
Joule-Thomson Expansion of the
Quasitopological Black Holes
Behrouz Mirza*, Fatemeh Naeimipour and Masoumeh Tavakoli

Department of Physics, Isfahan University of Technology, Isfahan, Iran

In this paper, we investigate the thermal stability and Joule-Thomson expansion of
some new quasitopological black hole solutions. We first study the higher-dimensional
static quasitopological black hole solutions in the presence of Born-Infeld, exponential,
and logarithmic nonlinear electrodynamics. The stable regions of these solutions are
independent of the types of the nonlinear electrodynamics. The solutions with horizons
relating to the positive constant curvature, k � +1, have a larger region in thermal
stability, if we choose positive quasitopological coefficients, μi > 0. We also review the
power Maxwell quasitopological black hole. We then obtain the five-dimensional Yang-
Mills quasitopological black hole solution and compare it with the quasitopological
Maxwell solution. For large values of the electric charge, q, and the Yang-Mills charge,
e, we showed that the stable range of the Maxwell quasitopological black hole is larger
than the Yang-Mills one. This is while thermal stability for small charges has the same
behavior for these black holes. Thereafter, we obtain the thermodynamic quantities for
these solutions and then study the Joule-Thomson expansion. We consider the
temperature changes in an isenthalpic process during this expansion. The obtained
results show that the inversion curves can divide the isenthalpic ones into two parts in
the inversion pressure, Pi. For P <Pi, a cooling phenomenon with positive slope
happens in T − P diagram, while there is a heating process with a negative slope
for P >Pi. As the values of the nonlinear parameter, β, the electric and Yang-Mills
charges decrease, the temperature goes to zero with a small slope and so the heating
phenomena happens slowly.
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1 INTRODUCTION

Black holes as thermodynamic systems have been one of the most interesting subjects in
theoretical physics for several decades. The main motivation for studying thermodynamics of
AdS black holes originates from the AdS/CFT correspondence. In this correspondence, the
dynamics of the quantum field theory in (d − 1)-dimensions are related to the dynamics of an
AdS black hole in d-dimensions [1]. The first-order phase transition of the AdS Schwarzschild
black holes was studied by Hawking and Page [2] and prompted many physicists to study the
phase structure of black holes. For example, the thermodynamic phase structures of the charged
AdS black holes have been studied in Refs. [3, 4]. In this paper, the cosmological constant has
been considered as the dynamical pressure, while its conjugate is the thermodynamic volume of
the black hole. P-V diagram of charged AdS black holes is similar to the van der Waals liquid-gas
phase transition.
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Joule-Thomson expansion is another thermodynamic
issue which has attracted many people. For the van der
Waals gases, the Joule-Thomson expansion is an
isenthalpic process in which we can probe the temperature
changes as the gas expands from the high pressure to the low
one, through porous plugs. In fact, the Joule-Thomson
expansion is a tool used to know whether a cooling or
heating process is happening for a gas. The zero value of
the Joule-Thomson coefficient is called the inversion point in
which the two cooling to heating processes intersect.
Considering the mass of a black hole as an enthalpy [5],
the Joule-Thomson expansion of charged AdS black holes
was studied for the first time in Ref. [6]. The Joule-Thomson
expansion was studied in many papers [7–14]. Joule-
Thomson expansion of the higher dimensional charged
AdS and Gauss-Bonnet AdS black holes have been broadly
probed in Refs. [7, 8]. Joule-Thomson expansion of charged
AdS black holes in rainbow gravity has also been studied in
Ref. [15]. In Refs. [16, 17], the Joule-Thomson expansion of
the usual and regular (Bardeen)-AdS black holes have been
investigated. Joule-Thomson expansion of Born-Infeld AdS
black holes has been investigated in Ref. [18]. Born-Infeld
nonlinear electrodynamics was introduced by Born and
Infeld with the main aim to remove the divergence of the
electric field [19]. Other types of the nonlinear
electrodynamics such as logarithmic nonlinear (LN) and
exponential nonlinear (EN) were introduced in Refs. [20,
21]. The main purpose of this paper is to obtain the Joule-
Thomson expansion for the nonlinear quasitopological
black holes.

Quasitopological gravity is a higher curvature modified
theory in d dimensions. This gravity has some advantages
which has attracted us to investigating it further. Based on
the AdS/CFT correspondence, this gravity can provide a one-
to-one duality between .the central charges of the conformal
field theory and the parameters in the gravitational side
[22–24]. Also, Einstein’s gravity is a low energy limit of
the string theory which predicts higher dimensions. As the
terms of the quasitopological gravity are not true topological
invariants, so they can generate nontrivial gravitational
terms in lower dimensions. This is the benefit of this
gravity to the other modified gravities such as Lovelock.
This gravity can also provide a dual CFT which respects the
causality [25]. Quasitopological black holes and P − V
criticality behavior have been studied in Refs. [26, 27].
Thermodynamics of the AdS black hole and holography in
generalized quasi-topological gravity was investigated in
Refs. [28, 29].

We also obtained the five-dimensional Yang-Mills (YM)
quasitopological black hole solutions and compared them
with the ones in quasitopological Maxwell theory. The YM
theory is one of the attractive non-abelian gauge theories that
comes from the low energy limit of the string theory
modelâ€™s spectrum. Non-abelian gauge fields beside the
gravitational ones can be an effective subject in the physical
phenomena of the results of superstring models. The analytic
black hole solution of the Einstein-YM (EYM) was first

developed by Yasskin in Ref. [30]. Black hole solutions in
the presence of nonabelian Yang-Miils theory have been
obtained in Refs. [31–34]. Black holes in a non-abelian
Born-Infeld theory and supersymmetric EYM theories were
studied in [35, 36], respectively. Using the Wu-Yang ansatz
[37], black hole solutions of the various gravities coupled to
the YM field have been explored in Refs. [38–44]. It is
interesting to look at the Joule-Thomson expansion of the
Yang-Mills quasitopological solutions.

This paper is arranged as follows: We start with the
quasitopological gravity and the nonlinear electrodynamic
theory in Sec. 2 and find the related static solutions. We
then obtain the thermodynamic quantities and study the
thermal stability of the related solutions in the sections III
and IV, respectively. We also probe the Joule-Thomson
expansion of the Power Maxwell quasitopological black hole
in Sec.VI. In Sec. VII, we obtain the solution of the Yang-Mills
black hole in the presence of the quasitopological gravity and
then probe the thermal stability and Joule-Thomson expansion
for this black hole. Lastly, we provide a conclusion of the paper
in Sec. 8.

2 THE STATIC SOLUTIONS OF THE
(n+ 1)-DIMENSIONAL NONLINEAR
QUASITOPOLOGICAL GRAVITY
The main structure of the (n + 1)-dimensional quasitopological
gravity starts from the action [45–47]

Ibulk � 1
16π

∫ dn+1x
���−g√ { − 2Λ + R + μ̂2L2 + μ̂3L3 + μ̂4L4

+ L(F)}, (1)

where L(F) is the matter source that for the nonlinear
electrodynamics is considered as follows:

L(F) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4β2⎡⎣1 − ������
1 + F2

2β2

√ ⎤⎦, BI

4β2[exp( − F2

4β2
) − 1], EN

−8β2 ln[1 + F2

8β2
], LN

(2)

where BI, EN , and LN are the abbreviations of the Born-Infeld,
exponential, and logarithmic forms, respectively [19–21].

We define F2 � Fμ]Fμ], where the electromagnetic field
tensor is described as Fμ] � zμA] − z]Aμ with Aμ as the
vector potential. The Lagrangians L2, L3 and L4 are
respectively referred to as the second-order Lovelock
(Gauss-Bonnet), cubic and quartic quasitopological gravity
with the constant coefficients μ̂2, μ̂3 and μ̂4. It should be noted
that a hat (̂) is not the sign of an operator. L2, L3 and L4 are
defined as [45]

L2 � RabcdR
abcd − 4RabR

ab + R2, (3)
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L3 � Rc
ab

dRe
cd

f Ra
e f

b + 1

(2n − 1)(n − 3)⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
3(3n − 5)

8
RabcdR

abcdR − 3(n − 1)RabcdR
abc

eR
de

+3(n + 1)RabcdR
acRbd + 6(n − 1)Rb

aR
c
bR

a
c −

3(3n − 1)
2

Rb
aR

a
bR

+3(n + 1)
8

R3
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (4)

L4 � c1RabcdR
cdef Rhg

ef R
ab

hg
+ c2RabcdR

abcdRef
ef + c3RRabR

acRb
c

+c4(RabcdR
abcd)2 + c5RabR

acRcdR
db + c6RRabcdR

acRdb

+ c7RabcdR
acRbeRd

e + c8RabcdR
acef Rb

eR
d
f

+ c9RabcdR
acRef R

bedf + c10R
4 + c11R

2RabcdR
abcd

+ c12R
2RabR

ab + c13RabcdR
abef Rc

ef gR
dg

+ c14RabcdR
aecf Rgehf R

gbhd , (5)

where the coefficients ci’s are written in the Supplementary
Appendix A. To find a handle of the static topological
solutions, we use the metric.

ds2 � −f (r)dt2 + dr2

f (r) + r2dΩ2
k,n−1, (6)

where dΩ2
k,n−1 represents the line element of a

(n − 1)-dimensional hypersurface Σ with the constant
curvature k � 1, 0,−1 as the spherical, flat, and hyperbolic
geometries, respectively. By varying the action (1) with
respect to Aμ and solving the related equation, the
electromagnetic field tensor is obtained as

Ftr �

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

q
rn−1

( �����
1 + η

√ )− 1
, BI

β
������
LW(η)√

, EN

2q
rn− 1

(1 + �����
1 + η

√ )− 1, LN

(7)

where η � q2

β2r2n− 2 and q is an integration constant. If we vary the
action (1) with respect to gμ] and redefine the quasitopological
gravity coefficients as

μ2 � (n − 2)(n − 3)μ̂2, (8)

μ3 �
(n − 2)(n − 5)(3n2 − 9n + 4)

8(2n − 1) μ̂3, (9)

μ4 � n(n − 1)(n − 3)(n − 7)(n − 2)2(n5 − 15n4 + 72n3 − 156n2

+ 150n − 42)μ̂4,
(10)

so the gravitational field equation is gained as

μ4Ψ4 + μ3Ψ3 + μ2Ψ2 + Ψ + ξ � 0, (11)

where we have the definitions Ψ(r) � [k − f (r)]/r2 and

ξ � − 2Λ
n(n − 1) −

m
rn
+

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4β2

n(n − 1){1 − 2F1{[ − 1
2
,− n
2(n − 1)],

[ n − 2
2(n − 1)],−η}},BI
− 4β2

n(n − 1) +
4(n − 1)βq
n(n − 2)rn (qβ)

1
n− 1[LW(η)] n− 2

2(n−1)

×2F1{[ n − 2
2(n − 1)],[ 3n − 4

2(n − 1)],− 1
2(n − 1)LW(η)}

− 4βq

(n − 1)rn− 1[LW(η)]12 × {1 − 1
n
[LW(η)]− 1}, EN

8(2n − 1)
n2(n − 1)β

2[1 − �����
1 + η

√ ] + 8(n − 1)q2
n2(n − 2)r2n− 22

F1

{[ n − 2
2(n − 1),

1
2
],[ 3n − 4

2(n − 1)],−η}
− 8
n(n − 1)β

2 ln[2 �����
1 + η

√ − 2

η
], LN

(12)

where m is an integration constant relating to the mass of the
black hole. In the above relation, LW(x) and 2F1[(a, b), (c), z] are,
respectively, the Lambert and hypergeometric functions. We get
to the solution for Eq. 11

f (r) � k − r2 ×

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
− μ3
4μ4

+
−W +

��������������
−(3A + 2y − 2B

W
)√

2
, μ4 > 0,

− μ3
4μ4

+
W −

��������������
−(3A + 2y + 2B

W
)√

2
, μ4 < 0,

(13)

where for brevity reasons, we have describedW, A, y, and B in the
Supplementary Appendix B.

3 THERMODYNAMIC BEHAVIOR OF THE
(n+ 1)-DIMENSIONAL STATIC NONLINEAR
QUASITOPOLOGICAL BLACK HOLE
Via the AdS/CFT correspondence, the thermodynamic behaviors
of an AdS black hole can provide a set of knowledge for a certain
dual conformal field theory (CFT). So, in this section, we are eager
to obtain the thermodynamic quantities of the static nonlinear
quasitopological black hole. Using the subtraction method [48],
the mass of this black hole is gained as
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M � (n − 1)
16π

m, (14)

wherem can be obtained from Eq. 11 by the fact that f (r+) � 0. The
electric charge of the black hole can be determined from theGauss law

Q � 1
4π

∫ Ftrr
n−1dΩk � q

4π
, (15)

and the electric potential U is defined by the formula
U � A]χ]

∣∣∣∣∞ − A]χ]
∣∣∣∣r�r+, where χ] is the killing vector. So, we

can obtain the electric potential as follows

U �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q

(n − 2)rn−2+
2F1{[12, n − 2

2(n − 1)],[ 3n − 4
2(n − 1)],−η+},BI

n − 1
n − 2

β(q
β
) 1

n− 1[LW(η+)] n− 2
2(n−1)

2F1

{[ n − 2
2(n − 1)],[ 3n − 4

2(n − 1)],− 1
2(n − 1)LW(η+)}

−βr+
�������
LW(η+)√

, EN

q

(n − 2)rn−2+
3F2{[ n − 2

2(n − 1),
1
2
, 1],[ 3n − 4

2(n − 1), 2],−η+}, LN
(16)

where η+ ≡ η(r � r+). The entropy [49] and the Hawking
temperature of the static nonlinear quasitopological black hole
can be obtained by

S � n − 1
4

rn−1+ [ 1
n − 1

+ 2kμ2
(n − 3)r2+

+ 3k2μ3
(n − 5)r4+

+ 4k3μ4
(n − 7)r6+

], (17)

T � f
’(r+)
4π

� 1
4πr+(4μ4k3 +3μ3k2r2+ +2μ2kr4+ + r6+)×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
μ4k

4(n−8)

+μ3k3(n−6)r2+ +μ2k2(n−4)r4+ +k(n−2)r6+ −
2Λ
n−1r

8
+

+

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4β2

n−1r
8
+(1− �����

1+η+
√ ), BI

− 4β2

n−1r
8
+{1− [1−LW(η+)]exp[LW(η+)

2
]}, EN

8β2

n−1r
8
+
⎧⎨⎩1− �����

1+η+
√ − ln⎡⎣2( �����

1+η+
√ −1)

η+
⎤⎦⎫⎬⎭. LN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(18)

If we consider the thermodynamic volume and pressure as
below [50]

V � rn+
n
,

P � −Λ
8π

,

(19)

therefore, the first law of the thermodynamics in the extended
phase space follows from the formula

dM � TdS + UdQ + VdP + Bdβ + Ψ2dμ2 + Ψ3dμ3 + Ψ4dμ4,

(20)

where B and Ψi’s, (i � 1, 2, 3) are denoted, respectively, as the
potentials conjugate to the nonlinear parameter β and couplings
μi’s, respectively. They are defined as follows

B � zM
zβ

,

Ψ2 � zM
zμ2

� (n − 1)k2rn−4+
16π

− (n − 1)krn−3+
2(n − 3) T ,

Ψ3 � zM
zμ3

� (n − 1)k3rn−6+
16π

− 3(n − 1)k2rn−5+
4(n − 5) T ,

Ψ4 � zM
zμ4

� (n − 1)k4rn−8+
16π

− (n − 1)k3rn−7+
(n − 7) T ,

(21)

that the relations T � zM
zS , U � zM

zQ, V � zM
zP are established. In

the extended phase space, we can write the Smarr-type formula of
this black hole as

M � 1
n − 2

[(n − 1)TS − 2PV + (n − 2)UQ − βB + 2μ2Ψ2

+ 4μ3Ψ3 + 6μ4Ψ4]. (22)

If we determine the specific volume v � 4r+
n−1 and use the

pressure (III) in Eq. (III), we can specify the equation of state
for the static nonlinear quasitopological black hole as P(v,T).
The critical points of the static nonlinear quasitopological
black hole can be derived from the following conditions

zP
zv
|vC � 0,

z2P
zv2 vC � 0.

∣∣∣∣ (23)

Critical behavior of the cubic quasitopological black hole has
been investigated in Ref. [27]. As the critical behavior of the
quartic quasitopological black hole is similar to the cubic one, we
refrain from repeating them here.

4 THERMAL STABILITY OF THE
(n+ 1)-DIMENSIONAL STATIC NONLINEAR
QUASITOPOLOGICAL BLACK HOLE
In order to know where a black hole may exist physically or
not, we should discuss its thermal stability. To study the
thermal stability of the static nonlinear quasitopological
black hole, we define the heat capacity CP at the constant
pressure as follows
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CP � T(zS
zT

)
P

� T
( zS
zr+)P(zTzr+)P. (24)

The positive value of CP may lead to the thermal stability of the
mentioned black hole, while the negative value shows the
instability. We should note that the positive value of the
temperature is a requirement to having physical solutions.
To show the stability of the static nonlinear quasitopological
black hole, we have plotted CP and T for the BI black hole in
Figures 1, 2 with k � 1 and μ̂2 > 0 and μ̂3 > 0. The obtained
results show that the type of the nonlinear electrodynamics has
a trivial effect on the thermal stability. Therefore, we have
refrained from probing all of them and just included the
stability of the BI theory. In Figure 1 with μ̂4 > 0, we can
see a r+min for each n � 4 and 6 dimensions, that CP and T are
both positive for r+ > r+min. For μ̂4 < 0 in Figure 2B, there are
two r+min and r+max which CP is positive for both regions
r+ < r+min and r+ > r+max. According the temperature diagram
in Figure 2A, a unit positive region for both CP and T can be
gained for just r+ > r+max. Comparing Figures 1, 2 shows that

for the same parameters, a black hole with μ̂4 > 0 may have a
larger region in thermal stability than the one with μ̂4 < 0. We
can also understand this result from Eqs. 3, 17, 24. The
nonlinear quasitopological black holes with k � 1 and
positive μ̂2 and μ̂3 can have larger positive regions for
zS/zr+, T and CP , if we choose μ̂4 > 0.

5 JOULE-THOMSON EXPANSION OF THE
(n+ 1)-DIMENSIONAL STATIC NONLINEAR
QUASITOPOLOGICAL BLACK HOLE
In this section, we intend to study the Joule-Thomson expansion
of the obtained quasitopological black hole coupled to the
nonlinear electrodynamics. In the classical thermodynamics,
the Joule-Thomson expansion is an isenthalpic process in
which we can probe the temperature changes as the gas
expands from the high pressure to the low one through
porous plugs. The Joule-Thomson coefficient is obtained by
the Eq. 6

FIGURE 1 | Thermal stability of the BI quasitopological black hole with respect to r+ for different values of dimension n with μ̂2 � 0.2, μ̂3 � 0.1, μ̂4 � 0.001 k � 1,
q � 1 and β � 6 (A) Temperature T, (B) Heat capacity CP.

FIGURE 2 | Thermal stability of the BI quasitopological black hole with respect to r+ for different values of dimension n with μ̂2 � 0.2, μ̂3 � 0.1, μ̂4 � −0.001 k � 1,
q � 1 and β � 6 (A) Temperature T, (B) Heat capacity CP.
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μ � (zT
zP

)
H

� 1
CP

[T(zV
zT

)
P

− V], (25)

where the enthalpy of the system,H, is fixed. In the gas expansion,
the pressure always decreases. So, when the value of the
coefficient µ is positive during the expansion, it means that
the temperature decreases and therefore it is called a cooling
phenomenon. However, when µ is negative, the temperature
increases, and this is called a heating process. For μ � 0, we
can obtain the inversion temperature in which the process of the
temperature changes vice versa. It can be obtained by the formula

Ti � V(zT
zV

)
P

. (26)

Because a black hole behaves like a thermodynamic system, we
can consider the mass of a black hole as the enthalpy and probe
the Joule-Thomson expansion for it.

Now, we would like to investigate the Joule-Thomson expansion
of the higher-dimensional nonlinear quasitopological black hole and
identify the region in which cooling, or heating occurs. Therefore in
Figure 3, we have plotted the Joule-Thomson coefficient µ versus r+
for different values of β and compared it with the temperature of the
black hole. In Figure 3A, there is a r+ext for each value of β in which
the coefficient µ diverges. This point is in accordance with T � 0 in
Figure 3Bwhere there is an extreme black hole. So, we can get some
knowledge about the external black hole by recognizing the infinite
points of µ. This figure also shows that by increasing the nonlinear
parameter β, the value of r+ext increases. For r+ > r+ext in Figure 3A,
there is also an inversion phenomenon in r+inv in which the black
hole goes from a heating process to a cooling one. For small β,
inversion happens in a smaller r+.

We have also plotted the isenthalpic curves and the inversion
curve of the nonlinear quasitopological black hole for different values
ofQ and β in Figure 4. In each subfigure, we can see three isenthalpic
curves with constantM and the related inversion curve happening at
the maximum value of the isenthalpic curves. We define the
inversion temperature and pressure of each isenthalpic as Ti and

Pi. The inversion curve divides the isenthalpic curves in to two parts
where for P < Pi, the slope of the isenthalpic curve is positive and so
cooling happens in the expansion. But, for P > Pi, the slope of the
isenthalpic curve is negative, so there is heating for the black hole.
For small values of parameter β in Figures 4B,C, the same behaviors
are repeated, but for P > Pi, the temperature decreases to zero with a
steeper slope. So, the heating process happens slowly. This is unlike
the Einstein-Born-Infeld black hole for which the slope of the curve
in the range P > Pi is unchanged as β increases [18]. By decreasing
the parameter β in Figure 4B with respect to the one in Figure 4A,
the extreme black hole will happen in a larger pressure. In Figure 4C
with a small electric charge, the heating happens very slowly and so
the temperature gets to zero for a higher-pressure value than the
Figure 4B with a larger charge. We have also checked the Joule-
Thomson expansion of the obtained black hole for μ̂4 < 0 in
Figure 5. The result shows that we can face isenthalpic curves
with μ̂4 < 0 just for the hyperbolic geometry, k � −1.

6 JOULE-THOMSON EXPANSION OF THE
POWER MAXWELL QUASITOPOLOGICAL
BLACK HOLE
Power Maxwell is another nonlinear electrodynamics which can
preserve the conformal invariance of the theory in higher
dimensions. It has the form

L(F) � ( − Fμ]F
μ])s, (27)

where for the nonlinear parameter s � 1, it is reduced to the linear
Maxwell theory. In order to have an (n + 1)-dimensional conformal
invariant action, the energy-momentum tensor should be traceless
which leads to the value, s � (n + 1)/4. For a general study, we
consider an arbitrary value for the parameter s. Quasitopological
black hole solutions in the presence of the power Maxwell matter
field have been obtained in Refs. [51, 52]. In this section, we aim to
investigate the Joule-Thomson expansion of these solutions. The
temperature of this black hole follows from [51, 52]

FIGURE 3 | The Joule-Thomson coefficient µ and temperature T of the BI quasitopological black hole with respect to r+ for different values of the nonlinear
parameter β with μ̂2 � 0.1, μ̂3 � 0.1, μ̂4 � 0.002, k � 1, Q � 2 and n � 4 (A) Joule-Thomson coefficient µ, (B) Temperature T.
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T � 1
4πr+(4μ4k3 +3μ3k2r2+ +2μ2kr4+ + r6+)
×⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣μ4k4(n−8)+μ3k3(n−6)r2+ +μ2k2(n−4)r4++k(n−2)r6+ −

2Λ
n−1r

8
+

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
− q2s2s(n−2s)2sr2s(1−n)/(2s−1)+
4π(4μ4k3r−6+ +3μ3k2r−4+ +2μ2kr−2+ +1)(n−1)(2s− 1)2s−1r+,

(28)

where r+ has a range between r0 ≤ r+ <∞ that r0 ≠ 0. Using Eq.
26, we plot the isenthalpic and inversion curves of the power
Maxwell quasitopological solutions in Figure 6. It is clear that for
a general parameter s, the inversion curve has divided the
isenthalpic curves into two cooling and heating parts. In the
cooling/heating process, the temperature decreases/increases as
the pressure decreases in the isenthalpic process. If we compare
our results with the Joule-Thomson expansion of the power
Maxwell black holes in Einstein gravity [53], they show that
the quasitopological gravity cannot make an enhancement for the
isenthalpic curves. It is also clear from Figure 6 that by increasing
the parameter value, s, an extreme black hole happens at lower
pressure. This is unlike the Einstein-power-Maxwell black hole,
in which the extreme black hole with larger s has a larger pressure.

7 JOULE-THOMSON EXPANSION OF THE
FIVE-DIMENSIONAL YANG-MILLS
QUASITOPOLOGICAL BLACK HOLE
In this section, we consider the non-abelian Yang-Mills theory
with the quasitopological gravity and obtain the related five-
dimensional solutions. We also obtain the thermodynamic
quantities of this black hole and then probe the Joule-
Thomson expansion for it. In five dimensions, we can just
consider the six-parameters gauge groups, SO(4) and SO(3, 1),
where the action is defined by the relation (1) with the matter
source

L(F) � −cabF(a)
μ] F

(b)μ]. (29)

The gauge field tensor Fμ] is described as follows

F(a)
μ] � zμA(a)

] − z]A(a)
μ + 1

e
Ca
bcA

(b)
μ A(c)

] , (30)

where e is a coupling constant and Ca
bc’s are the structure

constants of the gauge groups that a, b go from 1 to 6. In
order to have analytical solutions, we use the Wu-Yang ansatz

FIGURE 5 | Isenthalpic curves and inversion curve of the BI
quasitopological black hole with μ̂2 � 0.1, μ̂3 � 0.1, μ̂4 � −0.001, k � −1,
Q � 1, n � 4 and β � 20.

FIGURE 4 | Isenthalpic curves and inversion curve of the BI quasitopological black hole with μ̂2 � 0.1, μ̂3 � 0.1, μ̂4 � 0.001, k � 1 and n � 4 (A) Q � 3, β � 10; (B)
Q � 3, β � 1; (C) Q � 1, β � 1.
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[37] and obtain the gauge potentials of the gauge groups. Using
the appropriate coordinates, we have written the gauge potentials
and the structure constants of the groups SO(4) and SO(3, 1) in
the Supplementary Appendix C. If we vary the Yang-Mills
quasitopological action with respect to gμ], we get to Eq. 11,
where ξ obeys from

ξ � −Λ
6
+m
r4
− 2e2

r4
ln( r

r0
), (31)

and r0 is a constant that for simplicity, we chose, r0 � 1. In
order to have the static Yang-Mills quasitopological
solutions, we use the metric (6) with k � −1,+1 that leads
to the solutions (13) with the ξ defined in Eq. 31. The mass
and entropy of the five-dimensional Yang-Mills
quasitopological black hole can be gained as Eqs. 14Eqs.
17 where m is obtained as below

m � μ4
k4

r4+
+ μ3

k3

r2+
+ μ2k

2 + kr2+ −
Λ
6
r4+ − 2e2 ln(r+). (32)

We can also determine the temperature and the Yang-Mills
charge of this black hole as

T � −6μ4k
4 + 3μ3k

3r2+ − 3kr6+ + Λr8+ + 3e2r4+
6πr+(4μ4k3 + 3μ3k

2r2+ + 2μ2kr
4+ + r6+) , (33)

Q � 1
4π

�
6

√ ∫ dΩ3

����������
Tr[F(a)

μ] F
(a)
μ] ]√

� e
4π

. (34)

This black hole obeys the first law of thermodynamics

dM � TdS + UdQ, (35)
where T � (zM

zS)
Q

is equal to the temperature (33) and the Yang-

Mills potential U can be obtained by

U � (zM
zQ

)
S

� −12πQ ln(r+). (36)

This relation restricts the range of the horizon value r+ to
1≤ r+ <∞. To study the thermal stability of the Yang-Mills
quasitopological black hole, we obtain the heat capacity from Eq.

FIGURE 6 | Isenthalpic curves and inversion curve of the PM quasitopological black hole with μ̂2 � 0.1, μ̂3 � 0.1, μ̂4 � 0.001, k � 1, n � 4 and q � 1 (A) S � 0.7, (B)
S � 1.4.

FIGURE 7 | Thermal stability with respect to r+ for different values e and q with μ̂2 � 0.1, μ̂3 � 0.2, μ̂4 � 0.001, k � 1 and n � 4 (A) Yang-Mills quasitopological, (B)
Maxwell quasitopological.
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24 and plot it in Figure 7A. We also compare the stability of this black
hole with theMaxwell quasitopological black hole in Figure 7B. These
figures show that for each value of e and q, there is a r+min(the condition
r+min > 1 is established for the Yang-Mills theory) that both CP and T
are positive for r+ > r+min. For small charges e and q, r+min has a
same value in both Yang-Mills and Maxwell quasitopological
theories, while for large charges, r+min has a larger value in the
Yang-Mills quasitopological gravity. Therefore, for large q, the
Maxwell quasitopological black holes have a larger region in
thermal stability than the Yang-Mills quasitopological black
holes. We are also eager to investigate the Joule-Thomson
expansion of the five-dimensional Yang-Mills quasitopological
black hole in Figure 8A and to then compare it with the Maxwell
quasitopological one in Figure 8B. In both Figures 8A,B, we can
see a cooling/heating process for different mass values with a
positive/negative slope in the isenthalpic curves. In fact, as the
pressure decreases during this expansion, according to Eq. 25, a
decrease/increase of the temperature is related to the positive/
negative slope in the T − P diagram. For each isenthalpic curve,
there is an inversion temperature and pressure, Ti and Pi, which
there is a cooling and heating process for P < Pi and P > Pi,
respectively. The heating process for the Yang-Mills
quasitopological black hole in Figure 8A happens with a
slower slope than the one in Maxwell quasitopological theory.
So, the extreme Yang-Mills quasitopological black holes are
described with larger pressures than the extreme Maxwell
quasitopological black holes.

8 CONCLUDING REMARKS

In this paper, we reviewed some quasitopological black hole solutions
and obtained their thermodynamic properties such as their thermal
stability and Joule-Thomson expansion. At first, we achieved the
(n + 1)-dimensional static quasitopological black hole solutions in
the presence of three BI, EN, and LN forms of nonlinear
electrodynamics. The obtained solutions are divided into two parts,
for μ4 > 0 and μ4 < 0. We also obtained the thermodynamic quantities
of this black hole and wrote the first law of thermodynamics in the

extended phase space. Then, we looked for the physical existence of the
black hole by studying the thermal stability. The stable region of this
black hole is independent of the types of the nonlinear electrodynamics.
Also, for k � 1, the solutions with μ̂i > 0 may lead to a larger stable
region than the onewith negative μ̂i. Joule-Thomson expansionwas the
other goal we paid attention to for this black hole. So, we probed
the temperature changes of this black hole in an isenthalpic
process during the expansion in which the pressure decreases.
For the nonlinear quasitopological black hole with μ̂4 > 0 and
k � 1, we obtained an inversion curve which can divide the
isenthalpic curves in to two parts. The part with the positive
slope in the isenthalpic curve leads to a cooling process, while for the
negative slope, heating may happen. For the black hole with a small
charge q and nonlinear parameter β, the temperature reduces to zero
with a very slow slope. It is possible to have an isenthalpic curve for
μ̂4 < 0 just for k � −1.

We also studied the Joule-Thomson expansion of the powerMaxwell
quasitopological black holes. The results showed that for the large
nonlinear parameter, s, the extreme black hole has a smaller pressure.
This is while for the Einstein-power-Maxwell black hole, an extreme
black hole with a small parameter s happens in low pressure. At the end,
we looked at the Yang-Mills theory and gained the five-dimensional
Yang-Mills solutions in the quasitopological gravity. We also carefully
examined the thermodynamic quantities such as thermal stability and
Joule-Thomson for this black hole and compared the results with the
five-dimensional Maxwell quasitopological black hole. They show that
there is a r+min, which the Yang-Mills quasitopological black hole is
thermally stable for r+ > r+min. For small values of the charges e andq, the
value of r+min is independent of the Yang-Mills or Maxwell theories,
while, for large charges, r+min has a larger value in Yang-Mills theory.
Also, the heating process for the Yang-Mills quasitopological black hole
happens more slowly than the one in the Maxwell black hole.
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