutral counterparts are dominated by attraction [66–69].
Charged BTZ black holes (see [73] and references therein) on
the other hand, are associated with purely repulsive behavior.
More recently, Ruppeiner geometry has given intriguing results
for charged black holes with spherical [70] and hyperbolic
horizons [72], with deep insights in Hawking-Page transition
and Renormalization group (RG) flows, respectively. The effect of
quintessence (along with a cloud of strings) on phase transitions
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of charged black holes in AdS was pursued in [14, 58] recently. In
general, thermodynamic geometry [74] and its generalizations
have been the subject of various exhaustive studies involving
several classes of thermodynamic systems including quantum
gases, magnetic systems [75–78] (see also [79–81]) and most
notably black holes. The generic form of the Ruppeiner metric is
defined as the negative Hessian of the entropy,

dl2R � − z2S
zxizxj

dxidxj, (2)

where xi and xj are independent thermodynamic fluctuation
coordinates i, j ∈ {1, 2, . . . , n}. The entropy S � S(xi) is a
function of other thermodynamical variables and the
coordinates xi are conserved charges of the black holes such as
M,Q, J and also span over the new variable P,V in extended
thermodynamics. For example, in the case of Schwarzschild-AdS
black holes one has S � S(H, P) where symbols have their usual
meaning from standard thermodynamics. This may be inverted
to obtain H � H(S, P) so that in the thermodynamic limit, one
has the familiar first law1: dH � TdS + VdP. In fact, one can write
another related Weinhold metric on the space of thermodynamic
equilibrium states in the enthalpy H � M representation2 as

dl2W � z2H
zyizyj

dyidyj (3)

where {yi} are independent thermodynamic variables, such as
(S, P). It is not difficult to show that dl2R � dl2W /T and therefore
the metrics differ only by a conformal factor (please see
Supplementary Appendix for a concise derivation).

Motivation and plan: In this work, thermodynamic geometry
is pursued in extended thermodynamics where enthalpy in Eq. 1
is identified as the correct thermodynamic potential [17] for the
proper identification of microstructure interactions with
quintessence, keeping the vdW analogy in mind. Using
enthalpy as the key potential, the effect of dark energy on
microstructures using thermodynamic geometry is
appropriately studied in (T ,V) and (S, P)-planes, following
references [62–73]. We consider various limiting cases arising
from the novel equation of state obtained recently in [37] and use
Ruppeiner’s thermodynamic geometry to show that the inclusion
of quintessence leads to novel repulsion dominated regions,
modifying the behavior of microstructures of neutral, charged
and rotating black holes in AdS. Furthermore, we introduce a
phenomenological model of a mean field interaction potential for
the analysis in the extended thermodynamics setting where a

direct analogy with fluid systems is available. It is shown that the
extrema of the interaction potential correspond to the points
where the Ruppeiner curvature is zero, essentially capturing the
location where the type of dynamic interactions shift from
attractive to repulsive or vice-versa. The organization of the
paper is as follows. In Section 1.1 below, we start by writing
down the thermodynamic relations for general charged rotating
black holes in AdS surrounded by quintessence field. Section 2
contains the basic tools of Ruppeiner geometry required to find
the thermodynamic curvature. The metric on thermodynamic
space in the novel (T ,V)- and (S, P)-planes is obtained and a
general formula for Ruppeiner curvature is reviewed. In Section 3
we obtain exact results for thermodynamic curvature and study
the points where it vanishes for the special cases of Reissner-
Nordström and Schwarzschild black holes in AdS, surrounded by
quintessence. The case of slowly rotating black holes with
quintessence is studied numerically in following section. In
Section 4, we propose a general scheme for understanding the
behavior of microstructures of AdS black holes from a mean field
perspective, which in particular, captures the points where the
Ruppeiner curvature vanishes. The case of charged AdS black
holes (without quintessence) is discussed first in Section 4.1 and
then in Section 4.2, we discuss the effect of quintessence on the
microstructures of charged and neutral black holes in AdS using
the interaction potential. Finally, we end with remarks in Section
5. Some introductory discussions on thermodynamic metric
structures, particularly in the context of extended black hole
thermodynamics can be found in the Supplementary Appendix.

1.1 Thermodynamics of AdS Kerr-Newman
Black Holes Surrounded by Dark Energy
Making use of Newman-Penrose formalism [83], the
solution for a Kerr-Newman-AdS black hole generalizing
the Kiselev’s model metric with quintessence, was obtained
by Xu and Wang [36], with the line-element in Boyer-
Lindquist coordinates given as,

ds2 � − χΩ[dt − a sin2 θ

k
dϕ]2

+Ω
χ
dr2 +Ω

~P
dθ2

+ ~Psin2 θ

Ω [adt − (r2 + a2)
k

dϕ]2

. (4)

Here,

χ � (r2 + a2)(1 + r2

l2
) − 2mr + q2 − αr1−3ωq , (5)

Ω � r2 + a2 cos2 θ, k � 1 − a2

l2
, ~P � 1 − a2

l2
cos2 θ, (6)

where a is the rotation parameter and q2 � q2e + q2m with qe
and qm being the electric and magnetic charges respectively.
Further, m is the black hole mass and l � �����−3/Λ√

is the AdS
radius. In general, the state parameter ωq is bounded as
−1<ωq < − 1

3 and α is the parameter standing for the
intensity of the quintessential field surrounding a black
hole, obeying the inequality [36],

1For a rotating black hole one can write the first law as: dH � TdS + VdP + ΦdQ +
ΩdJ (in the usual notation) where H � U + PV is the enthalpy of the spacetime
pointing toward the fact that the entropy is a function of the parameters,
i.e., S � S(H,Q, J ,P). However, for simplicity we shall completely fix J and Q as
mere parameters and consider fluctuations of two thermodynamic variables only.
2The Weinhold metric is originally defined in the energy representation [82],
taking U as the key potential. In standard black hole thermodynamics U is
identified with mass M of the black hole to evaluate the metric on the space of
thermodynamic equilibrium states. However, in extended thermodynamics M is
identified with enthalpy H and hence it is appropriate to call it an enthalpy
representation.
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α≤
2

1 − 3ωq
8ωq . (7)

Quintessence has been introduced as an alternative to the
cosmological constant scenario to account for the current
acceleration of the Universe. This new dark energy
component allows values of the equation of state parameter
ωq ≥ − 1. The case of a cosmological constant corresponds to
the value ωq � −1. Kiselev [7] noted that the value of ωq � −2/3
is favorable on symmetry grounds (the general metric is
symmetric as function of radial coordinate r), in addition
to having an asymptotic behavior reminiscent of de Sitter
spacetimes with interesting horizon structure. Moreover, this
case also satisfies the dominant energy condition [16, 84]. The
analysis of PV-criticality and other studies in charged AdS
black holes surrounded by quintessence [32, 33] showed that
another appealing feature is that analytic results could be
obtained for this value, where as for other values, one has to
resort to numerical methods. We thus focus on the case ωq �
−2/3 henceforth, which allows an analytic study of the mean
field potential and its connection to zeroes of Ruppeiner scalar
in following sections. Note that for α � 0, the line element (4)
reduces to the Kerr-Newman-AdS solution while the Kerr-
AdS solution can be obtained by further setting q � 0. We
explore these and other limits in subsequent sections.

Useful expressions for mass, entropy and temperature are
given respectively as,

m � 1
2r+

(r+(r+(a2 + l2 + r2+)
l2

− αr2+) + a2 + q2), (8)

S � A
4
� π(a2 + r2+)

k
, (9)

T � 1
4π(a2 + r2+) (2(r+(a

2 + l2 + 2r2+)
l2

−m) − 3αr2+). (10)

In extended black hole thermodynamics, the cosmological
constant is identified with pressure as,

P � −Λ
8π

� 3
8πl2

, (11)

with its thermodynamic conjugate volume obtained as,

V � (zM
zP

)
S,Q,J ,α

� 2π(a2l2(q2 − αr3+) + (a2 + r2+)(a2l2 − a2r2+ + 2l2r2+))
3k2l2r+

. (12)

Here mass M, angular momentum J and charge Q, are related
to parameters m, a and q as follows,

M � m
k2
, J � ma

k2
, Q � q

k
. (13)

The physical parameters M, J and Q now satisfy the Smarr-
Gibbs-Duhem relation [37],

M � 2(TS − PV + ΠJ) + QΦ + αΨ( − 2a2

a2 + r2+
− 1), (14)

where the electric potentialΦ andΨ (which is conjugate to α) [32]
are given as,

Φ � qr+
a2 + r2+

, Ψ � −r
2
+
2k
. (15)

Let us note that when α � 0, all the above quantities go back to
the relations for charged rotating AdS black holes [30]. The
Hawking temperature in terms of pressure can be written as [37],

T � 2r+(8πP(a2 + 2r2+) + 3) − r+(8πa2P + 3) − 3(a2+q2)
r+ − 8πPr3+ − 6αr2+

12π(a2 + r2+) .

(16)

The plot of temperature vs volume is shown in Figure 1.
The above equation needs to be inverted to obtain the equation

of state of the general Kerr-Newman AdS black holes. However,
as noted in [30], it is in general not possible to obtain an exact
expression and hence one resorts to the slowly rotating charged
black hole case, where the equation of state is [37],

P � T
2r+

+ Q2

8πr4+
− 1
8πr2+

+ α

4πr+

+ 3J2(Q2r2+ − 2Q4 − 8πQ2r3+T − 4αQ2r3+ + 8πr5+T − 2αr5+ + 4r4+)
8πr6+(2Q2 + 2πr3+T − 1

2 αr
3+ + r2+)2

+ O(J4),
(17)

which is an expansion in powers of J and terms of orderO(J4) are
neglected in further analysis. In the following sections, various
limiting cases of the above equation of state are considered
leading to neutral, charged and (slowly) rotating black holes in
AdS with quintessence. For each of the cases, the behavior of
thermodynamic curvature is studied and for the former two cases,
a mean field potential description is also obtained.

2 RUPPEINER GEOMETRY AND
MICROSCOPIC INTERACTIONS

To begin with, consider a thermodynamic system with some n
independent thermodynamic variables which can fluctuate about
their mean values. A prototypical example with n � 2 would be a
hydrostatic system with a fixed volume described by the grand
canonical ensemble. The external bath controls the temperature
(β) and chemical potential (μ) of the system whereas their
respective thermodynamic conjugates, namely energy3 and
number of particles are allowed to have fluctuations about
their mean values. If the system is at equilibrium, which we
shall assume throughout this work, the first derivatives of the
entropy shall vanish identically which means that expanding S

3Typically, temperature is conjugate to the entropy as is clear from the first law,
dE � TdS+ other terms. However, inverting this and writing as, dS � βdE + . . . .,
leads to the notion of β being conjugate to energy.
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about its equilibrium value S0 to include effects of fluctuations
one can write up to the lowest non-trivial order,

S ≈ S0 + z2S
zxizxj

dxidxj, (18)

where {xi} are the fluctuation coordinates the entropy is a
function of, and i � 1, 2 . . . .n. It is understood that the
derivatives are evaluated at thermodynamic equilibrium.
Recalling Boltzmann’s definition of entropy as a measure of
the probability as S � lnΩ, one can invert this, writing Ω � eS

and then the probability of finding the system with the
independent variables between xi and xi + dxi for all i is then
given by,

Pdx1dx2 . . . .dxn � Ce−dl
2
Rdx1dx2 . . . .dxn, (19)

where we have used Eq. 18 and have written,

dl2R � − z2S
zxizxj

dxidxj, (20)

Clearly, Eq. 20 defines a length element on the space of
independent thermodynamic variables describing the system.
However, such a length has great physical meaning. Indeed,
from Eq. 19 it is clear that for any two points on the space of
independent thermodynamic variables, the probability of them
being related by a fluctuation more, the closer they are! The
reader is referred to [79–81] for a much more detailed account on
the role of the Ruppeiner metric in thermodynamic fluctuation
theory. Note that taking any arbitrary thermodynamic potential,
ϕ � ϕ(zi) with new coordinates zi, one can define a metric as
follows,

dl2 � − z2ϕ

zzizzj
dzidzj. (21)

This would still in some sense define a length between different
thermodynamic equilibrium states. However, in general it may
not have a good connection with thermodynamic fluctuation
theory and may not result in curvature scalar with nice
interpretation (like the one provided by Ruppeiner scalar R) as

the measure of interactions of the system. The metric in Eq. 21
may be meaningful if it is obtained from Eq. 20 by an appropriate
coordinate transformation. More details are given in the
Supplementary Appendix.

2.1 Line Element and Ruppeiner Curvature
To proceed with the study of thermodynamic geometry of the
black holes in AdS with quintessence background, we note that
even though the Ruppeiner metric [Eq. 2] is initially defined as
the Hessian of the entropy, one can calculate equivalent forms of
the metric using other potentials such as the enthalpy, H �
H(S, P) in Eq. 27, where the fluctuation coordinates are
simply S and P. We shall, in this work, study Ruppeiner
geometry on the (T ,V)- and (S, P)-planes, i.e., using both
enthalpy and Helmholtz free energy representations4. The line
element on the (S, P)-plane can be calculated without much
difficulty and reads [66, 68] (see Supplementary Appendix for
derivation),

dl2R � 1
CP

dS2 + 2
T
(zT
zP

)
S

dSdP − V
TBS

dP2, (22)

where BS � −V(zP/zV)S is the adiabatic bulk modulus which
diverges for non-rotating black holes (in d≥ 4) obtained by
setting J � 0 wherein, the entropy and volume are not
independent. Similarly, the Ruppeiner line element on the
(T ,V)-plane is given by [66,68],

dl2R � 1
T
(zP
zV

)
T

dV2 + 2
T
(zP
zT

)
V

dTdV + CV

T2
dT2, (23)

where CV is the specific heat at constant volume which is zero for
black holes where the geometric volume coincides with the
thermodynamic volume. In four or more dimensions, this is
true for all static (non-rotating) black holes. Since we consider the

FIGURE 1 | Plot of the Hawking temperature vs thermodynamic volume.

4As also pointed out in [66], an internal energy representation, i.e., the (S,V)-plane
is not suitable for many black hole systems where the fluctuation coordinates S and
V are not independent.
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slowly rotating black hole approximation, CV shall still be taken
to be zero. A derivation of these line elements is presented at the
end in the Supplementary Appendix.

Now that it is understood that the Ruppeiner metric defines a
physically meaningful distance on the spaces of thermodynamic
equilibrium states, let us go further and analyze the meaning of
the corresponding Ricci scalar. For a two dimensional metric,
i.e., with two fluctuation coordinates as we shall be using in this
work, the components of the metric can be written down as a
2 × 2 matrix, gij with i � 1, 2. The Ricci scalar of the geometry
described by the Ruppeiner metric can be calculated by the rules
of Riemannian geometry. This Ricci scalar shall be called the
Ruppeiner curvature and contains the physical information of the
microscopic interactions in a thermodynamic system. For such a
metric, the Ricci scalar can be written down as (see for
example [81]),

R � − 1�
g

√ [ z

zx1
( g12
g11

�
g

√ zg11
zx2

− 1�
g

√ zg22
zx1

) + z

zx2
( 2�

g
√ zg12

zx1

− 1�
g

√ zg11
zx2

− g12
g11

�
g

√ zg11
zx1

)], (24)

where g � g11g22 − g12g21 is the determinant of the 2 × 2 matrix
gij. The Ruppeiner curvature calculated for any set of
fluctuation coordinates for the classical ideal gas identically
comes out to be zero whereas that for the vdW fluid comes out
to be negative over the entire physical region5 At the first
instance, it appears that the Ruppeiner curvature may indicate
whether interactions are present in the system. If instead, one
looks at ideal quantum gases like the ideal Bose or the ideal
Fermi gas, by virtue of being “ideal” such gases are expected to
be weakly interacting like the classical ideal gas meaning that
the only interactions between particles can be the collisions.
However, computation of the Ruppeiner curvature for ideal
Bose and Fermi gases give opposite signs [78]. In the sign
convention adopted in this work (opposite to that of [78]), the
ideal Bose gas is associated with a Ruppeiner curvature which
always carries a negative sign whereas, that for the Fermi gas
carries a positive sign. It is known that fermions typically have
repulsive interactions of quantum mechanical origin between
them as a direct consequence of the exclusion principle which
leads to the familiar notion of a Fermi pressure. The
Ruppeiner curvature being negative definite for an
attractive vdW fluid and being positive definite for a
repulsive quantum gas of fermions strongly suggests its
relationship with the nature of interactions between the
underlying degrees of freedom of the system. Further, an
ideal gas of bosons has with it associated a negative definite
thermodynamic curvature which is also consistent with the
fact that bosons tend to come closer to each other, an
interaction which is yet again of purely quantum
mechanical origin. The Ruppeiner curvature therefore, not
only probes the vdW type interactions, but also interactions

arising out of the quantum mechanical nature of the
underlying degrees of freedom and as such, it is a perfect
macroscopic probe which may be used to understand how the
microscopic constituents of a given thermodynamic system interact
[79–81] (see also [85]). This deserves special attention for the case of
black holes where a microscopic theory is not well understood and
hence, Ruppeiner geometry is expected to provide us with early
microscopic insights.

3 EFFECT OF DARK ENERGY ON
THERMODYNAMIC GEOMETRY

From the form of the equation of state given in Eq. 17, it is helpful to
first discuss the thermodynamic geometry of cases J � 0, Q � 0
and J � 0, Q≠ 0, corresponding to neutral and charged black holes
in AdS, respectively surrounded by quintessence, where an exact
analysis is possible. In these case, it is also possible to explicitly see the
form of mean field potential (Section 4). The other case of interest,
i.e., Q � 0, J ≠ 0 is discussed in Section 3.2, separately as the
expressions for thermodynamic curvature are quite involved and the
behavior can only be studied numerically.

3.1 Schwarzschild and Reissner-Nordström
Black Holes in AdS
Setting the rotation parameter in Eq. 4 to zero, we get a Reissner-
Nordström-AdS (RN-AdS) black hole surrounded by
quintessence, whose lapse function f (r) takes the form [7],

f (r) � 1 −m
r
+ q2

r2
+ r2

l2
− αr, (25)

F � dA, A � −q
r
dt. (26)

Making the usual identification that the ADM mass of the
black hole and expressing it as function of entropy and pressure,
one gets enthalpy to be,

H(S, P) � 1
2

��
S
π

√ (1 + πq2

S
− α( ��

S
π

√ ) + 8PS
3
). (27)

Note that in this non-rotating case, one has Q � q.
Thermodynamic volume can now be obtained from V �
(zH/zP)S,q,α as,

V � 4πr3+
3

, (28)

and is found to be same as geometric volume [33]. With all
definitions of fundamental thermodynamic variables available,
the first law of black holes in the extended thermodynamic phase
space can be written to be,

dM � dH � TdS +Φdq + VdP + ψdα, (29)

where Φ � (zH/zq)S,P,α is the electric potential conjugate to
charge q and ψ � (zH/zα)S,q,P is a quantity conjugate to the
parameter α. It should be mentioned that the first law given in Eq.
29 is phenomenological, which makes the first law and Smarr

5See for example the recent work [63] where the Ruppeiner curvature of the vdW
fluid in the novel (T ,V)-plane has been presented.
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relation consistent [33]. A full derivation would require the use of
field equations extending the techniques used in [17] to the
current situation involving quintessence. We will work in the
canonical ensemble where dq � dα � 0. The Hawking
temperature [Eq. 29] takes a simplified form,

T � 1
4π

( 1
r+

− q2

r3+
− 2α + 8πPr+). (30)

Further, setting J � 0 in Eq. 17 and identifying the specific
volume to be v � 2r+, one obtains the standard fluid-like equation
of state P � P(v,T),

P � T
v
+ α

2πv
− 1
2πv2

+ 2q2

πv4
, (31)

which corresponds to that of a non-ideal fluid, i.e., one with
non-trivial interactions between molecules. Each of the last
three terms in Eq. 31 signify interactions between the
microstructures. The limit α � 0 gives the well known
equation of state for standard RN-AdS black holes in
(3 + 1)-dimensions [24]. Using the above equations for
temperature and equation of state, the line elements in Eqs.
22,23 can be obtained. For instance, the 2 × 2 metric tensor on
the (S, P)-plane turns out to be,

gij �
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

��
π

√ (3πq2 + S(8PS − 1))
2S( ��

π
√ ( − πq2 + 8PS2 + S) − 2S3/2α) 8

��
π

√
S2��

π
√ ( − πq2 + 8PS2 + S) − 2S3/2α

8
��
π

√
S2��

π
√ ( − πq2 + 8PS2 + S) − 2S3/2α

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(32)

where i, j � S, P. We can now give the analytical expressions of the
Ruppeiner curvature for RN-AdS black holes surrounded by
quintessence in the background, both on (S, P) and
(T ,V)-planes respectively as,

RSP � −
��
π

√ (2πq2 − S) + S3/2α��
π

√
S(πq2 − S(1 + 8PS)) + 2S5/2α

, (33)

and

RTV � 8πq2 − 62/3π1/3V2/3 + 3Vα
3 × 62/3π4/3TV5/3

. (34)

It should be noted that both RSP and RTV asymptotically
diverge as the black hole becomes extremal, i.e., T � 0. The
scalar RSP is plotted in Figure 2 (as a function of S for fixed
P. The scalar RTV shows identical behavior and is plotted in
Figure 3.

On either of the thermodynamic planes, it is found that the
Ruppeiner curvature admits zero crossings indicating
existence of points where the dominant kind of
interactions can switch from attractive to repulsive and
vice versa, since the sign of the Ruppeiner curvature
indicates the nature of microscopic interactions. Let us
first note that for α � 0, both RSP and RTV reduce to the
previous expressions for the RN-AdS black hole obtained
in [68]. Furthermore, the curvature scalars given in Eqs.
33,34 can be checked to be equivalent so we may label
them as R. Second, for a given value of charge q, there is a
possibility that for a value of α, the Ruppeiner curvature
changes sign twice. The points where R � 0 occur at S �
13.8, 27.8 for the value α � 0.26, q � 1 in Figure 2. This is
to be contrasted with the situation for RN AdS black holes
with no quintessence [62, 63, 68], where there is only one
point where the Ruppeiner curvature crosses from repulsive
to attractive type interactions of microstructures (plot for
RN-AdS black holes is given as an inset in Figure 2). The
condition R � 0 occurs at points which are the physical
solutions to the algebraic equation,

2π3/2q2 + αS3/2 − ��
π

√
S � 0. (35)

The crossing points therefore depend on the parameters α and
q of the black hole. A plot of S vs α shown in Figure 4 gives
interesting insights.

As seen from Figure 4 the number of zero crossing points are
either zero, one or two depending for a particular case on how
many real solutions Eq. 35 admits based on the values of α and q.
As mentioned above, the existence of one zero of the Ruppeiner

FIGURE 2 | Ruppeiner curvature on the (S,P)-plane as a function of S for fixed P.
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curvature at small value of S6 at which the attractive and repulsive
interactions balance each other is well known for the RN-AdS
system [68]. The cases where there’s a second zero (see Figure 2)
at a higher entropy (or equivalently horizon size), are new and of
particular interest here, because they are associated with the
presence of quintessence in the background. In fact, there are
two further remarkable results. First is the existence of a point on
the S-axis (the red curve in Figure 2) corresponding to a
threshold value of α � α0 (depending on q), where the R starts
out positive, barely vanishes at a value of S and continues to be
positive after that. This threshold value occurs at the following
point,

α0 � 0.27216
q

, S � 6πq2. (36)

The existence of such an α0 can be seen from Figure 4) as
well (the extreme point at which only one solution for S exists,

for a given value of α). Second, for any value beyond α0, R is
always positive, indicating the domination of repulsive
interactions among microstructures, which overcome the
attractive interactions intrinsic to the larger RN-AdS black
holes. It will be seen that such a crossing can be explained by
considering long range repulsive interactions to be associated
with quintessence.

We now consider the q � 0 limit where the system is a
Schwarzschild-AdS black hole surrounded by quintessence. As
seen from the q � 0 limit of the Ruppeiner curvature in Eq. 33,
quite remarkably, quintessence introduces a repulsion dominated
region in the otherwise purely attractive Schwarzschild-AdS black
hole. In this case one gets the crossing point of the Ruppeiner
curvature to be simply at,

r+ � 1
α
, (37)

or equivalently ρ0 � α/2 in terms of the density (defined as
reciprocal of specific volume). Note that the crossing point
increases with decrease in α, signifying the repulsive nature of
the microstructures introduced due to quintessence. The
Ruppeiner curvature is plotted as a function of r+ in Figure 5.

There is another important novel consequence of the quintessence
parameter α on the thermodynamic volume of Schwarzschild AdS
black hole. In general in fluids, such as the vdW fluid, there is a

FIGURE 4 | Points in the parameter space where the Ruppeiner
Curvature is flat.

FIGURE 3 | Ruppeiner curvature on the (T,V) plane as a function of V for fixed T.

FIGURE 5 | Ruppeiner curvature for Schwarzschild-AdS black hole
surrounded by quintessence on the (S,P)-plane as a function of S for fixed P.

6Indicating that the smaller black holes are dominated by repulsive interactions
among microstructures [62,63]
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minimum volume dictated by the fact that temperature does not
become negative. This can be obtained from the equation of state
evaluated at T � 0. Although Schwarzschild-AdS black holes do not
show vdW behavior, in the presence of quintessence, there is a
possibility of minimum volume given by,

Vmin �
6α3 ±

�����������������������
α2(36πP − 6α2)2 − 1152π3P3

√
− 36παP

576π2P3
. (38)

It is clear that there is no minimum volume when α � 0,
corresponding the existence of only attractive interactions in the
pure Schwarzschild-AdS (without quintessence) case [66].

3.2 Slowly Rotating Black Holes in AdS
The general expression for Ruppeiner curvature can be obtained
analytically in the caseQ � 0, J ≠ 0, but complicated and not shown
here. Instead, we plot the result directly, as shown in Figure 6. We
find that behavior of R is qualitatively similar to the case of charged
black holes in AdS, with J playing the role of Q. Therefore, even in
present case, the presence of the quintessence parameter ensures
that the Ruppeiner scalar has two zero crossings and hence one
expects this to be a generic feature in other black hole systems too,
including the case of a general rotating black hole.

Furthermore, there is a minimum volume dictated by the
equation of state given in Eq. 17 so that the temperature is not
negative, which cannot be obtained analytically, but one can
obtain its values numerically. For instance, considering the case
α � 0.24, the minimum volume is Vmin � 3.08. Keeping this in
mind, even if there are additional points where R goes to zero
below this volume, they are ignored as they are not physical from
the point of view of the equation state.

4 MICROSTRUCTURES OF BLACK HOLES
AND A MEAN FIELD DESCRIPTION

Analysis of Ruppeiner curvature of AdS black holes in last section,
shows a subtle interplay between the attraction and repulsion
dominated regimes, which heuristically suggests the presence of
both attractive and repulsive interactions in the system, akin to the
behavior of microstructures in a vdW fluid [62, 63]. Despite long

standing efforts, the true nature of microscopic degrees of freedom
of black holes are not known yet. Following Boltzmann’s lines, “if
you can heat it, it hasmicrostructure,” current studies have tried to
obtain whatever valuable information from connection between
thermodynamic and gravitation properties of black holes. The
black hole chemistry paradigm [27, 28] has shown that charged
black holes in AdS have a rich phase structure similar to vdW
systems, suggesting a possible molecular kind of microstructure
emerging from the degrees of freedom for black holes as well.
However, the analysis of thermodynamic curvature shows that the
behavior of microstructures of the two systems is not the same,
with the case of black holes being more subtle [62, 63, 65, 68].
There are also proposals that a general interacting system can
probably also be modeled as a binary mixture [65, 68] of both
attractive and repulsive microstructures which share the degrees of
freedom of the total entropy. Here, we take these issues forward
and show that within a mean field approximation, the interactions
can be described by an effective mean field interaction potential
whose extremum points correspond to points where the
Ruppeiner metric is flat. However, we particularly emphasize
on the fact that any analysis in this spirit is phenomenological
and is possible due to the resemblance of the thermodynamic
structure of AdS black holes with that of hydrostatic systems such
as the vdW fluid. Therefore, we shall be exploring a fluid-like
description of black hole microstructures whichmay be thought of
as being analogous to the molecules present in a fluid. Since v �
2r+ corresponds to the specific (fluid) volume of the black hole, a
number density ρ � 1/v can be naturally associated with the
system [80, 86, 87]. One can then alternatively write the
equation of state [Eq. 31] in terms of this density as,

P � ρT + ( α

2π
)ρ − ( 1

2π
)ρ2 + (2q2

π
)ρ4. (39)

The first term, which depends on the temperature is clearly the
kinetic energy density7 whereas the remaining terms signify non-

FIGURE 6 | Ruppeiner curvature for Kerr-AdS black hole surrounded by quintessence on the (T ,V)-plane as a function of V for fixed T and angular momentum J.

7Indeed from the equipartition theorem, E ∼ T and one can see that the equation of
state for the ideal gas, P � ρT equivalently implies P ∼ ρE making it a kinetic
energy density.
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trivial microscopic interactions. In fact, one can think of the
remaining terms to correspond to a mean field potential energy
density containing coarse grained information of the interactions
and is given by,

u(ρ) � Aρ − Bρ2 + Cρ4, (40)

where A � α/2π, B � 1/2π and C � 2q2/π are all positive
constants. It is then expected that the extremum of such a
mean field interaction potential would dictate the points of no
effective interactions. This is indeed true and Eq. 35 whose
physical solutions correspond to the crossing points of the
Ruppeiner curvature can alternatively be obtained as,

(zu
zρ
) � 0. (41)

In the following subsection, we demonstrate the utility of the
mean field interaction potential approach, by considering the
special case α � 0, i.e., RN-AdS black holes in the absence of
quintessence. The cases with non-trivial dependence on
quintessence are discussed in the next subsection.

4.1 RN-AdS Black Holes
For the case of RN-AdS black holes without quintessence in the
background, the mean field interaction potential is given as,

u(ρ) � −( 1
2π

)ρ2 + (2q2
π
)ρ4, (42)

and is plotted as a function of ρ for various values of the electric
charge q in Figure 7.

In all the cases, there exists a minimum8 of the potential
where the attractive and repulsive interactions balance out.
This point corresponds to ρ0 �

�����
1/8q2

√
reproducing the

previously known result for the horizon radius, r+ � �
2

√ ∣∣∣∣q∣∣∣∣

[68]. The first derivative of u(ρ) is positive for ρ> ρ0 whereas it
is negative for ρ< ρ0, translating respectively to repulsion and
attraction dominance. This goes well with previously known
conclusions for RN-AdS black holes where there exists a long
range attraction and a short range repulsion [62]: ρ0
represents the density at which the repulsion and attraction
balance out whereas compressing the fluid to a smaller volume
and hence, greater density leads to dominance of repulsion
and vice versa. Moreover, since for a fluid9, the density scales
as ρ ∼ r−3 where r is a length scale typically of order of the
mean free path of the molecules10, the form of the mean field
interaction potential [Eq. 42] suggests toward an
intermolecular interaction of the Lennard-Jones type11 as
pointed out in [63,88],

V(r) � − c
r6
+ d
r12

, (43)

where c and d are appropriate positive constants. The mean field
approach is therefore consistent with the previously known
results for RN-AdS black holes and provides a satisfactory
picture of interactions among microstructures.

4.2 Effect of Dark Energy on the Mean Field
Interaction Potential
We shall now consider the effect of quintessence on the
microstructures of AdS black holes. The mean field interaction
potential in this case takes the form,

FIGURE 7 | Mean field interaction potential u(ρ) as a function of ρ for various values of electric charge q with α � 0.

8Since ρ � 0 (or equivalently v � ∞) is not physical, the only physical point at
which this mean field interaction potential admits an extremum is the minimum.

9The fluid in our discussions always assumes three spatial dimensions, irrespective
of the number of spacetime dimensions in which the black hole (whose
thermodynamics gets mapped into that of the fluid) resides in.
10With the assumption that the fluid density is spatially uniform, without any loss
of generality one can consider some arbitrarily small length scale r of the order of
the mean free path of the molecules such that in a volume v ∼ r3, the number of
fluid molecules is constant.
11See [85] for a deeper connection between zero crossings of Ruppeiner curvature
and intermolecular interactions involving Lennard-Jones type potentials in a
different context.
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u(ρ) � ( α

2π
)ρ − ( 1

2π
)ρ2. (44)

Interestingly, the crossing point of the Ruppeiner curvature
corresponds to a maximum, i.e., an unstable equilibrium of the
mean field interaction potential,

z2u
zρ2

� −1
π
. (45)

A plot of the mean field interaction potential is shown in
Figure 8. This means that with ρ0 being the value of the density at
which attraction and repulsion balance out each other, a higher
density would mean attraction dominance while a lower density
would imply the dominance of repulsion: a conclusion which is
completely opposite from that from the pure RN-AdS case
discussed in the previous subsection. A fluid such as this one
would admit a microscopic intermolecular potential whose
repulsive part has a range which is longer than that of the
attractive part. By our arguments from the previous
subsection, it is suggestive from the form of Eq. 44 that such
a fluid would have a microscopic intermolecular potential of the
form,

V(r) � b
r3
− c
r6
, (46)

where b and c are both positive constants. The first and second
terms respectively correspond to the repulsive and attractive parts
of the intermolecular interaction. Naively, such an observation
looks bizarre, but can be explained from the fact that
quintessence, which corresponds to a negative pressure
responsible for the expansion of the Universe is essentially a
long ranged repulsive interaction with a range that is naturally
longer than the range of attractive interactions between
microstructures of the Schwarzschild-AdS black hole.
Microstructures associated with quintessence are therefore not
just repulsive, but have long ranged interactions, which typically
go as an inverse cube of the distance.

The presence of a non-trivial electric charge makes the
behaviour of the mean field interaction potential all the more
interesting and is shown in Figure 9.

Note that the black curve corresponds to the RN-AdS case
without quintessence, i.e., α � 0. The red one corresponds to
α � α0 � 0.27216 (with q � 1) and one can see that for α> α0
(the green curve), there are no extremum points of u(ρ)
indicating absence of zero crossings of the Ruppeiner
curvature. In fact, for this case, the first derivative of the
mean field interaction potential is positive definite. Such a
situation dictates complete absence of attraction dominance
from the system and the Ruppeiner curvature is wholly positive.
The case with α< α0 (the blue curve) is the most interesting one
where there are two extremum points now as compared to the
previous cases with zero crossings where there was either a
maximum or a minimum. This means that there are now two
equilibrium points where the net interactions balance out. Let us
say these points correspond to the values ρ01 and ρ02 with
ρ01 < ρ02. At ρ01, the equilibrium is an unstable one, meaning
that further compression of the fluid would lead to attraction
rather than repulsion and vice versa. It is around this unstable
equilibrium that the third term of Eq. 40 has little
consequence12 and equilibrium is reached primarily as

FIGURE 8 | Mean field interaction potential u(ρ) as a function of ρ for various values of α with q � 0.

FIGURE 9 | Mean field interaction potential u(ρ) as a function of ρ for
various values of α with q � 1.

12The presence of electric charge would of course shift the position of this
maximum but does not change the qualitative behavior of u(ρ) around the
maximum.
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balance of interactions which the first and second terms of Eq.
40 signify. This is similar to the case of the neutral
Schwarzschild-AdS black hole surrounded by quintessence.
The other equilibrium point, which exists only if we consider
non-trivial charge is a minimum at ρ02 and is hence stable. This
equilibrium is reached primarily from a balance of interactions
due to the second and third terms in Eq. 40 while the first term
has very little to do with the behavior of this minimum.

In this paper, we restricted to the special case where the
quintessence equation of state parameter took the value
ωq � −2/3. If instead, one would choose other values of ωq,
the quintessence dependent term appearing in the mean field
interaction potential would get altered in the power of ρ (which
is linear in the present case, see Eq. 40) changing the overall
shape of u(ρ) and hence the location of the zeros of the
Ruppeiner curvature discussed in this work. Such cases
might be interesting to pursue in the future, although for
the form of geometry in Eq. 4 and equation of state
considered in this paper, it would imply that it is always
associated with short ranged repulsive interactions.
Therefore, apart from changes in the locations at which the
potential shows extremum, the general conclusions obtained
from the present work should remain unaltered even if
calculations are done with other values of ωq in that
specified range.

5 REMARKS

In this work, we have focused on probing the nature of interactions
among the microstructures for asymptotically AdS black holes
surrounded by quintessence using methods of thermodynamic
geometry. From the empirical behavior of thermodynamic scalarR,
charged black holes in d ≥ 4 are associated with both attraction and
repulsion dominated regions [62, 63, 68]. In this paper we
considered various limiting case of the equation of state in [37]
and studied the effect of dark energy on thermodynamic geometry
and microstructures of neutral, charged and slowly rotating black
holes. It may be possible to phenomenologically model the black
holemicrostructures as composed of two distinct kinds from a fluid
perspective, where there is an exact analogy of black hole
system with vdW system [24, 63, 65, 68]. It is known from
earlier studies that the repulsive interactions are rather short
ranged as compared to their attractive counterparts, such that
the overall microscopic interaction potential is suggestively of
the Lennard-Jonnes type [63, 88]. Following on these ideas, we
developed an effective mean field potential approach for a
generic black hole system in AdS in Section 4, such that the
details of regions of domination of interactions among
microstructures correspond to the equilibrium points of this
potential. We also learn that quintessence leads to long ranged
repulsive effects. In extended thermodynamics, where the fluid
analogy of the black hole system is well established [24, 30, 32],
we see that the repulsive interaction due to quintessence is
analogous to an inverse cube microscopic interaction among
the fluid molecules,

Vquint(r) ∼ 1
r3
. (47)

It would be interesting to see the effects of quintessence on the
microstructures for black holes in higher derivative theories such
as Gauss-Bonnet-AdS black holes or even the more general
Lovelock-AdS and pure Lovelock-AdS black holes, leading to a
complete classification of attraction and repulsion dominated
regions for wide variety of black holes. Another important avenue
for future work is to include thermal fluctuations, as it is known
that fluctuations give additional contributions and modify the
points where the Ruppeiner scalar R goes to zero. The effect of
statistical fluctuations on thermodynamics and phase transitions
is well studied and is known to change the definitions of entropy
and free energy, with particularly novel consequences for large
black holes [37, 89–94]. Thus, it should be intriguing to consider
additional effects due to thermal fluctuations on the
thermodynamic geometry of black holes with quintessence
studied in this work.
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