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The formation of nonlinear ion-acoustic waves is studied in a degenerate
magnetoplasma accounting for quantized and trapped electrons. Relying on the
reductive perturbation technique, a three-dimensional Zakharov–Kuznetsov (ZK)
equation is derived, admitting a solitary wave solution with modified amplitude and
width parameters. The stability of the ZK equation is also discussed using the
k-expansion method. Subsequently, numerical analyses are carried out for plasma
parameters of a dense stellar system involving white dwarf stars. It has been
observed that the quantized magnetic field parameter η and degeneracy of electrons
(determined by small temperature values T) affect the amplitude and width of the electric
potential. The critical point at which the nature of the solitary structure changes from
compressive to rarefaction is evaluated. Importantly, the growth rate of the instability
associated with a three-dimensional ZK equation depends on the plasma parameters,
and higher values of η and T tend to stabilize the solitons in quantized degenerate
plasmas. The results of the present study may hold significance to comprehend the
properties of wave propagation and instability growth in stellar and laboratory dense
plasmas.

Keywords: ion acoustic wave, instability analysis, Landau quantization, electron trapping, Degenerate plasma, white
dwarfs

1 INTRODUCTION

Quantum plasmas have been the focus of interest in the past few decades for many researchers
owing to their significance in astrophysical environments [1–3], ultracold plasmas [4], intense
laser plasma interaction experiments [5], microelectronic devices [6], and micro plasmas [7].
In particular, quantum mechanical effects can be taken into account in plasmas when the
thermal de Broglie wavelength is larger or equal to the interparticle distance. The dispersive
properties of the electrostatic and electromagnetic waves with quantum effects become
modified. These waves are usually described by the quantum hydrodynamic (QHD) model
(which is considered as an extension of classical fluid model) only valid in the long wavelength
limit, kλFe ≪ 1, as well as by the quantum magnetohydrodynamic (QMHD) model involving
the magnetic field and electron spin-1/2 effects apart from the fluid MHD equations in
plasmas [8–14].

In degenerate plasmas, the strong external magnetic field affects the motion of electrons in two
different ways. First, through the intrinsic spin of electrons that produces the Pauli paramagnetism.
Second, through the quantization of orbital motion of electrons that could lead to Landau
quantization/Landau diamagnetism [15]. The latter is a pure quantum phenomenon without any
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classical analogy, and charged particles propagating along the
magnetic field lines are usually unaffected from the influence of
magnetic field. However, the external magnetic field may enhance
the total energy of the system in the form of quantized energy
levels due to diamagnetism and alters thermodynamic properties
in dense magnetoplasmas. In this context, the linear and
nonlinear electrostatic waves with quantization effects have
attracted lots of attention of the plasma community.
Specifically, Tsintsadze [16] discussed the thermodynamic
quantities in the presence of a magnetic field and showed the
impact of quantized electrons on the dispersion of longitudinal
waves, identifying its novel branches with quantum corrections.

The electron trapping is a nonlinear phenomenon which arises
from the wave potential in which the electrons are confined to a
certain region of phase space. The potential field essentially
provides the potential energy to the electrons, which may be
equivalent to or greater than the kinetic energy of electrons.
When the net energy of electrons becomes negative or equal to
zero, that is, ϵ ≤ 0, the free movement of the electrons is restrained
within a certain region and the condition is then termed as
adiabatic trapping. Moreover, the electrons can be treated as free
particles, provided the net energy should be positive, that is, ϵ > 0.
Hence, the electron trapping phenomenon may affect the
nonlinear dynamics of the waves and its propagation
characteristics in degenerate dense plasmas. Bernstein et al.
[17] were the first who determined the nonlinear stationary
electrostatic structures accounting for trapped particles in
plasmas by utilizing a kinetic model. It was shown that adding
a suitable amount of trapped particles in the potential energy
trough leads to traveling wave solutions. Later, Gurevich [18]
identified a collisionless electron trapping for a nonstationary
electric field and a distribution function for captured electrons to
examine a slowly varying field as well as for a rapidly varying field.
In 1996, the phenomenon of adiabatic electron trapping was
verified by laboratory experiments [19] and numerical works [20]
at the microscopic level in plasmas. Recently, numerous efforts
[21–24] have been made to investigate nonlinear structures with
applications to space and laboratory plasmas by taking into
account the trapping effects.

Furthermore, Shah et al. [25] examined the effects of trapping
and quantized magnetic field on the profiles of large-amplitude
ion-acoustic waves (IAWs) in degenerate plasmas. Using the
framework of the Sagdeev potential, they obtained both
compressive and rarefaction solitons for different conditions of
temperature and magnetic field. They also confirmed these
coherent structures in fully and partially degenerate plasmas to
account for quantized magnetic field. Later on, the ion-acoustic
shocks accounting for trapping and Landau quantization
parameters were investigated [26] in quantum dense
magnetoplasmas showing the impact of Landau quantization
on the height of shock profiles.

In literature, different waves and instabilities have been
studied for different plasma compositions and orientations.
One of the fundamental plasma modes is the IAW. In recent
studies, the propagation characteristics of IAWs have been
investigated both in classical [27, 28] and quantum plasmas
[29]. In particular, Mandi et al. [33] have considered the

dynamics of IAWs in Thomas–Fermi plasmas comprising
electrons, positrons, and positive ions and accounted for the
source term effect. They examined the impact of the positron
concentration, the speed of space debris, and the strength of
the source term on the profiles of periodic, quasiperiodic, and
chaotic motions of IAWs. Quite recently, the nonlinear
features of IAWs have been identified in space plasmas to
exhibit chaotic structures, which can be exploited to design
efficient algorithms for image encryption [34]. For small (but
finite) amplitude IAWs, a Zakharov-Kuznetsov (ZK) equation
(35) was first derived in a classical plasma taking hot
isothermal electrons and cold ions in a uniform magnetic
field. The ZK equation governs two- or three-dimensional
modulation of the KdV equation and can only be obtained
in magnetized plasmas. Mamun [36] considered a three-
component magnetized dusty plasma and studied the
properties of nonlinear structures and analyzed instability
of these waves by utilizing the small-k perturbation
expansion method. It was found that the growth rate of the
unstable wave structures varies with the external magnetic field
and the direction of propagation. Infeld and Rowlands [37]
discussed the stability of ZK solitons in transverse direction
using the direct k-method. The multi-dimensional instability
of IAWs was further investigated in a degenerate
magnetoplasma for the basic instability criterion, exploring
the effects of the external magnetic field on solitary structures
[38]. Quite recently, the instability growth rate with different
plasma parameters has been analyzed [39] in collisionless
magnetized multi-ion plasmas with Landau quantization
and polarization effects.

In this study, we investigate the small-amplitude properties of
IAWs in a degenerate quantum plasma to account for trapped
electrons and the quantized magnetic field. Using the reductive
perturbation technique, we derive a ZK equation, which admits a
solitary solution and stability analysis in the presence of trapped
electrons. The critical point at which the compressive solitary
structures changes to rarefactive solitons has also been
determined.

The layout of the article is as follows: Section 2 presents a
mathematical model containing the fluid equations of classical
ions and degenerate-trapped electrons through the density
distribution for a quantized dense magnetoplasma. Within the
framework of the reductive perturbation technique, a ZK
equation and its solution are obtained in Sections 3 and 4,
respectively. Section 5 presents the stability analysis of the ZK
equation, and Section 6 deals with the results and discussion to
understand nonlinear characteristics of IAWs in the environment
of white dwarf stars. A brief summary of the work is also given in
Section 7.

2 MATHEMATICAL MODEL FOR
QUANTIZED MAGNETOPLASMAS

To study the formation and propagation of small-amplitude
IAWs with trapping effects, we consider a uniform
collisionless quantized magnetoplasma, whose constituents are
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the degenerate-trapped electrons and non-degenerate cold
dynamical positive ions. Since quantum effects may account
for lighter species, that is, electrons, the ion species are treated
as classical because of their larger mass compared to electronic
mass. Such a plasma is also subjected to an external magnetic field
B0, which is directed along the z-axis. At equilibrium, the plasma
holds the charge–neutrality condition ni0 ≃ ne0 � n0, where ni0
(ne0) is the equilibrium ion (electron) number density. The
dynamics of IAWs in a degenerate-quantized magnetoplasma
is governed by the following normalized three-dimensional ion-
continuity, ion-momentum, and Poisson equations,
respectively, as

z~ni

z~t
+ �∇.(~ni�vi) � 0, (1)

z

z~t
+ �vi.�∇( )�vi � −�∇~ϕ + Ω�vi × ẑ (2)

and

�∇2~ϕ � ~ne − ~ni, (3)

where ~ni (~ne) is the normalized ion (electron) number density
scaled by the ion (electron) equilibrium density state ni0 (ne0), ~vi is
the ion fluid velocity normalized by the ion-acoustic speed
CF � (εFe/mi)1/2, and ~ϕ represents the electrostatic potential
normalized by e/εFe. The space and time coordinates are
also scaled, respectively, by the electron Fermi length
λ0 � (εFe/4πe2n0)1/2 and ion-oscillation frequency
ωpi � (4πe2n0/mi)1/2, where εFe stands for the electron Fermi
energy and e (mi) the electronic charge (ionic mass).
Here, Ω(� ωci/ωpi) is the ratio of ion-cyclotron frequency
(ωci � eH0/mic)-to-ion plasma oscillation frequency, H0 being
the magnetic field.

The electrons can be considered as degenerate, Landau
quantized, and trapped. In this context, we need to express the
number density of the quantized electrons [15] which are trapped
in the electric potential of ions. The quantized energy of the
electrons within the potential well in a nonrelativistic limit is
given by the following:

εl � p2z
2me

+ l-ωce − eϕ, (4)

where the potential and cyclotron energies are, respectively,
denoted by −eϕ and Zωce; pz is the z-component of the
electron momentum and l � 0, 1, 2, ‥ are the quantized
Landau levels with ωce(� eHo � cme) the electron-cyclotron
frequency. The electrons with energies εl > 0 and εl < 0
correspond to trapped and free electrons, whereas εl � 0
shows the separatrix between the two types of electrons.

The occupation number of degenerate electrons can be
expressed as

ne � p2Feη

2π2Z3

���
me

2

√ ∑∞
l�0

∫∞

0

ε−1/2

exp[ ε + l-ωce − μ − eϕ( )/T] + 1
dε, (5)

where μ is the chemical potential, pFe is the Fermi momentum,
and η(� -ωce/εFe) represents the effect of the quantizing
magnetic field with modified electron Fermi energy

εFe � (Z2/2me)(2π2ne0)
2/3 / η + 2

3(1 − η)3/2{ }2/3. In a macroscopic
system, the summation runs over the Landau levels and can
be replaced by the integration over l, from limit l � 0
(one without a quantizing magnetic field) to the maximum
limit lmax � (1 + eϕ/εFe)/η so that the integrand remains real.
The normalized number density of partially degenerate electrons
eventually becomes [25]

~ne � 3
2
η(1 + ~ϕ)1/2 + (1 + ~ϕ − η)3/2 − η ~T

2

2
(1 + ~ϕ)−3/2

+ ~T
2(1 + ~ϕ − η)−1/2. (6)

In obtaining Eq. 6, we have used ne0(� p3Fe/3π
2Z3) for fully

degenerate plasma (T � 0), while the potential and temperature
are scaled as ~ϕ→ eϕ/εFe and ~T→ πT/2

�
2

√
εFe, respectively. Then,

neglecting the effect of Landau quantization (η � 0), Eq. 6 leads to
the previous results [24] for adiabatically trapped electrons.
Furthermore, neglecting the trapping potential ϕ in Eq. 6
immediately leads to ~ne � {η2 (3 − T2) + (1 − η)3/2 +
T2(1 − η)−1/2} for partially degenerate plasma.

3 EVALUATION OF THE
ZAKHAROV-KUZNETSOV EQUATION

To study the propagation of small but finite amplitude IAWs in a
three-dimensional quantized degenerate plasma, we utilize the
well-known reductive perturbation technique (RPT) [40] with
following space-time stretching coordinates:

X � ϵ1/2x, Y � ϵ1/2y, Z � ϵ1/2(z − λt), and τ � ϵ3/2t, (7)

where λ shows the normalized phase speed of the IAWs and
ϵ (0 < ϵ < 1) is the dimensionless smallness parameter measuring
the amplitude of perturbations. For simplicity, we drop out the
tilda notation (∼) from the variables in Eqs (1)–(3) and expand
the dependent variables, such as ni, ϕ, vX, vY, and vZ in terms of ϵ,
respectively, as

ni � 1 + ϵni1 + ϵ2ni2 + . . . ,
ϕ � 0 + ϵϕ1 + ϵ2ϕ2 + ϵ3ϕ3 . . . ,
vX � 0 + ϵ3/2vX1 + ϵ2vX2 + ϵ5/2vY3 + . . . ,
vY � 0 + ϵ3/2vY1 + ϵ2vY2 + ϵ5/2vY3 + . . . ,
vZ � 0 + ϵvZ1 + ϵ2vZ2 + ϵ3vZ3 + . . . ,

(8)

where vX, vY, and vZ are the scalar components of the ion fluid
velocity vi. It is important to mention here that many authors
[41–44] have previously studied the trapped electrons using the
framework of RPT and derived the modified Korteweg–de Vries
(mKdV), modified Kadomstev–Petviashvili (mKP), and modified
Zakharov-Kuznetsov (mZK) equations, where quadratic
nonlinearity changes to 3/2−order nonlinearity. However, the
present model not only includes the trapping electrons but also
magnetic field quantization. In this context, the small potential
limit [i.e., ϕ ≪ 1] is utilized to expand the normalized electron
density from Eq. 6, as

ne � α0 + α1ϕ + α2ϕ
2 + . . . , (9)
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where the expansion coefficients are defined as

α0 � 3
2
η +(1 − η)3/2 − 1

2
ηT2 + T2(1 − η)−1/2,

α1 � 3
4
η + 3

2
(1 − η)1/2 + 3

4
ηT2 − 1

2
T2(1 − η)−3/2,

α2 � − 3
16

η + 3
8
(1 − η)−1/2 − 15

16
ηT2 + 3

8
T2(1 − η)−5/2.

(10)

Since the number density expansion does not include the ϕ3/2-
order term, so the resultant contribution to nonlinearity in the ZK
equation is quadratic instead of fractional. Now employing the
stretchings and expansions [i.e., Eqs. (7)–(9)] into the governing
Eqs. (1)–(3) along with (6), we may obtain the set of equations by
collecting the various orders of ϵ. The lowest order terms in ϵ
(i.e., ϵ3/2-order) lead to the following:

−λ z

zZ
ni1 + z

zZ
vZ1 � 0,

z

zX
ϕ1 − ΩvY1� 0,

z

zY
ϕ1 + ΩvX1� 0,

−λ z

zZ
vZ1 + z

zZ
ϕ1� 0,

ni1 − α1ϕ1 � 0.

(11)

These first order perturbed quantities give rise to the linear
phase speed of IAWs, given as

λ �
��
1
α1

√
. (12)

Collecting the next order terms of ϵ (i.e., ϵ2-order), we get the
following:

z

zX
vX1 + z

zY
vY1 � 0,

− λ z

zZ
vX1 −ΩvY2 � 0,

− λ z

zZ
vY1 +ΩvX2 � 0,

ni2 − α1ϕ2 � α2ϕ
2
1 −

z2

zX2 +
z2

zY2 +
z2

zZ2( ) ϕ1.

(13)

Also, collecting the ϵ5/2-order, we readily obtain equations
containing the second order–perturbed quantities in the form of
first order–perturbed variables, as

−λ z

zZ
ni2 + z

zX
vX2 + z

zY
vY2 + z

zZ
vZ2 � − z

zτ
ni1 − z

zZ
ni1vZ1( ),

−λ z

zZ
vZ2 + z

zZ
ϕ2 � − z

zτ
vZ1 − vZ1

z

zZ
vZ1.

(14)

After some algebraic manipulations, the set of Eqs. (11)–(13)
can be solved to obtain the ZK equation, as

z

zτ
ϕ1 + Pϕ1

zϕ1

zZ
+ Q

z3ϕ1

zZ3
+ R

z

zZ
z2

zX2
+ z2

zY2
( )ϕ1 � 0, (15)

where

P � λ

2
3

λ2
− 2α2λ

2( ), Q � λ3

2
andR � Q 1 + 1

Ω2( ), (16)

are the nonlinearity and dispersion coefficients. Note that these
coefficients are significantly modified in a partially degenerate
plasma by the Landau quantization affect.

4 SOLITARY SOLUTION OF THE
ZAKHAROV-KUZNETSOV EQUATION

The nonlinear partial differential equations (nPDEs) play a
significant role in describing the physical phenomena. To find
the exact solutions of nPDEs, different useful methods have been
proposed in the literature. In particular, for solving the ZK
equation, we may transform different independent variables to
a single moving frame (single variable) as given below:

ξ � lXX + lYY + lZZ − U0τ, (17)

where U0 is the soliton speed and the direction cosines are
represented by lX, lY, and lZ, respectively, along the X-, Y-, and
Z-axes, such that l2X + l2Y + l2Z � 1. Since the predominant
direction of propagation is along the Z-axis, therefore the
direction cosine along the Z-axis, that is, lZ should be larger
than lX and lY. The ZK equation (15) may be reduced to an
ordinary differential equation upon the above transformation, as

−U0
dϕ1

dξ
+A0ϕ1

dϕ1

dξ
+B0

d3ϕ1

dξ3
� 0. (18)

The new coefficients are now defined as A0 � PlZ and
B0 � Ql2Z + R(l2X + l2Y ){ }lZ . One can easily integrate Eq. 18 by
using appropriate boundary conditions such as (ϕ1, zϕ1/zξ, z

2ϕ1/
zξ2)→ 0 at ξ → ±∞ to finally obtain a soliton solution of the ZK
equation, given as

ϕ1 � ϕm sec h2
ξ

Δ( ). (19)

This is a localized stationary solitary wave solution describing
the formation and propagation of a nonlinear structure in a
quantized degenerate plasma. This solution can only be obtained
when nonlinearity and dispersion are balanced out. The
amplitude and width of the soliton are given, respectively, by
the following:

ϕm � 3U0

A0
and Δ � 2

B0

U0
( )1/2

. (20)

It may be noted that the solution (19) has almost the similar
analytical form as that of the well-known solution of the
KdV equation. The only difference is the argument on the
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sech-squared function that has been complicated, corresponding
to oblique propagation of soliton with respect to the
magnetic field.

5 STABILITY ANALYSIS OF THE
ZAKHAROV-KUZNETSOV EQUATION

In a three-dimensional plasma, the solitary wave becomes
unstable due to transverse perturbations. The stability of such
solitary wave solution can be investigated by using variety of
methods, including the linear variation-of-action method [45],
the k-expansion method [46], and the direct stability analysis
method [47, 48]. In this model, we carry out the stability analysis
for the solitary waves in the presence of trapped electrons and
Landau quantization by using the k-expansion method [37].
Thus, we first reduce the ZK equation (15) to its canonical
form by making it identical to Equations (8), (6), and (1) of Ref.
[37] and transform the normalized parameters, as

τ′ � τ

τ0
, ρ′ � Z

L‖
, χ′ � X

X0
+ Y
Y0

and ϕ′ � ϕ1

ϕ0

. (21)

Then the ZK Equation 15 can be expressed as

z

zτ′
ϕ′ + Pϕ0τ0

L‖
ϕ′
zϕ′

zρ′
+ Qτ0

L3
‖

z3ϕ′

zρ′
3 +

Rτ0
L‖L2

⊥

z

zρ′
z2ϕ′

zχ′
2 � 0, (22)

where L⊥ � X0Y0/(X2
0 + Y2

0)1/2. If we set Pϕ0τ0/L‖ �
Qτ0/L3‖ � Rτ0/L‖L2⊥ � 1, then Eq. 22 eventually becomes

z

zτ′
ϕ′ + ϕ′

zϕ′

zρ′
+ z

zρ′
∇2ϕ′ � 0, (23)

with ∇2 � z2/zρ′2 + z2/zχ′2, while ϕ0, L⊥ and τ0 are defined,
respectively, as

ϕ0 �
Q
PL2‖

, L⊥ �
��
R
Q

√
L‖ and τ0 �

L3‖
Q
. (24)

The stationary solution of the canonical equation (23) is as
follows:

f0(ρ′, τ′) � f0(ζ) � 12 sec h2(ρ′ − 4τ′). (25)

To check the stability, we consider the following solution:

ϕ′(ρ′, χ′, τ′) � f0(ζ) + g(ζ) exp(ikχ′ + λτ′), (26)

where λ is the instability growth rate when Re(λ) ≠ 0 and k is the
expansion constant. Substituting the solution in Eq. 23 and
linearizing the resulting equation we obtain the following:

d
dζ

(Lg(ζ)) � d
dζ

d2

dζ2
+ f0 − 4( ) g(ζ) � − λg(ζ) + k2g(ζ). (27)

We can expand g(ξ) and λ in terms of k, as

g(ζ) � g0(ζ) + kg1(ζ) + k2g2(ζ) + . . . ,
and λ � kλ1 + k2λ2 + . . . .

(28)

Using the k-expansions from Eq. 28 into Eq. 27, we obtain
equations in terms of various k−orders. For the lowest order, we
have the following:

d
dζ

(Lg0(ζ)) � 0. (29)

Substituting f0 from Eq. 25 into Eq. 23 and differentiating give

d
dζ

L
d
dζ

f0( ) � 0. (30)

By comparing the above two equations, the value of g0(ζ) is
then obtained as

g0(ζ) � −24 sec h2ζ tanh ζ . (31)

The bounded solution g1(ζ) is obtained from the next order,
as g1(ζ) � −3λ1 (sec h2ζ − ζ sec h2ζ tanh ζ), and for the next
order

d(Lg2(ζ))
dζ

� −λ2g0 − λ1g1 + dg0
dζ

. (32)

For solving this equation, the kernal of the left hand side with
f0 must be zero, that is,

∫+∞

−∞
f0
d(Lg2(ζ))

dζ
dζ � 0, (33)

which results into the following:

−λ2 ∫+∞

−∞
f0g0dζ − λ1 ∫+∞

−∞
f0g1dζ + ∫+∞

−∞
f0
dg0
dζ

dζ � 0. (34)

Solving these integrals, we get λ1 � 8/
��
15

√
. The total growth

rate λ up to the first order can be found by using Eq. 28 and
rescaling the variables k and λ as

k → kL⊥ � k

��
R
Q

√
L‖,

and λ1 → λ1τ0 � λ1
L3
‖
Q
.

(35)

The growth rate given by Eq. 28 can be written as

λ � kλ1 → kλ1

��
R
Q

√
L4
‖
Q

� 8k
��
R

√
L4
‖��

15
√

Q3/2
. (36)

Here L‖ is arbitrary. The result (36) shows that the
growth rate is dependent on the plasma parameters of the
system under consideration through the dispersion
coefficients Q and R. The k-expansion method can be
further used to find the second and higher order growth
rate instabilities.

6 RESULTS AND DISCUSSION

For numerical evaluation, we need to identify quantum
parameters and scales for a quantized nonrelativistic
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degenerate plasma, which is characterized by strong magnetic
fields. We also focus on the region of application involving the
compact stellar objects, such as white dwarf stars, neutron stars,
and magnetars. These objects are highly dense, degenerate, and
magnetized systems, where plasma number density is taken up
to the order of 1032cm−3 for white dwarf stars and 1036cm−3 or
even more for neutron stars [49, 50]. The typical values of
densities and magnetic fields used in the present model are
1026cm−3–1032cm−3 and 109G − 1012G, respectively. The
temperature of the system is typically found of the order of
106K, whereas electron Fermi (TFe) and ion Fermi (TFi)
temperatures are estimated to be 0.904 × 107K and 4.92 ×
103K, respectively, for densities ne0 ≃ ni0 � n0 ≡ 1026cm−3.
Note that electrons behave as degenerate species under the
condition TFe > T, while ions as classical non-degenerate
species for TFi < T. One can also confirm that electrons
remain in nonrelativistic regime as long as the Fermi
energy kBTFe(≡ 1.25 × 10−9erg) is less than the rest mass
energy mec2(� 8.19 × 10−7erg).

For the quantum fluid model, the electron Fermi length
(λFe) should be greater than the interparticle distance (d),
which can be approximated by the Wigner–Seitz radius, as
d � (3/4πne0)1/3. The above mentioned density and
corresponding Fermi temperature lead to a valid quantum
fluid model since the numerical values of electron, the Fermi
length, and the interparticle distance are 2.08 × 10−9cm and
1.34 × 10−10cm, respectively. Ion correlations are usually
defined by the ratio of the average potential energy to the
average kinetic energy, that is, Γi � < U >/< K > ≡ e2/
(4πε0dkBT) which turns out to be 0.125 indicating a weakly
coupled plasma. However, the ion viscosity in the system can
be ignored as long as the time scale of the ion correlations is
much smaller than the wave period. On the other hand, for the
external magnetic field H0 � 5 × 1010G, the quantization of
Landau levels plays an important role in dense
magnetoplasmas and quantized energy for the Landau level
Zωce comes out to be 9.2 × 10−10erg, which is comparable to the

Fermi energy kBTFe, as mentioned above. Hence, the
quantization parameter yields η � Zωce/kBTFe � 0.74 and the
ratio Ω � ωci/ωpi ≡ 0.036. In addition, the amplitude and
width of soliton may also be estimated using Eq. 20,
which turn out to be ϕm � 0.319 λFe (∼ 6.63 × 10−10m) and
Δ � 55.16 λFe (∼ 1.15 * 10−7m), respectively, for the above
mentioned values of density, magnetic field, and temperature.
For the subsequent parametric analysis, we shall investigate
the variation of solitary structures with respect to the
quantization parameter (η), the degeneracy parameter (T),
and the cyclotron-to-ion plasma frequency ratio (Ω), close
to the above values. We also focus on numerical analysis of
stability for the plasma parameters consistent to dense
quantized plasmas.

Figure 1A displays the variation of normalized electric
potential perturbation ϕ1 [given by Eq. 19] by changing the
quantization parameter η in a fully degenerate plasma (T � 0).
The curves represent the small-amplitude ion-acoustic
compressive solitons that are formed and affected by the
parameters of dense white dwarf stars. It is found that as
the parameter η increases, the amplitude and width of the
electric potential also increase. The percentage increase of the
maximum amplitude of soliton for the change of the values of
η from 0.1 to 0.6 can thus be estimated from Figure 1A as
[(ϕm | η�0.6 − ϕm | η�0.1)/ϕm | η�0.1] × 100 ∼ 9.91. However, in
case of a partially degenerate plasma (T ≠ 0), as shown in
Figure 1B, the nature of the soliton changes from compressive
to rarefactive at a higher value of η(≳ 0.6). It is important to
mention that the parameter Ω(� ωci/ωpi) directly depends on
the magnetic field, but it is kept fixed for the above plots since
it only appears in the dispersive coefficient R, which modifies
the width of soliton but does not affect its amplitude.

Figure 2A illustrates how the normalized electric potential
perturbations ϕ1 (as function of spatial distance ξ) alter with
variation of temperature when the quantizing magnetic field
parameter is turned off (η � 0). Note that the amplitudes of the
electric potential are significantly modified with increasing the

FIGURE 1 | Electric potential ϕ1 (ξ, τ) of the ion-acoustic solitons is plotted across the quantized magnetic field parameter η for (A): completely degenerate plasma
(T �0) and (B): partially degenerate plasma (T � 0.6). Here lZ � 0.8, lX � lY �

�����
1 − l2Z

√
, U0 � 0.1, and Ω � 0.04.
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temperature in a partially degenerate plasma. Thus, the
percentage increase for the maxima of amplitude of solitary
wave occurs when the temperature T changes from 0.1 to 0.6,
which can be given as [(ϕm |T�0.6 − ϕm |T�0.1)/ϕm |T�0.1] ×
100 ∼ 17.29 from Figure 2A. The potential also varies
with changing temperature as long as the quantized
magnetic field is taken as non-zero. Consequently,
compressive soliton changes to rarefactive soliton in a
partially degenerate plasma at a fixed quantizing parameter
η(∼ 0.6) at T � 0.6 as shown in Figure 2B.

The nature of soliton strongly depends on the
nonlinearity coefficient (P). If P � 0, then Eq. 16 reduces
to α2 � 3α21/2, which gives rise to a critical point relying on
the parameters η and T. For α2 < 3α21/2, the region for
compressive solitons lies above the critical point, and for
α2 > 3α21/2, we have rarefactive solitons below the critical
point. The critical point essentially exists in different

plasmas such as the multi-component plasmas or even the
electron-ion plasmas with temperature difference. Figure 3
displays how the nonlinearity coefficient varies with
parameters η and T. It is observed that the critical point
shifts to the higher values of η, as the temperature decreases.
It is worth mentioning here that critical point vanishes for a
completely degenerate plasma (T � 0) as well as in the
absence of the quantized magnetic field (η � 0).

To investigate the stability of three-dimensional ion-
acoustic soliton using Eq. 36, we show the growth rate
numerically in Figure 4. It can be seen from Figure 4A that
the growth rate instability not only reduces with increasing
value of quantizing magnetic field but also decreases with
increasing temperature effect. Figure 4B confirms that the
variation of the parameter Ω causes a reduction in the
magnitude of the growth rate. These figures determine that
ZK solitons become more stable by increasing parameters such
as η, T, and Ω.

7 SUMMARY

We have investigated the propagation characteristics of the
ion-acoustic solitary waves in a three-dimensional dense
magnetoplasma consisting of cold non-degenerate ions and
degenerate quantized trapped electrons. The ZK equation has
been derived using the reductive perturbation technique,
admitting solitary solution. The parametric analysis has
been carried out using the plasma parameters involving the
dense stellar system of white dwarf stars. It has been found that
augmenting the temperature (which determines the
degeneracy) and the quantized magnetic field parameter
enhance the amplitudes of electric potential perturbations.
Furthermore, the critical point at which the solitary
structures change their nature has been determined and
analyzed. The critical point arises from the complex nature
of plasma and the interplay of degeneracy and quantized

FIGURE 2 | Electric potential ϕ1 (ξ, τ) of the ion-acoustic solitons is plotted across the temperature T in (A): absence of quantized magnetic field (η � 0) and (B):
quantized magnetic field (η � 0.6). Here lZ � 0.8, lX � lY �

�����
1 − l2Z

√
, U0 � 0.1, and Ω � 0.04.

FIGURE 3 | Nonlinearity coefficient P is plotted across the quantized
magnetic field parameter η for different values of temperature T.
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magnetic field. The stability analysis of the ZK equation in the
presence of trapped quantized electrons has been carried out
using the framework of the k-expansion method. The
parametric investigations show that the growth rate of the
instability varies with the quantizing parameter (η) and
temperature (T) effects. Therefore, the higher values of η
and T stabilize the ZK solitons in three-dimensional
quantized dense plasmas. The present results may hold
significance to comprehend the properties of wave
propagation and instability growth in stellar and laboratory
dense plasmas.
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