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3D human pose estimation is more and more widely used in the real world, such as sports
guidance, limb rehabilitation training, augmented reality, and intelligent security. Most
existing human pose estimation methods are designed based on an RGB image obtained
by one optical sensor, such as a digital camera. There is some prior knowledge, such as
bone proportion and angle limitation of joint hinge motion. However, the existing methods
do not consider the correlation between different joints from multi-view images, and most
of them adopt fixed spatial prior constraints, resulting in poor generalizations. Therefore, it
is essential to build a multi-view image acquisition system using optical sensors and
customized algorithms for a 3D reconstruction of the human pose in the image. Inspired by
generative adversarial networks (GAN), we used a data-driven method to learn the implicit
spatial prior information and classified joints according to the natural connection
characteristics. To accelerate the proposed method, we proposed a fully connected
network with skip connections and used the SMPL model to make the 3D human body
reconstruction. Experimental results showed that compared with other state-of-the-art
methods, the joints’ average error of the proposed method was the smallest, which
indicated the best performance. Moreover, the running time of the proposed method was
1.3 seconds per frame, which may not meet real-time requirements, but is still much faster
than most existing methods.
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INTRODUCTION

Human pose estimation (HPE) refers to the detection and positioning of the joint points of the
people from the given optical sensor (cameras) input via algorithms. Estimating human pose is the
key to analyzing human behavior. HPE is the basic research in computer vision, which can be applied
to many applications, such as Human-computer interaction, human action recognition [1–4],
intelligent security, motion capture, and action detection [5].

3D human pose estimationmethods were roughly categorized into two types: 1) predicting the 3D
human pose from the RGB image in an end-to-end manner; 2) two-stage methods, in which the 2D
human pose was estimated from the RGB image firstly, and then the 3D human pose was predicted
based on the results of the 2D human pose.

Rogez et al. [6] presented an end-to-end architecture, named LCR-Net. The network included
positioning, classification, and regression. First, the candidate human body regions were obtained by
the candidate pose region generator, and the potential poses were located in the candidate regions.
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Scores of pose proposals were counted by the classifier. Finally,
the 3D human poses were obtained by regression. Pavlakos et al.
[7] directly regressed the 2D heatmap to 3D space and optimize
the network from coarse to fine to obtain a more accurate 3D
human pose. Pavlakos et al. [8] used a weaker supervision signal
provided by the ordinal depths of human joints. This method
could evaluate the image in the wild quantitatively.

Through the depth learning network model, the end-to-end
mapping from the RGB images to the 3D joint coordinates was
directly established. Although rich information can be obtained
from the images, there was no intermediate supervision process,
and the model was vulnerable to the background of the images,
the lighting, the human dress, and other factors. More and more
researchers preferred to use deep neural networks to learn the
mapping relationship from 2D joint points to 3D joint points. In
the first stage, the positions of 2D human joint points were
obtained by 2D human pose detectors [9–11], and then the

mapping relationship between 2D and 3D human poses was
estimated by regression [12, 13] or model matching. Zhou et al.
[14] presented a two-stage cascaded unified deep neural network

FIGURE 1 | Epipolar geometry.
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that predicted 3D pose from the 2D heatmap. They augmented a
state-of-the-art 2D pose estimation structure to obtain a 2D
heatmap. Tekin et al. [15] proposed novel two-branch
architecture with a trainable fusion scheme to fuse the 2D
heatmaps information optimally. There was an inverse for the
human posture projected from a 2D feature map to 3D. To
resolve this problem, Li and Lee et al. [16] proposed a new
method to generate multiple feasible hypotheses of 3D posture
from 2D input that can choose the best solution from 2D
reprojections. Qammaz and Argyros [17] presented
MocapNET which offered a conquer-and-divide strategy to get
3D Bio Vision Hierarchical (BVH) [18] format. To tackle 3D
human pose estimation, Wang et al. [19] proposed a depth
ranking method (DRPose3D) that contains rich 3D
information. They estimated 3D pose from 2D joint locations
and depth rankings.

In the above algorithms, researchers only focused on the 3D
coordinates of joints, which were composed of dots and lines,
and showed no details about the human body shape and
appearance. Therefore, some researchers proposed a method
to predict the 3D human model from 2D images. Sigal et al. [20]
predicted the 3D human model by the outline shape of the body
in the image and adopted a shape completion and animation of
people [21] (SCAPE) to match the outline of the human body in
the image. Federica et al. [22] estimated a full 3D mesh model
from a single image, called SMPLify. They estimated the 2D

body joint locations through the 2D joint point detector
Deepcut [23] and then fitted the skinned multi-person linear
(SMPL) model [24] to the joint data. Lassner et al. [25] made
further improvement on SMPLify and used the random forest
method to estimate the 3D pose. Riza et al. [26] created a dense
mapping between an image and a surface-based model of the
human, called DensePose. They, respectively, designed a fully
convolution dense pose regression network and region-based
dense pose regression network, and the experimental
comparison found that the latter performed better. Yao et al.
[27] proposed an end-to-end learning convolutional neural
network for directly regressing a 3D human mesh model
from an image. Muhammed et al. [28] proposed a novel
recurrent neural network with a self-attention mechanism for
estimating human posture and shape from the video.

Although the above methods can obtain the 3D human mesh
model, none of them can meet the real-time requirements in
practical application, the correlation of different joints was not
considered, and most of them adopted fixed spatial prior
constraints, resulting in a relatively poor generalization of
the model.

In the presented method, we used multiple optical sensors to
build an image capture system in a fixed scene and used efficient
algorithms for 3D human reconstruction, which can be used as
the basis for the analysis of the character’s movements and the
limb rehabilitation training. Inspired by generative adversarial
networks, we adopted a data-driven method to learn the implicit
prior information of the spatial structure and classify joints
according to the natural connection of the human body. The
outputs of our model included not only the 3Dmesh model of the
human but also the 3D coordinates of the joints. Therefore, under
the premise of ensuring the accuracy of 3D human body
estimation, real-time performance was also a factor that
needed to be considered. We specifically designed a fully
connected neural network with skip connections to estimate
the parameters of the SMPL model. The parameters of

FIGURE 2 | Multi-view acquisition system architecture.

FIGURE 3 | Position distribution of four cameras.
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proposed network model were much less than other state-of-the-
art algorithms.

METHODS

Multi-View Image Capture System
Compared with the 2D plane, the dimension of spatial depth
increases in the 3D space. Inspired by epipolar geometry, we note
that images from multiple perspectives have some corresponding
relations, which can reduce the ambiguity of projection. As shown
in Figure 1, C1 and C2 are the centers of the two cameras, e and e’

are the epipoles, and the green plane area represents the epipolar
plane. The point P1 means the joint in the image plane (gray box),
which is projected into 3D space. The point P exists on a straight
line but the specific position is uncertain. The corresponding joint
is a point P2 in another view, and the intersection point of two
projection lines can determine the position of the point P in the 3D
space. Epipolar constraint is a significant property that can be
written as

PT
2 EP1 � 0, (1)

where E represents the essential matrix.
Our method performs information fusion on images collected

by four cameras at different positions in a certain activity space,
and the implicit camera parameter relationship is learned
through a multilayer fully connected neural network.
Therefore, our image acquisition system needs four optical
sensors to acquire images of the experimenter in this certain
activity space. The overall structure of the system is shown in
Figure 2. Four optical sensors are used for image acquisition. The
computer analyzes the image data through the algorithm we
proposed to estimate the 3D humanmodel and the position of 3D
joint points.

The image acquisition instrument selects the industrial vision
inspection camera named Basler piA1000. This model of camera
uses KAI-1020 CCD photosensitive chip, and the resolution is
1,000 × 1,000, whichmeets the requirements of experimental data
acquisition. The KAI-1020 CCD image sensor is a megapixel
interline transfer CCD with an integrated clock driver and

FIGURE 5 | Overall structure of the 2D stacked hourglass network.

FIGURE 4 | 3D human pose estimation structure.
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associated on-chip double sampling, and the size of the
photosensitive chip is 7.4 mm × 7.4 mm. The data
transmission uses the GigE interface, and the data is
transmitted to the computer directly without a frame grabber.
The camera has provided a set of basic preprocessing functions,
such as debayering, anti-false color, sharpening enhancement,
and denoising. Besides, the preprocessing function can greatly
improve the brightness, detail, and sharpness of the image, while
reducing noise.

To reduce the ambiguity in predicting the 3D posture of the
human from the 2D image, and to be able to effectively take a
photo of the whole body of the experimenter, the four cameras are
placed on the same level and the same plane. The experimental
system has an active area of 4000 mm × 3000 mm, as shown in
Figure 3. The plane center of the active area is the origin of the
three-dimensional world coordinate system. In this coordinate
system, the spatial positions (mm) of cameras were camera 0
(2,000, 1,500, 1,550), camera 1 (2,000, −1,500, 1,550), camera 2
(−2,000, 1,500, 1,550), and camera 3 (−2,000, −1,500, 1,550). In
the process of horizontal arrangement and vertical placement, a
certain direction allows error ±100 mm and ±50 mm,
respectively.

For the multi-view acquisition system, it is crucial to acquire
images synchronously. We set the time and date for multiple
cameras using the Precision Time Protocol (PTP). According to
time, the image is added timestamp. The operation instructions
are sent to multiple cameras to allow each camera to accurately
capture images at a predefined time point. Camera calibration is
also an essential step in image acquisition using multi-view
cameras. The geometric model is established through camera
calibration, which is the object mapped from the 3D world to the
imaging plane of the camera. In the process of camera calibration,
we used the Zhang–Calibration method. Through the chessboard
calibration board composed of black and white squares at
intervals and Pylon development software, we obtained the
relevant parameters.

3D Human Pose Estimation Algorithm
Our goal is to estimate the 3D human pose from the RGB images,
where the 3D human pose includes the 3D joint point coordinates
and the 3D human mesh model. Our method combines the

simplest fully connected neural network with the SMPL model
to obtain the 3D human posture, as shown in Figure 4, which
consists of three stages:

(1) The first stage is to estimate the 2D joint coordinates of the
human through the convolutional neural network. The
images of four cameras with different angles are taken as
inputs, and the Hourglass Network proposed by Newell et al.
[9] is used to estimate the multi-view 2D pose.

(2) In the second stage, we design a multi-layer cascaded fully
connected neural network whose input is multi-view 2D joint
coordinates and outputs are SMPL model pose and shape
parameters. We classify joints according to the natural
connection characteristics and design discriminators to
learn the implicit spatial prior information.

(3) In the third stage, the 3D human mesh model and human
posture are calculated by the SMPL model parameters. The
3D human mesh model more specifically and vividly shows
the 3D human body.

2D Human Pose Detector
At present, most convolutional neural networks adopt deeper
layers, such as VGG-16 [29], Resnet-50, or Resnet-101 [30]. The
network of different depths can extract different levels of features.
The shallow network extracts local features, such as human head
feature information or shoulder texture contours, which belong to
low-level feature information. The features extracted by the deep
network are global features, which are more comprehensive and
abstract, such as the relative position relationship between
different parts of the human body. It is necessary to fuse the
shallow features with deep features at the same time.

The input image size is 256 × 256 × 3. In the convolution
operation block (orange box), the number above represents the
number of input channels, the number below represents the
number of output channels, k denotes the size of the convolution
kernel, and s represents the step value. All downsampled blocks in
the network use the maximum pooling operation, and upsampling
blocks use the nearest neighbor operation. The dotted line part in
Figure 5 is the hourglass basic model that can be expanded into
cascades of multiple modules. The output of the network is the 2D

FIGURE 6 | Fully connected 3D parameters regression network.
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joint coordinates. Each green rectangle represents the residual
module in Figure 5. The residual connection is used to fuse the
extracted shallow features with the following deep features of the
same size, and more robust joint positions are obtained by using the
information of spatial position distribution between joints.

The network module structure is symmetrical and similar to
the shape of an hourglass, so it is called the stacked hourglass
network. The input images from the four angles of view are used
to extract the joint point features through the stacked hourglass
network, and the joint point coordinates of the human body are
calculated. The above is the main content of the first stage of the
algorithm model in this paper. According to the analysis of the
Numbers of Hourglass Network Modules section, the number of
hourglass basic modules in this paper is finally set to 8.

Fully Connected 3D Parameters Regression Network
At this stage, our goal is to learn the mapping relationship
between the 2D joint coordinates and the pose and shape
parameters of the SMPL model. To learn this mapping
relationship, this paper specially designs a multi-level fully
connected neural network. The input data is the 2D joint
coordinates X ∈ R4×2×N from the four cameras (in this paper,
14 joint points are taken, so N � 14). The output of the network
is the shape and pose parameters of the SMPL mesh model
(where shape parameters are β ∈ R10, and pose parameters
are θ ∈ R72).

We use the SMPL model, introduced by Loper et al. [24], due
to their low-dimensional parameter space, compared to voxelized
or point cloud representations, which is very suitable for direct
network prediction. We describe the SMPL body model and
provide the essential notation here. For more details, you can read
this paper [24]. The SMPL model is a parametric human body
mode, so the parameters of the human are divided into pose
parameters θ ∈ R72 and shape parameters β ∈ R10. The shape
parameters are the linear coefficients of a 10-dimension shape
space, which reduce to low-dimensional by principal component
analysis (PCA). The different shape parameters show the height,
weight, body proportion, and body shape of people with various
body types. The pose parameters θ denote the axis-angle
representation (θi ∈ R3) of the relative rotation between parts
in the 3D space. The pose parameters (θ ∈ R23×3+3, 3 for each of
the 23 joints, plus 3 for the global rotation) consist of the root
orientation and 23 joints which are defined by a skeleton rig.

The essence is to find a functional mapping relationship (F :
R4×2×141R72+20). In this regression calculation, we adopt a
simple and efficient fully connected neural network, thus
greatly reducing the operation time while ensuring certain
joint accuracy. Based on the above considerations, this paper
designs a 3D human pose estimation neural network as shown in
Figure 6, specifically as shown in Algorithm 1.

Algorithm 1 Fully connected neural network regressing SMPL
parameters.
The fully connected neural network we designed has six layers,
including an input layer, four intermediate layers, and an
output layer. The selection of the number of layers is
explained in detail in the Number of Fully Connected Layers
section. According to the characteristics of the fully connected
network, the input data needs to be converted into a vector
before being sent to the 3D human posture regression network,
so the input data is 112 dimensions. The output layer reduces
to 82-dimensional SMPL model parameters. The hidden layers
(FC2, FC3, FC4, and FC5) use the same number of neurons.
The network uses 2,048 neurons for network learning. The
selection of this parameter is analyzed in the The Number of
Neurons section.At the same time, to achieve the fusion of
feature information between different layers, every two layers
use skip connection. Skip connection is to merge the input
information of the front layer with the output information of
the back layer network and send it to the next fully connected
layer, as shown in Figure 6. The skip connection is denoted as

H(x) � F(x) + x. (2)

Even if skip connections are added to the neural network, the
efficiency is not affected, because it is very easy to learn the
identity function for a fully connected network. The addition of
skip connections not only improves the performance of the
network but also reduces the possibility of gradient
disappearance during training. In our method, because the
number of neurons in each hidden layer is the same, direct
skip connections can be used, and there is no need to change
the dimension of the feature information. The whole network
completes the regression from 2D joint to 3D human parameters,
and the network is simpler and lighter. Compared with the
convolutional neural network, the fully connected neural
network can integrate the local features of the previous layer
to obtain the global features and obtain more abstract features.

Learnable Adversarial Prior
The human joints have high flexibility, and various actions and
postures are produced in 3D space, which brings great challenges
to the prediction of the spatial position of joints. However, the
skeletal structure of the human has strict symmetry and a certain
limited position of the relative hinge motion between the human
joints. Therefore, there are some prior constraints between the
joints, such as the bone ratio and the limit of the rotation angle
between the joint points.

Inspired by the idea of generating adversarial networks (GAN)
[31], we adopt a data-driven approach to learn the implicit prior
information of the spatial structure of human joint points. Unlike
directly providing the model with fixed joint point prior

FIGURE 7 | Prior knowledge network for adversarial learning in groups.
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constraints [32–35], our method continues to learnable and
flexible, which improves the generalization ability of the
model. Besides, we also group the joints of the human
according to the correlation between the joints of the human
body. For a group of joints with a strong correlation, the same
simple discriminant neural network is used.

Due to the relative hinge movement of human joints, it is
natural for us to think that the position information of some
joints provides important reference information and geometric
constraints for the positioning of other joints, such as between the
knee and the ankle. However, due to the high flexibility of the
human body, not all joints are very close, such as the wrist and
ankle. Based on the natural connection between human
structures and the correlation between joints [36, 37], we
classify the joint points of the human body. The joint points
related to this paper are divided into six classes: 1) head and neck;
2) left wrist, left elbow, and left shoulder; 3) right wrist, right
elbow, and right shoulder; 4) left knee and left ankle; 5) right knee
and right ankle; 6) left hip and right hip.

We design a set of human 3D pose discriminators (D1, D2,
etc.) to distinguish the pose and shape parameters of the human
body predicted by the previously fully connected neural network
and determine whether it is a real human body. A learnable
discriminator is designed for each group of joints to learn the
distribution of normal human joint position data, thus reducing
the generation of exaggerated data. To reduce the possibility of

abnormal body shape (such as abnormal thick or abnormal small
joints), we designed a shape discriminator. At the same time, to
learn the joint prior knowledge of all parameters, we also designed
a discriminator for all parameters of the human body
parameterized by SMPL. Therefore, we design eight

TABLE 1 | Comparative results of MPJPE for predicting 3D joints under Protocol #1. The best score is marked in bold.

Protocol
#1

Direc Disc Eat Greet Phon Photo Pos Pur Sit SitD Smok Wait WalkD Walk WalkT AVG

Zhou [14] 54.8 60.7 58.2 71.4 62.0 65.5 53.8 55.6 75.2 111.6 64.2 66.1 51.4 63.2 55.3 64.9
Fang [41] 50.1 54.3 57.0 57.1 66.6 73.3 53.4 55.7 72.8 88.6 60.3 57.7 62.7 47.5 50.6 60.4
Sun [42] 52.8 54.8 54.2 54.3 61.8 67..2 53.1 53.6 71.7 86.7 61.5 53.4 61.6 47.1 53.4 59.1
Yang [43] 51.5 58.9 50.4 57.0 62.1 65.4 49.8 52.7 69.2 85.2 57.4 58.4 43.6 60.1 47.7 58.6
Pavlakos [44] 41.2 49.2 42.8 43.4 55.6 46.9 40.3 63.7 97.6 119.9 52.1 42.7 51.9 41.8 39.4 56.9
Pavlakos [8] 48.5 54.4 54.4 52.0 59.4 65.3 49.9 52.9 65.8 71.1 56.6 52.9 60.9 44.7 47.8 56.2
Ci [45] 46.8 52.3 44.7 50.4 52.9 68.9 49.6 46.4 60.2 78.9 51.2 50.0 54.8 40.4 43.3 52.7
Li [16] 46.8 52.3 44.7 50.4 52.9 68.9 49.6 46.4 60.2 78.9 51.2 50.0 54.8 40.4 43.3 52.7
Xiao [46] 46.5 48.1 49.9 51.1 47.3 43.2 45.9 57.0 77.6 47.9 54.9 46.9 37.1 49.8 41.2 49.8
Cai [47] 44.6 47.4 45.6 48.8 50.8 59.0 47.2 43.9 57.9 61.9 49.7 46.6 51.3 37.1 39.4 48.8
Ours (V1) 44.6 52.2 43.9 52.8 51.0 71.6 47.1 44.9 61.6 64.6 54.4 51.1 61.4 48.8 54.0 53.6
Ours (V2) 37.6 46.4 41.7 46.2 51.7 62.9 43.8 45.2 60.7 57.1 55.6 44.4 52.9 44.8 48.8 49.3
Ours (V4) 36.8 44.8 41.3 44.3 46.1 59.3 42.2 42.1 53.2 56.1 50.9 44.0 53.0 44.6 47.2 47.1

TABLE 2 | Results showing the PA-MPJPE on Human3.6M under Protocol #2. The best score is marked in bold.

Protocol
#2

Direc Disc Eat Greet Phon Photo Pos Pur Sit SitD Smok Wait WalkD Walk WalkT AVG

Chen [48] 36.9 39.3 40.5 41.2 42.0 34.9 38.0 51.2 67.5 42.1 42.5 37.5 30.6 40.2 34.2 41.6
Cai [47] 35.7 37.8 36.9 40.7 39.6 45.2 37.4 34.5 46.9 50.1 40.5 36.1 41.0 29.6 33.2 39.0
Pavllo [49] 34.1 36.1 34.4 37.2 36.4 42.2 34.4 33.6 45.0 52.5 39.6 35.4 39.4 27.3 28.6 38.1
Dabral [50] 28.0 30.7 39.1 34.4 37.1 28.9 31.2 39.3 60.6 39.3 44.8 31.1 25.3 37.8 28.4 36.3
Wang [51] 28.4 32.5 34.4 32.3 32.5 40.9 30.4 29.3 42.6 45.2 33.0 32.0 33.2 24.2 22.9 32.7
Ours (V1) 34.5 35.5 35.5 37.1 40.1 45.5 31.9 34.7 48.5 46.4 40.5 35.6 39.4 33.6 37.6 38.6
Ours (V2) 25.1 32.9 25.3 30.6 35.6 39.9 26.5 26.5 34.7 36.4 32.8 29.2 33.6 27.8 31.0 31.9
Ours (V4) 24.3 30.1 25.4 29.9 33.9 38.6 26.7 26.1 34.5 36.1 31.6 28.9 33.9 27.8 29.4 30.5

FIGURE 8 | MPJPE curve under different number of perspectives in the
training.
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discriminators in this article. Finally, the average value of the
discriminators is calculated as the final discrimination result.

As shown in Figure 7, the fully connected neural network
serves as a generator (G) to generate the pose and shape
parameters of the 3D human G(θ, β) ∈ R82. Amass is a large-
scale human 3D motion dataset. We select the corresponding
parameters in the Amass dataset [38] as the real data
R(θ, β) ∈ R82. These two sets of data are fed into
discriminators (D1, D2, etc.) to judge whether the SMPL
parameters generated by the fully connected neural network
conform to the real human body parameter data distribution.
Through adversarial training, we learn the implicit prior
knowledge of the spatial structure of key human nodes, so
that the results generated by the fully connected network are
more in line with the shape of the real human body.

Considering that the task of the discriminator is a simple
binary classification, our discriminators (D) also adopt a simple
fully connected neural network. Since the number of joints in
each group is different, the dimensions of the input layer of each
discriminator are different, and the output layer is the result of
judging whether the input parameters conform to the distribution
of real human body data. The middle two hidden layers of the
network use 1,024 neurons for training to learn the real
distribution of joint rotation vectors in the same group.

EXPERIMENTS

Experimental Equipment
The training and testing of the experimental model in this article
are completed on the NVIDIA GeForce RTX 2070, with the

operating system of Linux and the CPU model of Intel Core i5-
7500 CPU @3.40 GHz.

Implementation Details
In the stacked hourglass network for detecting the 2D joint
coordinates, the number of hourglass modules was 8, the
learning rate was set to 1 × 10−4, and the batch-size was set to
16, and the network had undergone 50,000 iterative training
processes. The regressed network learned the mapping
relationship between the 2D joint coordinates and the parameters
of the SMPLmodel. The Adam optimizer was used, the learning rate
was set to 0.001, the exponential decay optimization method was
used, and the batch size was set to 64, with 250 epochs.

Experiment on 3D Pose of Human3.6M
To compare with other state-of-the-art human pose estimation
methods, we conduct experimental evaluations of the proposed
method on the public 3D human pose estimation dataset Human
3.6M [39], which consists of 3.6 million images and collects 15
daily activities performed by 11 experimenters under four camera
views. To facilitate the evaluation and recording of the
experimental results, each action in the dataset was marked
with abbreviations, for example, Directions as Direc,
Discussion as Disc, Eating as Eat, Greeting as Greet, and so on.

We follow the standard protocols to evaluate our approach.
Images of subjects S1, S5, S6, and S7 are used for model training,
and S9 and S11 are used for testing. Protocol #1 is the Mean Per
Joint Position Error (MPJPE, millimeter) between the ground-truth
and the prediction. In some works, the predicted 3D pose is firstly
aligned with a rigid transformation using Procrustes Analysis [40]
and then compute the Mean Per Joint Position Error (PA-MPJPE),
which is called Protocol #2. The MPJPE is denoted as

MPJPE � 1
N

∑
N

i�1
Hpre(i) − Hgt(i), (3)

FIGURE 9 | Accuracy of different numbers of hourglass network
modules on evaluation.

FIGURE 10 | Training loss curve of 3D pose regression network.
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where N represents the number of joints of the human, Hpre(i)
represents the predicted position at the ith joint point, and
similarlyHgt(i) represents the ground-truth of the ith joint point.

We compared the results with those achieved in the past three
years and conducted quantitative comparisons of the two
standard protocols in Tables 1 and 2, respectively. The best
score is marked in bold. We performed three sets of tests on the
number of different cameras. V1, V2, and V4 represent images
from 1, 2, and 4 viewing angles, respectively. The results showed
that our method outperforms other methods in all evaluation
protocols.

From the experimental results in Tables 1 and 2, it can be
seen that the overall ranking of this method was the first, and all
the sub-items were in the top three, and the overall error
calculated by the model was small. The method proposed by
Cai et al. [47] used the spatial-temporal information to obtain
the spatial prior knowledge between joints, and the effect was
superior to other algorithms. The method we proposed was to
group the joints with strong correlation, and the designed
antagonistic prior knowledge module was used for each
group of joints to learn the spatial prior knowledge between
joint points, thus reducing the generation of exaggerated data.
The effect was better, MPJPE was reduced from 48.8 to 47.1 mm,
and PA-MPJPE was reduced by 8.5 mm.

For the problem of depth ambiguity, Li et al. [16] introduced
the mixture density model into 3D human pose estimation to
solve the problem of projecting multiple feasible solutions. We
used images from multiple perspectives as input to solve the
multi-solution problem and reduce the ambiguity of projection
from 2D to 3D. The experimental analysis was performed with
images from 1, 2, and 4 viewing angles as input (V1, V2, and V4).
In Tables 1 and 2, MPJPE and PA-MPJPE were reduced from
53.6 to 47.1 mm and from 38.6 to 30.5 mm, respectively.

Figure 8 showed the changing process of MPJPE in our
training process by using images with different visual angles as
input. The horizontal axis represented the number of training
epochs, and the vertical axis represented MPJPE. We
discovered that, with the increase in the number of input
views, our method worked better. This was because the
image information from multiple views can well solve the

depth blur problem and made up for the inaccurate
detection of the 2D joint detector.

Compared with other methods, we not only calculated the 3D
space position of the human body joint points but also estimated
the 3D mesh model of the human body. Our representation
method was more vivid and lifelike than the representation of the
line between the joint points, so the method in this paper was
better than other algorithms in the overall prediction effect.

Running Time
To test the running time of the proposed algorithm in the 3D
human pose estimation, it was compared with Simplify and HMR
under the same experimental conditions (see the Experimental
Equipment section). Table 3 summarizes the results from the
different algorithms. The average time per frame of Simplify [22]
algorithm was 199.2 s. The reason was that the model was based
on the parameter optimizationmethod to match the SMPLmodel
with 2D joint points, and the optimization process took a lot of
time. HMR [52] algorithm needed 7.8 s per frame, and the model
obtains the parameters of the 3D human model from the images
by iterative regression, which improved the operational efficiency
to a certain extent. The proposed algorithm is 1.3 s per frame,
where the average cost was 75 ms for the 2D human pose
estimation and 1.225 s for the 3D SMPL model parameter
estimation and 3D human mesh model rendering, which took
a large part of the time. Therefore, the fully connected network
structure proposed in this paper saved a large amount of model
calculation time, improved the accuracy, and maintained high
efficiency.

Ablation Experiment
Considering that there are a large number of parameters that can
be optimized in the network structure designed in this paper, the
use of different parameter settings will have different effects on
the accuracy and operation efficiency of the model, so we analyze
the ablation experiments with different parameter configurations.

Numbers of Hourglass Network Modules
The model estimation effect was different for different numbers
of hourglass modules. To determine the effect of the number of
hourglass modules on model accuracy, we compared the
performance of the 2D human pose estimation model on the
test set, when different numbers of modules are used, and showed
the changing process of the model estimation effected by
calculating the accuracy of each hourglass module in Figure 9.

The abscissa represented the number of hourglass modules,
and the ordinate represented the accuracy of the corresponding
different numbers of hourglass modules on the verification set.
Each column icon in the figure corresponded to a situation. For
example, the horizontal axis 2 indicated that the number of
hourglass modules was 2, and there were two icons in the
column, which, respectively, indicated the estimation accuracy
of the first and second hourglass modules in the model from
bottom to top, and so on.

Through comparison, it was found that, with the increase in
the number of hourglass modules, the accuracy rate was gradually
improved. The highest accuracy of hourglass module numbers 2,

FIGURE 11 | Model training time comparison.
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4, and 8 is 0.875, 0.880, and 0.884, respectively. It can be seen that
the larger the number of hourglass modules, the better the model
estimation effect. However, with the deepening of the network
layer, the number of model parameters increases, and the
gradient easily disappears. Moreover, the variation amplitude
of the accuracy of model estimation decreased and tended to a
stable state. Therefore, the algorithm in this paper set the number
of hourglass modules to 8.

Number of Fully Connected Layers
We analyzed the effect of choosing a different number of fully
connected layers on the algorithm in the training process through
experiments. In the experiment, we set the training process as 10
epochs in total, and the number of fully connected layers was set
to 4 (FC-4), 6 (FC-6), 8 (FC-8), and 10 (FC-10). It can be seen that
as the number of fully connected layers increases, the loss value of
the model decreases gradually and tended to convergence from
Figure 10. When the number of fully connected layers was larger,

the model converged faster. It can be seen from the curve that the
convergence speed of the model had little difference when the
number of fully connected layers was 6, 8, and 10, and the number
of parameters of the model was relatively less when the number of
fully connected layers was 6.

For further illustration of the training process’s efficiency, we
conducted a statistical analysis of the training time of different
numbers of fully connected layer models, as shown in Figure 11.
As the number of fully connected layers increased, the time
consumed by the model also increased. Comprehensive
analysis of the results, We considered that the number of fully
connected layers was set to 6.

The Number of Neurons
In this paper, the 3D pose estimation was implemented using a
fully connected network, and the number of neurons in the fully
connected layer had a certain impact on the number of model
parameters and the prediction effect. Therefore, a comparative
analysis is performed on networks with different numbers of
neurons (Linear_size, which represents the number of neurons in
the fully connected layer).

To compare the effect of different neuron numbers on the
model performance, we selected several classic parameter values
128, 256, 512, 1,024, 2,048, 4,096 for experiments. As shown in
Figure 12, The horizontal axis represented the number of epochs
of model training (we selected the first 50 epochs for analysis),
and the vertical axis represented the loss function value of the

FIGURE 12 | Loss curves of different numbers of neurons.

FIGURE 13 | Average joint error of different neuron numbers (mm).

TABLE 3 | Running time comparison of 3D human mesh model estimation
algorithm.

Methods Average
running time (s)

Simplify [22] 199.2
HMR [52] 7.8
Ours 1.3

TABLE 4 | MPJPE index experimental results for each joint of two experimenters
(1, 2).

Experimenter 1 Experimenter 2

Right ankle 58.37 59.87
Right knee 44.40 34.76
Right hip 9.36 9.45
Left hip 9.36 9.45
Left knee 42.95 39.28
Left ankle 75.22 94.80
Right wrist 60.90 59.09
Right elbow 52.19 50.48
Right shoulder 46.66 46.01
Left shoulder 51.77 54.55
Left elbow 55.67 64.88
Left wrist 66.20 70.75
Neck 42.73 39.26
Head top 55.80 59.05
AVG 47.98 49.40
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training process. We can observe that when the number of
neurons increases from 128 to 4,096, the loss value gradually
declines. It indicated that the accuracy of model training was
approximately positively correlated with the number of neurons;
that is, the higher the number of neurons is, the higher the
accuracy of model estimation will be.

To determine the effect of the number of neurons on the
model performance better, we further conducted comparative
experiments on the network prediction effects with different
numbers of neurons. The 50 batches of test images were
randomly selected to verify the model prediction effect. The
number of images in each batch was 64, and 3,200 images were
used for this experiment. The abscissa represented the number
of neurons in each layer, the parameters were set to 128, 512,
1,024, 2,048, and 4,096, and the ordinate represented the
MPJPE (mm) of the joint errors in Figure 13. By comparing
the prediction results of different numbers of neurons, it was
found that the error value of 4,096 neurons was only 0.3 mm
lower than the error value of 2,048 neurons. This indicated that
the prediction effects of the two models were not much
different. Compared with the model with 4,096 neurons, the
model with 2,048 neurons had fewer parameters. Considering
comprehensively, this article set the number of neurons in the
fully connected layer to 2,048.

Optimization Method
To make the fully connected network better learn the mapping
relationship between 2D joint points and 3D model parameters,
we added optimization methods such as batch normalization,
dropout, and skip connection between layers. For whether these
optimization methods had a positive impact on the model, and
how to choose the best combination plan, we further conducted
experiments and analysis.

The abscissa represented the number of epochs of model
training, and the ordinate indicated the value of the loss
function during the training process, shown in Figure 14. The
purple-red curve at the top indicated that no optimization

measures were added to the network. It can be seen that the
loss function (Loss) value of model training was the highest.
When only Dropout and Residual were added to the network, the
green curve which was in the second place in the corresponding
figure shows a significant reduction in the loss value compared
with the case without optimization. When only Batch
Normalization (BN) layer and Dropout operations were added
to the network, corresponding to the light blue curve in the third
place in the figure, it can be seen that the loss had dropped more
significantly, which showed that the batch normalization affects
the loss value. The effect was remarkable. The curves in the fourth
and fifth places corresponded to the cases where the BN,
Dropout, and Residual optimization methods are added at
the same time, and the BN and Residual optimization
methods were added only. Through comparison, it was
found that the red curve had the lowest value. The network
model without Dropout will have higher prediction results for the
batch of training data, but the prediction effect of the model on the
new test data is often unsatisfactory. Because Dropout operations
were used to solve the over-fitting problem of the model, the
parameters of model training will be biased toward overfitting, so
the loss value will be relatively low. This is disadvantageous for
our model.

Based on the above curve analysis, BN improved the
prediction effect of the network, and the extracted feature
information was fused by the skip connection method.
Compared with the model without the Dropout method, the
smallest loss was obtained. But considering the generalization
ability of the model, it was necessary to finally choose to add the
Dropout layer.

Experiment of Multi-View Capturing Images
The capturing system was used for image acquisition. The
experimental subjects moved in the active area and did some
actions in daily life, to ensure that the experimental subjects were
located in the perspective of the camera as far as possible. The
stacked hourglass convolutional network was used as the 2D
detector to detect the 2D joint point of the image under four
perspectives (X, Y ∈ R4×14×2). The 2D coordinates were input
into the fully connected neural network designed in this paper,
and the parameters of the SMPL model were obtained by
regression calculation (θ, β ∈ R82). The 3D human mesh
model was obtained through the SMPL model, and the 3D
joint point coordinates of the human body were further
calculated. Using this experimental system, experimenter 1 and
experimenter 2 were tested with 5,000 images, and the test results
were quantitatively analyzed by quantitative index MPJPE. The
analysis results were shown in Table 4.

The joints such as the right ankle, left ankle, right hand, and
left wrist had higher error values than other joint points. The
reason was that these joint points of the human body were
flexible, and the ankle joints were easy to be occluded
compared with other joints, so the error of the model in
estimating the position of these joint points was larger. To
improve the accuracy of model prediction, the next step is to
focus on improving the prediction accuracy of these easily
occluded joints and joints with greater flexibility, which should

FIGURE 14 | Comparison of loss curves by using different methods.
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be constrained by the symmetry of the human structure and the
proportion of the joints, thus reducing the error in the estimation
of joint point coordinates.

CONCLUSION

We proposed a multi-layer fully connected neural network
with skip connections to learn the mapping relationship
between the 2D joint coordinates and the parameters of
the SMPL model. we classified joints according to the
natural connection characteristics and used a data-driven
method to learn the implicit spatial prior information.
Besides, we constructed a multi-view image acquisition
system. The experimenter performs some daily behavioral
activities in a certain activity space. We used four optical
sensors to collect images of the experimenter, and the
computer analyzed the image via the algorithm we
proposed to estimate the 3D human mesh model and the
3D joint locations. The experimental results showed that the
MPJPE of the 3D human pose estimated by the algorithm in
this paper was the smallest, and it ranked first among all the
algorithms participating in the comparison. The future work
is to analyze multi-frame video sequences and restore the
distortion of postures by studying the continuity information
of postures.
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