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Shear wave elastography (SWE) relies on the generation and tracking of coherent shear
waves to image the tissue's shear elasticity. Recent technological developments have
allowed SWE to be implemented in commercial ultrasound and magnetic resonance
imaging systems, quickly becoming a new imaging modality in medicine and biology.
However, coherent shear wave tracking sets a limitation to SWE because it either requires
ultrafast frame rates (of up to 20 kHz), or alternatively, a phase-lock synchronization
between shear wave-source and imaging device. Moreover, there are many applications
where coherent shear wave tracking is not possible because scattered waves from
tissue’s inhomogeneities, waves coming from muscular activity, heart beating or
external vibrations interfere with the coherent shear wave. To overcome these
limitations, several authors developed an alternative approach to extract the shear
elasticity of tissues from a complex elastic wavefield. To control the wavefield, this
approach relies on the analogy between time reversal and seismic noise cross-
correlation. By cross-correlating the elastic field at different positions, which can be
interpreted as a time reversal experiment performed in the computer, shear waves are
virtually focused on any point of the imaging plane. Then, different independent methods
can be used to image the shear elasticity, for example, tracking the coherent shear wave as
it focuses, measuring the focus size or simply evaluating the amplitude at the focusing
point. The main advantage of this approach is its compatibility with low imaging rates
modalities, which has led to innovative developments and new challenges in the field of
multi-modality elastography. The goal of this short review is to cover the major
developments in wave-physics involving shear elasticity imaging using a complex
elastic wavefield and its latest applications including slow imaging rate modalities and
passive shear elasticity imaging based on physiological noise correlation.
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1 INTRODUCTION

The goal of Shear Wave Elastography (SWE) is to measure the tissue’s shear elasticity μ (i.e.
elasticity). To this end, SWE relies on shear wave propagation inside soft tissues, since under the
assumption of a purely elastic isotropic medium, the shear wave speed cs is directly linked to μ
through the relation μ � ρ.c2s (ρ being the tissue’s density). The standard sequence in many SWE
modalities is the following: first, shear waves are generated by carefully applying an external
controlled shear wave source (e.g., mechanical actuator or ultrasound radiation force). Then, the
induced displacements are imaged, usually by using ultrasound or a magnetic resonance imaging
(MRI) system. In ultrasound based SWE ultrafast frame rates (i.e. between 1 to 20 kHz) are required
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to track the shear wave propagation. Alternatively, for low frame
rates imaging modalities, a phase-lock synchronization between
acquisition and shear wave source is needed (e.g., in magnetic
resonance elastography). Finally, the tissue’s shear elasticity is
deducted from the measured displacement field by estimating the
shear wave speed, or alternatively, the shear wavelength (i.e., if the
shear wave excitation frequency is known). Recent technological
developments have allowed SWE to be implemented in
commercial ultrasound and MRI systems, quickly becoming a
new imaging modality in medicine and biology [1–3].

In SWE, the shear wave speed is usually estimated from the
coherent or ballistic shear wave propagation. However, there are
many applications where coherent shear wave tracking is not
possible due to the interference of scattered waves coming from
tissue boundaries and internal inhomogeneities. Moreover,
additional waves generated by muscular activity, heart beating
or other sources of vibrations may interfere with the coherent
shear wave resulting in a complex elastic wavefield. Directional
filtering has been proposed to solve this issue [4, 5]. However,
other researchers focused in developing alternative approaches to
measure μ (or equivalently cs) from a complex elastic wavefield
[6–18]. For example, in the TREMR technique (Table-Resonance
Elastography with MR), the elastic field created by the vibrations
of the patient table of a MRI system was used to image the
elasticity of a tissue phantom and the brain [7]. Moreover, several
authors have chosen to take advantage of the complex elastic
wavefield naturally present in the human body due to pulsatility,
heart beating and muscular activity to conduct an elastography
experiment [8–11, 13, 14, 19–21]. Due to the absence of any
external shear wave source this approach is usually termed as
passive elastography.

Recently, inspired by seismic noise correlation [22, 23] and
time reversal [24] a novel method [12, 25, 26] to extract the shear
elasticity of tissue from a complex elastic field was developed. The
first step is to record the complex wavefield generated by random
internal or external sources. Then, by cross-correlating the elastic
field at different positions, which can be interpreted as a time
reversal experiment in the computer [27], shear waves are
virtually focused on any point of the imaging plane. From the
computed time reversal field there are different independent
approaches to image the shear elasticity [12–15, 18], for
example, tracking the coherent shear wave as it focus;
measuring the focus size which is directly linked to the shear
wavelength (λs) and hence to the shear wave velocity; or
evaluating the vibration amplitude at the focusing point, since
for a given frequency, the vibration amplitude is larger in a soft
tissue than in a hard one. Because this method takes advantage of
a complex elastic wavefield it has found important applications in
passive elastography [13, 14].

The pioneering work in this field was done at the Laboratorio
de Acústica Ultrasonora (LAU) in Montevideo, Uruguay in
collaboration with Stefan Catheline, who was at the LAU for a
2 year mission. The work of Catheline et al. [25] presented the
observation of a time reversal experiment using shear waves in a
tissue-mimicking phantom for the first time. In [25] it was shown
that, contrary to the scalar field case (e.g., in fluids), for an elastic
field in the bulk of a soft tissue, the focus is no more isotropic.

Instead, it has an ellipse-like shape leading to a direction
dependent Rayleigh criterion. Then, Benech et al. [12]
established numerically that the focus width at −6 dB was
approximately equal to one shear wavelength. This approach
was termed the focus size (or width) method and was used to
measure the elasticity of a tissue mimicking phantom. This
method was shown to be independent of the source kind,
shape, and time excitation function. This robustness regarding
the shear wave source allowed envisioning its application to
passive elastography. Alternatively, in [12], the phantom’s
elasticity was measured by tracking the phase of the coherent
shear wave as it focused back to the source (i.e. the phase
method). Both methods (phase and focus size), were also used
by Brum et al. [26] to measure the elasticity of a tissue mimicking
phantom and cheese using surface waves. Finally, the feasibility to
conduct 2D elasticity imaging in vivo using passive elastography
was demonstrated by Gallot et al. [13] in the human liver and
belly muscle. To image the shear wave speed they used an ultrafast
ultrasound scanner along with the phase and focus size methods.
The main advantage of the focus size method is its compatibility
with low imaging rates modalities. This was first shown in [12]
and then used in [13] to conduct a shear wavelength tomography
of a two-layered tissue-mimicking phantom. In Catheline et al.
[14] it was further demonstrated that the loss of time and/or
spatial coherence of the recorded wavefield is not an obstacle for a
wavelength tomography, which led to new passive elastography
experiments using optical coherence tomography (OCT) [21] and
MRI [20]. Finally, in [15] an analytical expression that allowed
converting the wavelength tomography into shear elasticity was
derived. The compatibility with low imaging rates modalities has
led to innovative developments and new challenges in the field of
multi-modality elastography. Particularly, it has boost the
concept of passive elastography to new applications involving
ultrafast and ultraslow imaging modalities like ultrasound, optical
methods (digital holography or OCT) and MRI.

In this context, the goal of this short review is to cover the
major developments in wave-physics involving elasticity imaging
using time reversal and noise correlation of shear waves together
with its latest applications. These include time reversal physics
and near field effects of shear waves in soft tissues [15, 28, 29], passive
brain elasticity imaging using MRI [20], cornea elasticity imaging
usingOCT [21], thyroid [14] and breast [18] elasticity imaging using
low frame rate ultrasound scanners, liver elasticity imaging [13, 30],
passive muscle elasticity assessment [11, 19] and most recently
cellular elasticity imaging [31].

2 TIME REVERSAL AND NOISE
CORRELATION OF SHEAR WAVES

Time reversal was first proposed by Mathias Fink [24] and is
based on the time-reversal invariance of the wave equation in a
lossless medium. Time-reversal focusing is a two-step process. In
a first step, the direct wave scene is recorded: the impulse response
of a point source placed in r0

→ is measured by a set of receivers
forming a closed cavity around r0

→. In a second step, the recorded
wavefield is time reversed and sent into the medium through the
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same position where it was received. As a consequence of the
t→ − t invariance of the wave equation in a lossless medium, the
wave will travel the same original path but in opposite direction to
finally focus at the original source position r0

→ and then diverges.
Due to the impulsive character of the source, the time reversal
field ψTR(r0→, r→, t) around r0

→ can be written as [32]:

ψTR(r0→, r→, t) � G(r0→, r→, − t) − G(r0→, r→, t) (1)

where G(r0→, r→, t) is the Greeen’s function between r0
→ and r→.

Equation 1 clearly reflects the focusing process: the causal
Green’s function G(r0→, r→, t) corresponds to a diverging wave
from r0

→ while the acausal Green’s function G(r0→, r→,−t)
corresponds to a converging wave toward r0

→. The maximum
amplitude is found to be at r0

→ (focusing point) at time t � 0
(focusing time).

In practice, an ideal time-reversal cavity as described above is
not necessary and can be replaced by a time-reversal mirror using
reverberation and/or a multiple scattering medium [33]. For
elastography applications one can take advantage of multiple
sources, reverberation and diffusion to conduct a time reversal
experiment. Specifically, the step where the time reversed field is
sent back into the medium (i.e., the second step in a time reversal
experiment) is replaced by a virtual time-reversal experiment
based on spatial reciprocity and cross-correlation of the
wavefield [12].

Usually the imaging systems used in elastography (e.g.,
ultrasound, OCT or MRI) allow recording at least one
component of the elastic wavefield within a given region of
interest (ROI). Let this component be ψ( r→, t). The correlation
field at a given position r0

→ is computed by cross-correlating the
field ψ(r0→, t) with the field ψ( r→, t) acquired at all other positions
r→ within the ROI.

C(r0→, r→, t) � ψ(r0→,−t)⊗ψ( r→, t) (2)

If the field is diffuse, Eq. 2 allows the retrieval of the Green’s
function [34]:

z

zt
C(r0→, r→, t)∝G(r0→, r→,−t) − G(r0→, r→, t) (3)

The analogy between time reversal and cross-correlation
follows directly from comparing Eqs. 1, 3: the time derivative
of the correlation field is proportional to the time-reversal field.
The proportionality constant in Eq. 3 will depend on the
propagation equation, medium and source properties,
propagation regime, etc. For instance, in the case of a visco-
elastic medium with homogeneously distributed white noise
sources Gouedard et al. derived Eq. 3 with the factor 4a/σ2 on
the left hand side, with a being the attenuation and σ the average
source spectrum [35]. Moreover, if the displacement field has a
finite bandwidth (as in most experiments), the correlation and its
time derivative only differ in a constant phase change [36] and the
correlation field may be directly interpreted as the time reversal
field. Formally, the relation between cross-correlation and time-
reversal can be expressed by a representation theorem of the

correlation type [37]. Consider a lossless elastic medium with
volume V and bounding surface S. Let Gmn(r0→, r→) represent the
Green’s function between a point harmonic source at r0

→ acting in
direction m and observed at r→ along direction n. The
representation theorem in the frequency domain relates the
field at two arbitrary points r0

→ and r→ within V with the
traction and displacement at the surface S:

−∫
S

[Gmj(r0→, R
→)T*

jn(R→, r→) − G*
nj( r→, R

→)Tjm(R→, r0
→)]dS

� Gmn(r0→, r→) − G*
mn(r0→, r→) (4)

where Tjm(R→, r0
→) is the traction along direction j at a point R

→
on

the surface S created by an harmonic point source at r0
→ along

direction m. The right-hand side of Eq. 4 is the superposition of
the field at r→ due to a point source at r0

→ and of its time-reversed
version. Thus, the point r0

→ can be interpreted as a virtual source
embedded in the medium. The surface S of Eq. 4 can be
interpreted as the mirror position in a time reversal
experiment, or the position of noise sources for cross-
correlation. In a fully diffuse field, the left-hand side of Eq. 4
is the spatial average of the cross-correlation field over all sources
[38]. The scalar version of the representation theorem is also the
basis of time reversal acoustic introduced by Cassereau and
Fink [32].

3 INVERSION METHODS IN CROSS-
CORRELATION BASED ELASTOGRAHY
Equations 1–4 are the point of departure of many inversion
methods developed during these past years to image μ from the
correlation field interpreted as a time-reversal experiment.
Figure 1 illustrates the main steps involved in an cross-
correlation based elastography experiment: from the wavefield
acquisition (Figure 1A) to the final shear elasticity image
(Figure 1D). The estimation of μ by cross-correlation requires
the presence of a diffuse field. In practice, the way that
elastography methods have found to create such field is the
use of multiple uncorrelated sources in time and space. The
complexity of the field comes from the interference of the direct
and reflected waves created by the different type of sources:
external (active methods), internal (passive elastography) or both.

Cross-correlation methods allow to reconstruct a refocusing
wavefield from an apparently random and disorganized
wavefield. Figure 1B shows two snapshots of the cross-
correlation field C(ro→, r→, t). At t � −6 ms the shear wave
front (indicated by a black dashed line) converges toward the
focusing point ro

→ � (50, 40)mm. Long time acquisitions ensured
that each point within the ROI receives waves from all directions.

From the correlation field there are different independent
inversion methods to image μ or equivalently cs (Figure 1C), e.g.
tracking the coherent shear wave as it focus (phase method),
measuring λs from the focus size or evaluating the vibration
amplitude at the focusing point. In this section a brief overview of
these and other inversion methods will be given (specific details
can be found in [14, 15, 28, 29]). A summary of these methods
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along with its applications, advantages and references is given in
Table 1.

3.1 Phase Method
The phase method consists in measuring the phase velocity Vϕ of
the shear wave as it focus back to the source. The left panel of
Figure 1C shows the evolution of the correlation field along z
direction, with focusing point at r0

→ � (0, 0)mm. The cross-like

shape of this figure indicates a field coming from positive and
negative z direction that converges at the focusing point and then
diverges. As in a classical SWE experiment, the slope of each
branch of the cross is linked to Vϕ and hence to the shear wave
speed cs. Directional filters can be applied to separate each
direction of propagation [4]. Then, by changing the focusing
point r0

→ all over the ROI a shear elasticity image is constructed.
This procedure was followed by Gallot et al. [13] to image the

FIGURE 1 | Schemmatic representation of the main steps involved in an elastography experiment based on noise correlation and time reversal (A) The first step
consists in recording at least one component of the complex elastic wavefield. As an example, we present the acquisition of the physiological noise in the liver using an
ultrasound (US) scanner as in [13]. (B) Then, the spatio-temporal cross-correlation field C(ro→, r→, t) is computed on every point r0

→ within the ROI. Here we show two
snapshots of C(ro→, r→, t). At t � −6 ms the shear wave front (indicated by a black dashed line) converges toward ro

→ � (50,40)mm. At the focusing time (t � 0 ms)
the direction dependent Rayleigh criterion is apprecibale by the ellipse-like shape of the focus. Adapted from [25]. (C) The third step consists in choosing the appropriate
inversionmethod (section 3): phase, focus size, amplitude or derivative ratio method (not shown). The left panel shows the spatio-temporal focusing along the z direction
for the phase method while the right panel shows the spatial focus in the xz−plane for the focus size method. The amplitude method consists in measuring the amplitude
at the focusing point. Finally, the last step consists in repeating steps (B,C) for every point within the ROI to compute a shear elasticity, shear wave speed or shear
wavelength tomography (D) Shows a passive shear wave speed tomography obtained in the human liver [13] superimposed to the echographic image in gray scale. The
upper region (Z < 10 mm) corresponds to the abdominal muscle while the rest of the image corresponds to the liver. The right panel of (C)was adapted from [28], with
the permission of the Acoustical Society of America.

TABLE 1 | Summary of the methods and applications based on noise correlation elastography.

Method Applications Imaging modality Compatibility with ultraslow
imaging rates

References

Focus size Liver, cells, cheese Ultrasound, ultrafast microscopy, surface sensors Yes, but not quantitative [13, 26, 31]
Phase Muscle, cheese Surface sensors, ultrasound No [11, 19, 26]
Amplitude Breast Ultrasound Yes [18]
Derivative ratio Cornea, brain, thyroid, liver Ultrasound, OCT, MRI Yes, but not quantitative [14, 20, 21, 30]
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shear elasticity of a two layered phantom. The main advantage of
this method is that in the far field the local phase velocity equals
the shear wave velocity (Vϕ � cs). However, in the near-field
( ∼ λs/2) a correction to convert the phase velocity into the shear
wave speed is needed. The correction factor between Vϕ and cs
depends on the observation direction as [28]:

Vϕ � 3cs
4
(1 + c2m) (5)

where c2m is the direction cosine between the recorded component
of the wavefield ψ( r→, t) and the direction of observation. Thus,
near-field corrections are needed to compute the final elasticity
image. For example, for ultrasound systems the recorded
component of the wavefield usually coincides with the
direction of the ultrasound beam (defined as z in Figure 1).
Therefore, c2m � cos(θ) and Vϕ � 3cs/2 in Figure 1C. Finally, we
note that for this method an ultrafast frame rate is needed in order
to follow the time evolution of the cross-correlation field.

3.2 Focus Size Method
An alternative inversion method that has shown to be compatible
with low imaging rates modalities is the focus size method. In a
time reversal experiment with shear waves, the size of the focus is
limited by diffraction to dimensions comparable to the shear
wavelength. As a first approximation, one can consider that the
size of the focus Δ, given by the width at half maximum, is related
to λs via the Rayleigh criterion for a scalar wavefield: Δ � λs/2 .
Given the central frequency f of the field, the shear wave speed can
be retrieved via cs � 2Δf . This procedure was used by Gallot et al.
[13] in a passive elastography experiment. However, as described
in the early works of Catheline and Benech et al. [12, 25], the
focus width is direction dependent. As it focuses, the converging
shear wave gives birth to near-field effects, even if it was recorded
in the far-field [25]. These near-field effects (observable in
Figure 1B) imply a direction dependent focus size, which is
related to the dipole characteristics of the simple source for shear
waves in elastodynamics [28]. Therefore, a more detailed analysis
was needed to establish a quantitative relation between the focus
size and λs.

In [28], by substituting the free space Green’s function for
elastodynamics [39] on the right hand side of Eq. 4, the following
expression relating the focus size rL(θ) with λs was derived:

rL(θ) � λs
2π

									
10(1 − L)
2 − cos2(θ)

√
� cs
2πf

									
10(1 − L)
2 − cos2(θ)

√
(6)

where rL(θ) denotes the distance from the focusing point to the
contour level at which the correlation field takes a fraction L< 1 of
its maximum value (i.e. L � 1 corresponds to the focusing point)
and θ corresponds to the polar angle. The right panel of
Figure 1C shows the 2D focus in a tissue mimicking phantom
with cs � 1.85 m/s. The full black line corresponds to the contour
level at −3 dB (L � 0.7), the white cross indicates the focusing
point and the distance rL(θ) is represented by a black arrow.

Equation 6 can be used to retrieve λs or cs if the frequency f is
known. However its main drawback is that it was derived for
single frequency f. The signals in the experiments are composed

of multiple frequencies within a given bandwidth. Brum et al. [15]
modified the above expression to include broadband signals by
defining an effective frequency. This effective frequency
corresponds to the frequency root mean square of the
bandwidth using the power spectrum of the correlation field
as weighting function. Finally, in [15] the validity of such
expressions was demonstrated numerically and experimentally
on a tissue-mimicking phantom consisting of two different elastic
layers demonstrating the potential of the technique to
quantitative shear elasticity imaging.

One advantage of the focus size method is that the time and
spatial coherence are decoupled in Eq. 6. Thus, it is still possible
to retrieve λs even if the field is under sampled in the time domain,
using a frame rate well below the Nyquist-Shannon sampling
limit (i.e. no frequency information). This fact was shown for the
first time in [12]. In this work, using 1D ultrasonic elastography,
the focus size of a wavefield at 100 Hz central frequency was
measured twice in an agar-gelatin phantom. The first time using
ultrafast electronics (1 kHz sampling frequency) and the second
one the field was under-sampled at 40 Hz rate. The focus sizes
were shown to be equal for both experiments. The potential to
image the elastic properties using low frame rates was later taken
up in other works. In the work of Brum et al. [15], an experiment
referred to as “ultraslow” (in contrast with ultrafast) was able to image
the elasticity of a bilayer phantomusing 10 Hz sampling frequency. In
addition, the spatial resolution of the method was discussed. The
conclusion is that the contour level L should be chosen as high as
possible to improve the spatial resolution. Nevertheless, a trade-off
exists because the presence of noise in the autocorrelation peak could
make the contour level curve meaningless.

3.3 Amplitude Method
The focus size method discussed above makes use of the right-
hand-side of Eq. 4. However, if the temporal frequency is
unknown, as in the case of ultraslow experiments, it is not
possible to convert the focus size into shear wave speed. To
solve this issue, in the work of Rabin et al. [18] they chose to work
out the left-hand-side of Eq. 4. As a result a quantitative
expression relating the vibration amplitude at the focus
(i.e., autocorrelation value) with the shear elasticity was
derived. To this end, the traction Tjm(R→, r0

→) was expressed in
terms of the far-field approximation of the elastodynamic Green’s
function assuming that the observation points are many
wavelength away from the surface. By making use of the
Betty-Rayleigh identity [39] for mediums without volume
sources and under the hypothesis of spatio-temporal
uncorrelated sources, the shear elasticity is given by:

μ(r0→) � ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ NT2At

6πμ1/20 C(r0→)⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
2/3

(7)

where C(r0→) is the autocorrelation value at the focusing point r0
→,

N is the number of traction sources, At is the contact surface of
each source and μ0 is the shear elasticity at the surface of the
tissue. For example, in [18], they used the mean shear elasticity of
breast reported in the literature as a value for μ0.
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3.4 Derivative Ratio Method
This method was first proposed by Catheline et al. [14] and was
further developed in [29] by taking into account the near field
effects in the vicinity of the focusing point. This method relies on
the proportionality between Eqs. 1, 2 in the presence of a diffuse
field and is valid for any field obeying a wave equation. If ψ( r→, t)
satisfies the wave equation, then, its temporal derivative
V( r→, t) � zψ( r→, t)/zt and its spatial derivative ξ( r→, t) �
zψ( r→, t)/zz will satisfy the same wave equation, consequently,
they are time-reversal invariants. Let ξTR and VTR designate the
time reversal field associated to the spatial and temporal
derivative, respectively. As an example, it suffices ψ( r→, t) to
be one component of the elastic displacement field. Then, its
spatial and temporal derivatives correspond to the strain and the
particle velocity field, respectively.

In an ideal isotropic diffuse filed, plane wave decomposition at
a given frequency allows to use the following approximations for
the spatial and temporal derivatives: ξ ≈ ikψ and V ≈ − iωψ.
Thus, their time reversal fields can be written as: ξTR0 ≈ − k2ψTR

0
and VTR

0 ≈ − ω2ψTR
0 , with ψTR

0 � ψTR(r0→, r0
→, t � 0).

Consequently, the ratio between the time reversal fields
associated to the spatial and temporal derivatives allows to
retrieve the local wave speed as:

cs(r0→) � ω

k
∝

				
VTR

0

ξTR0

√
(8)

Or equivalently, for the case of ultraslow experiments the local
shear wavelength can be estimated as:

λs(r0→)∝ 					
−ψ

TR
0

ξTR0

√
(9)

In [14] the proportionality constants for Eqs. 8, 9 were
assumed to be 1 and 2π, respectively, and it was demonstrated
through simulations and experiments that the loss of time and
spatial coherence of the recorded wavefield was not an obstacle
for a tomographic reconstruction. Later, in the work of Zemzemi
et al. [29] a proportionality constant of

														
1/5[2 − cos2(θ)]√

was
found for Eq. 8 by introducing the near field effects described
in [28].

3.5 Discussion
In this section the main advantages and drawbacks of the
inversion methods presented above will be discussed. All of
them rely on the presence of a diffuse field. Consequently,
there is no need to control or to know the position of the
shear wave source(s) nor the direction of its applied force.
Moreover, reflected waves do not pose a problem as in a
standard SWE experiment. This approach is advantageous in
tissues where is difficult to isolate a coherent shear wave
propagation from its reflections, for example, in tissues with
complex boundary shape or containing several inhomogeneities.
Here the more complex the wavefield the better, since waves
arriving from all directions are required to improve the Green’s
function retrieval from the cross-correlation. In addition, the
specific shape of the shear wave sources is not relevant either.

Paradoxically, the need of a diffuse field is also themain drawback
of these methods. The hypothesis of an homogeneous repartition of
sources (i.e. isotropic shear wave distribution within the ROI) is
needed for the exact Green’s function retrieval through cross-
correlation [35]. However, this is difficult to achieve in practice.
First, wave attenuation may set a limit to the diffusion process. To
minimize the effects of attenuation many authors used multiple
sources in their experiments [18, 29]. Second, in an internal organ,
waves usually come from a given region inside/outside this organ.
This may be due to the limited access when using external sources or
because physiological noise comes from a preferred regionwithin the
body. For example, in the work of Gallot et al. [13] it was noted that
the physiological noise recorded in the liver was highly directive
coming mainly from the heart region. As result only one branch of
the cross-correlation evolution used in the phase method (left panel
of Figure 1C) was observed. This directivity of the wavefield can lead
to biases in the reconstructed shear wave speed tomography.
Nevertheless, some strategies are envisaged to overcome this
drawback. One of them is to use a passive inverse filter [40]
which allows an optimal spatial redistribution of the incoming
energy. Another strategy is to enhance the isotropic distribution
shear waves by using multiple sources. This was done in Rabin et al.
[18] for the breast and in Ormachea et al. [17] in the liver by
including multiple active vibration sources in the patient’s clinical
bed. The use of multiple sources may also be advantageous to
increase and control the frequency content of the diffuse field. The
knowledge of the shear wave excitation frequency allows the shear
wavelength tomography conducted with ultraslow imaging
modalities to be converted into shear elasticity.

The main advantage of the phase method is a direct estimation
of Vϕ. However, for a non diffuse wavefield, where the focusing
field may exhibit a preferred direction of propagation, only the
projection of the wave vector along the direction of observation is
measured. As a result, Vϕ will be overestimated. Finally, we note
that this method is not compatible with low rate imaging
modalities since it requires ultrafast frame rates to track the
time evolution of the correlation field.

The focus size method relies in the relation between the focus size
and the shear wavelength given in Eq. 6. Again, this relation is valid
in the presence of a diffuse field where the Green’s function can be
retrieved from cross-correlation. However, since the method uses an
average value in all directions, the lack of diffusivity is not as critical
as in the phase method. In addition, the size is measured around the
focusing point where the signal to noise ratio is highest. Thus, the
method is robust in the presence of noise. Finally, the spatial
coherence is shown to be independent of the time acquisition
rate. As a consequence, this method is compatible with low
frame rate imaging modalities like standard ultrasound, MRI or
OCT. However, at ultraslow frame rates, only the shear wavelength
can be estimated because the frequency information is lost.

The amplitude method is based on the relationship between
the peak of autocorrelation function and the local shear elasticity
as expressed in Eq. 7. This relationship overcomes the need of
knowing the frequency of the field to quantitatively measure the
shear elasticity. Thus, it is fully compatible with low frame rate
imaging modalities. Nevertheless, Eq. 7 was derived from the free
space Green’s function. Therefore, its validity is limited in the
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presence of inclusions where scattering must be considered. Thus,
the spatial resolution of this method as well as its quantitative
value near internal boundaries or inhomogeneities needs further
revision.

Strictly, the derivative ratio method does not require the
presence of a diffuse field since the governing equations of this
method are valid for any field obeying the wave equation. This is a
great advantage compared to the other methods. However, the
lack of diffusivity makes the result dependent on the specific
orientation between the direction of observation and the
preferred direction of the incoming energy. This method is
compatible with low frame rate imaging modalities where the
shear wavelength is imaged.

Viscosity is an inherent property to any biological tissue thatmay
influence elastographymethods based on noise correlation and time
reversal. Although viscosity measurements were early integrated
into magnetic resonance elastography [41], how to incorporate and
quantify viscosity is still a matter of debate among the ultrasound-
based SWE community [42].Wave attenuation is known tomitigate
the focusing quality in time reversal and cross-correlation based
methods [43]. However, since spatial reciprocity remains valid even
in the presence of attenuation, the best signal-to-noize ratio will be
found on the focusing point at the refocusing time, i.e. time reversal
acts as a spatio-temporal matched filter [44]. Consequently, in a
dissipative medium the refocusing is likely to emerge from the
reverberant field allowing the focus size estimation. In the work of
Benech et al. [12] the influence of viscosity in the phase and focus
size methods was evaluated experimentally in agarose phantoms
with different Q-factors. In [12] it was found that for high Q-factors
(where several reflections take place) the field can be considered as
being diffuse and the mechanical properties may be accurately
retrieved through both methods. Contrary, for low Q-factors the
focus size method provides a more robust estimation. Moreover, as
demonstrated by the numerous works and applications cited along
this review, cross-correlation elastography experiments were not
hindered by viscosity. Nevertheless, future works should aim to
include viscosity while solving the inverse problem through the
phase, focus size, amplitude or derivative ratio method.

4 APPLICATIONSOFNOISECORRELATION
AND TIME REVERSAL ELASTOGRAPHY
The compatibility with low imaging rates modalities has led to
innovative developments and new challenges in the field of multi-
modality elastography. Particularly, the use of diffuse and
complex wavefields has boost the concept of passive
elastography to new applications involving ultrafast and
ultraslow imaging modalities like ultrasound, optical methods
(e.g., digital holography or OCT) and MRI.

The work of Sabra et al. [11] was the first proof of concept in the
field of passive elastography based on noise correlation. In [11] they
used sixteen miniature skin-mounted accelerometer placed along
the vastus lateralis to measure muscular noise in the 40–55 Hz
frequency band. The shear wave phase velocity dispersion was
estimated from the correlation field by using a Morlet wavelet
transform and by computing the slope of the shear wave arrival
time for increasing sensor separation distances. The muscle’s shear

elasticity and viscosity were retrieved by fitting a Voigt model to the
phase velocity dispersion curve. They found that elasticity and
viscosity increased withmuscle load. In the work of Brum et al. [26]
they also used surface sensors to record the reverberated elastic field
generated by a shaker applied at the medium’s surface. In this work
they used the phase and the focus size methods to measure the
elasticity of a hard and a soft gelatin-based phantoms and cheese.
Experiments performed in cheese allowed envision applications in
the food industry, for example, evaluating the cheese ripening time.

Later, the work of Gallot et al. [13] set a milestone regarding
passive elasticity imaging inside the human body. To this end they
used an ultrafast ultrasound scanner to record the natural
displacements in the human liver and belly muscle. To conduct
the shear elasticity imaging they used the focus size method which
has shown to be more robust for low signal to noise ratio. To
retrieve the shear wave speed, the focus size at -6 dB was assumed
to be half a shear wavelength as in the case of fluids. Nevertheless, a
good agreement was obtained between the shear elasticity image
and its corresponding echographic image with shear velocity values
close to the ones reported by other studies. This idea was taken up
in the work of Catheline et al. [14] were they used the derivative
ratio method and its compatibility with low frame rate imaging
modalities to conduct the first experimental in vivo demonstration
of passive shear wave speed imaging using an ultrasound scanner
working at a conventional frame rate. The experiment was done on
the thyroid of a healthy volunteer and the ultrasonic probe was
hand held during the acquisition of 800 frames at 25 Hz. Breathing
and moving was prohibited during the 32 s long acquisition.

The compatibility with low rate imaging modalities boosted several
innovative applications involving standard commercial ultrasound
scanners, OCT and MRI systems for elasticity imaging. In the
work of Zorgani et al. the derivative ratio method was used to
realize a passive shear wavelength tomography in the brain using
MRI [20]. The experimental validation of the sequence and method
was first conducted in a calibrated tissue mimicking phantom. Then,
the proof of concept was demonstrated in vivo in the brain of two
healthy volunteers. Compared to other magnetic elastography
techniques, this approach does not need any synchronization with
the shear wave source. Later, in the work of Nguyen et al. a low frame
rate spectral-domain OCT system was used to demonstrate the
feasibility of a passive shear wavelength tomography on the eye of
an anesthetized rat [21]. The results were cross-validatedwith an active
elastography experiment at ultrafast frame rate. But it was not until the
work of Rabin et al. [18] that quantitative elasticity imaging using
ultraslow imaging systems was achieved. In their work they used the
amplitude method to image in vivo the shear elasticity of healthy and
tumorous breast. The B-mode images from a conventional ultrasound
scanner (frame rate 30–50Hz) were used to measure the diffuse
displacement field. Since in the breast the signal to noise ratio of the
physiological noise as well as the sensitivity of the algorithm used to
measure the displacements are low, in this work they used an array of
mechanical shakers to create the diffuse field.

Recently as in [18], many authors decided to use one ormultiple
shakers to generate a controlled diffuse field. In this way the signal
to noise ratio inside the region of interest can be increased and the
frequency content of the field can be controlled [16, 30, 31, 45]. For
example, in Reverberant Shear Wave Elastography (R-SWE) a
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narrowband diffuse field is generated with several mechanical
actuators, then, the shear wavelength is derived from the spatial
autocorrelation function [16, 17, 46, 47]. Regarding the application
of diffuse field interpreted within the frame of noise correlation and
time reversal in the work Grasland et al. [31] a 15 kHz vibrating
pipette was used to create a complex reverberated elastic field inside a
cell. This novel approach was termed “cell quake elastography.” The
displacement field inside the cell was imaged at 200 kHz using a
microscope together with a high speed camera and the shear
wavelength was estimated from the curvature of the focusing
point. Elasticity images allowed identifying different cell zones
(e.g. zona pellucida, cytoplasm and nucleus) in isolated and
multiple cells configurations. Moreover, in [31] it was shown that
elasticity decreases when the cell cytoskeleton was disrupted with
cytochalasin B. This technique allow shear wave elastography at
microscopic scale, opening a new research field in mechanobiology
cellular properties. Moreover, in the work of Barrere et al. [30] the
feasibility of monitoring high-intensity focused ultrasound (HIFU)
treatments in the liver using the derivative ratio method was
investigated. To this end, bovine livers were heated up to 80°C
using a planar HIFU transducer and the displacements generated by
a mechanical shaker were imaged with a high-frame-rate ultrasound
imaging device. The formation of ablated tissue was monitored and
evidenced by a tissue stiffening like in [48]. More recently, in the
work of Marmin et al. [49] digital holography was used to capture a
diffuse shear wave field induced by a piezoelectric actuator with a
sensitivity of up to 10 nm. A shear wavelength tomography was
conducted in agarose phantoms and ex vivo pork liver. Digital
holography allow envisioning contact-less passive elasticity
imaging with high sensitivity and spatial resolution [29]. Finally,
it is important to mention that the wave-physics and algorithms
developed in the frame of noise correlation and time reversal
elastography are being applied in other fields of research. For
example, Hillers et al. [50] analyzed seismic data with the focus
size method to image the San Jacinto fault zone.

5 CONCLUSIONS AND FUTURE
DIRECTIONS

Throughout this short review we covered the major developments
in wave-physics involving elasticity imaging using cross-
correlation of a complex elastic wavefield along with its latest
applications. The main advantage of this approach is its

compatibility with low imaging rate modalities which has
boosted the concept of passive elasticity imaging. Compared
to standard SWE with an active shear wave source, a passive
approach is a smart solution when shear wave generation is
difficult (e.g. in well protected organs as the brain) or even
dangerous, as in the case of the cornea. The various works cited
along this review demonstrate the significant potential of cross-
correlation elastography to become a new imaging tool in the
field of multi-modality elastography. Nevertheless, it is
important that future works seek to incorporate the
mechanical properties inherent to tissue such as viscosity and
anisotropy into the inversion methods. Moreover, cross-
correlation elastography will clearly benefit from three
dimensional and multiple component measurements of
elastic wavefields, now possible with MRI or new 3D
ultrasound imaging technologies. Over the past thirty years,
different technological advances allowed SWE to be
incorporated in commercial ultrasound and MRI systems,
becoming a new imaging modality in clinics. Cross-
correlation elastography is a very recent approach that has
demonstrated its feasibility in different medical applications,
however its clinical significance still needs to be demonstrated.
Therefore, future works should attempt to translate this
approach into clinics by proving its reproducibility,
repeatability, diagnostic value and its ability to improve in vivo
results. If succeeded, we believe that cross-correlation elastography
will certainly become a novel multi-modality imaging tool in
clinics.

AUTHOR CONTRIBUTIONS

JB conceived the manuscript. JB and NB wrote the manuscript.
JB, NB, TG, and CN revised and edited the manuscript. All
authors contributed to the article and approved the submitted
version.

FUNDING

The authors acknowledge the support of PEDECIBA-Física,
Uruguay; Comisión Sectorial de Investigación Científica
(CSIC), Universidad de la República, Uruguay; and Agencia
Nacional de Investigación e Innovación (ANII), Uruguay.

REFERENCES

1. Nenadic IZ, Urban MW, Greenleaf JF, Gennisson JL, Bernal M, Tanter M.
Ultrasound elastography for biomedical applications and medicine. Hoboken,
NJ: John Wiley & Sons. (2019).

2. Sigrist RMS, Liau J, Kaffas AE, Chammas MC, Willmann JK. Ultrasound
elastography: review of techniques and clinical applications. Theranostics
(2017) 7:1303. doi:10.7150/thno.18650

3. Mariappan YK, Glaser KJ, Ehman RL. Magnetic resonance elastography: a
review. Clin Anat (2010) 23:497–511. doi:10.1002/ca.21006

4. Deffieux T, Gennisson JL, Bercoff J, Tanter M. On the effects of reflected waves
in transient shear wave elastography. IEEE Trans Ultrason Ferroelectr Freq
Control (2011) 58:2032–5. doi:10.1109/TUFFC.2011.2052

5. Manduca A, Lake DS, Kruse SA, Ehman RL. Spatio-temporal directional
filtering for improved inversion of mr elastography images. Med Image Anal
(2003) 7:465–73. doi:10.1016/s1361-8415(03)00038-0

6. Salcudean SE, French D, Bachmann S, Zahiri-Azar R, Wen X, Morris WJ.
Viscoelasticity modeling of the prostate region using vibro-elastography. Med
Image Comput Comput Assist Interv (2006) 9:389–96. doi:10.1007/11866565_48

7. Gallichan D, Robson MD, Bartsch A, Miller KL. Tremr: table-resonance
elastography with mr.Magn ResonMed (2009) 62:815–21. doi:10.1002/mrm.22046

Frontiers in Physics | www.frontiersin.org March 2021 | Volume 9 | Article 6174458

Brum et al. Elastography, Noise Correlation, Time Reversal

https://doi.org/10.7150/thno.18650
https://doi.org/10.1002/ca.21006
https://doi.org/10.1109/TUFFC.2011.2052
https://doi.org/10.1016/s1361-8415(03)00038-0
https://doi.org/10.1007/11866565_48
https://doi.org/10.1002/mrm.22046
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


8. Kanai H, Sato M, Koiwa Y, Chubachi N. Transcutaneous measurement and
spectrum analysis of heart wall vibrations. IEEE Trans Ultrason Ferroelect Freq
Contr (1996) 43:791–810. doi:10.1109/58.535480

9. Konofagou EE, D’hooge J, Ophir J. Myocardial elastography--a feasibility study in
vivo. Ultrasound Med Biol (2002) 28:475–82. doi:10.1016/s0301-5629(02)00488-x

10. Sunagawa K, KanaiH.Measurement of shear wave propagation and investigation
of estimation of shear viscoelasticity for tissue characterization of the arterial wall.
J Med Ultrason (2001) (2005) 32:39–47. doi:10.1007/s10396-005-0034-2

11. Sabra KG, Conti S, Roux P, Kuperman WA. Passive in vivo elastography from
skeletal muscle noise. Appl Phys Lett (2007) 90:194101. doi:10.1063/1.2737358

12. Benech N, Catheline S, Brum J, Gallot T, Negreira CA. 1-d elasticity assessment in
soft solids from shear wave correlation: the time-reversal approach. IEEE Trans
Ultrason Ferroelectr FreqControl (2009) 56:2400–10. doi:10.1109/TUFFC.2009.1328

13. Gallot T, Catheline S, Roux P, Brum J, Benech N, Negreira C. Passive
elastography: shear-wave tomography from physiological-noise correlation
in soft tissues. IEEE Trans Ultrason Ferroelectr Freq Control (2011) 58:1122–6.
doi:10.1109/TUFFC.2011.1920

14. Catheline S, Souchon R, Rupin M, Brum J, Dinh AH, Chapelon J-Y.
Tomography from diffuse waves: passive shear wave imaging using low
frame rate scanners. Appl Phys Lett (2013) 103:014101. doi:10.1063/1.4812515

15. Brum J, Catheline S, Benech N, Negreira C. Quantitative shear elasticity
imaging from a complex elastic wavefield in soft solids with application to
passive elastography. IEEE Trans Ultrason Ferroelectr Freq Control (2015) 62:
673–85. doi:10.1109/TUFFC.2014.006965

16. Parker KJ, Ormachea J, Zvietcovich F, Castaneda B. Reverberant shear wave
fields and estimation of tissue properties. Phys Med Biol (2017) 62:1046. doi:10.
1088/1361-6560/aa5201

17. Ormachea J, Parker KJ, Barr RG. An initial study of complete 2d shear wave
dispersion images using a reverberant shear wave field. Phys Med Biol (2019)
64:145009. doi:10.1088/1361-6560/ab2778

18. Rabin C, Benech N. Quantitative breast elastography from b-mode images.
Med Phys (2019) 46:3001–12. doi:10.1002/mp.13537

19. Sabra KG, Archer A. Tomographic elastography of contracting skeletal
muscles from their natural vibrations. Appl Phys Lett (2009) 95:203701.
doi:10.1063/1.3254834

20. Zorgani A, Souchon R, Dinh AH, Chapelon JY, Ménager JM, Lounis S, et al.
Brain palpation from physiological vibrations using mri. Proc Natl Acad Sci
USA (2015) 112:12917–21. doi:10.1073/pnas.1509895112

21. Nguyen TM, Zorgani A, Lescanne M, Boccara C, Fink M, Catheline S. Diffuse
shear wave imaging: toward passive elastography using low-frame rate
spectral-domain optical coherence tomography. J Biomed Opt (2016) 21:
126013. doi:10.1117/1.JBO.21.12.126013

22. Campillo M, Paul A. Long-range correlations in the diffuse seismic coda.
Science (2003) 299:547–9. doi:10.1126/science.1078551

23. Shapiro NM, Campillo M, Stehly L, Ritzwoller MH. High-resolution surface-
wave tomography from ambient seismic noise. Science (2005) 307:1615–8.
doi:10.1126/science.1108339

24. Fink M. Time reversal of ultrasonic fields. i. basic principles. IEEE Trans
Ultrason Ferroelectr Freq Control (1992) 39:555–66. doi:10.1109/58.156174

25. Catheline S, Benech N, Brum J, Negreira C. Time reversal of elastic waves in soft
solids. Phys Rev Lett (2008) 100:064301. doi:10.1103/PhysRevLett.100.064301

26. Brum J, Catheline S, Benech N, Negreira C. Shear elasticity estimation from
surface wave: the time reversal approach. J Acoust Soc Am (2008) 124:3377–80.
doi:10.1121/1.2998769

27. Ing RK, Quieffin N, Catheline S, Fink M. In solid localization of finger impacts
using acoustic time-reversal process. Appl Phys Lett (2005) 87:204104. doi:10.
1063/1.2130720

28. Benech N, Brum J, Catheline S, Gallot T, Negreira C. Near-field effects in
Green’s function retrieval from cross-correlation of elastic fields: experimental
study with application to elastography. J Acoust Soc Am (2013) 133:2755–66.
doi:10.1121/1.4795771

29. Zemzemi C, Zorgani A, Daunizeau L, Belabhar S, Souchon R, Catheline S.
Super-resolution limit of shear-wave elastography. Epl (2020) 129:34002.
doi:10.1209/0295-5075/129/34002

30. Barrere V, Melodelima D, Catheline S, Giammarinaro B. Imaging of thermal
effects during high-intensity ultrasound treatment in liver by passive
elastography: a preliminary feasibility in vitro study. Ultrasound Med Biol
(2020) 45:1968-1977. doi:10.1016/j.ultrasmedbio.2020.03.019

31. Grasland-Mongrain P, Zorgani A, Nakagawa S, Bernard S, Paim LG, Fitzharris
G, et al. Ultrafast imaging of cell elasticity with optical microelastography. Proc
Natl Acad Sci USA (2018) 115:861–6. doi:10.1073/pnas.1713395115

32. Cassereau D, Fink M. Time-reversal of ultrasonic fields. iii. theory of the closed
time-reversal cavity. IEEE Trans Ultrason Ferroelectr Freq Control (1992) 39:
579–92. doi:10.1109/58.156176

33. Fink M. Time reversal in acoustics. Contemp Phys (1996) 37:95–109. doi:10.
1080/00107519608230338

34. Gouédard P, Roux P, Campillo M, Verdel A. Convergence of the two-point
correlation function toward the Green’s function in the context of a seismic-
prospecting data set. Geophysics (2008) 73:V47–V53. doi:10.1190/1.2985822

35. Gouédard P, Stehly L, Brenguier F, Campillo M, Colin de Verdière Y, Larose E,
et al. Cross-correlation of random fields: mathematical approach and applications.
Geophys Prospect (2008) 56:375–93. doi:10.1111/j.1365-2478.2007.00684.x

36. Roux P, Sabra KG, KupermanWA, Roux A. Ambient noise cross correlation in
free space: theoretical approach. J Acoust Soc Am (2005) 117:79–84. doi:10.
1121/1.1830673

37. Sánchez-Sesma FJ, Pérez-Ruiz JA, Luzón F, Campillo M, Rodríguez-
Castellanos A. Diffuse fields in dynamic elasticity. Wave motion (2008) 45:
641–54. doi:10.1016/j.wavemoti.2007.07.005

38. Snieder R, Wapenaar K, Wegler U. Unified Green’s function retrieval by cross-
correlation; connection with energy principles. Phys Rev E Stat Nonlin Soft
Matter Phys (2007) 75:036103. doi:10.1103/PhysRevE.75.036103

39. Richards PG, Aki K. Quantitative seismology: theory and methods. San
Francisco, CA: W. H. Freeman and Co. (1980). doi:10.1002/gj.3350160110

40. Gallot T, Catheline S, Roux P, Campillo M. A passive inverse filter for Green’s
function retrieval. J Acoust Soc Am (2012) 131:EL21–EL27. doi:10.1121/1.3665397

41. Sinkus R, Tanter M, Xydeas T, Catheline S, Bercoff J, Fink M. Viscoelastic
shear properties of in vivo breast lesions measured by mr elastography. Magn
Reson Imaging (2005) 23:159–65. doi:10.1016/j.mri.2004.11.060

42. Palmeri M, Nightingale K, Fielding S, Rouze N, Deng Y, Lynch T, et al. Rsna
qiba ultrasound shear wave speed phase ii phantom study in viscoelastic media.
IEEE Int Ultrason Symp (IUS) (IEEE) (2015) 1–4.

43. Zhu T. Viscoelastic time-reversal imaging. Geophysics (2015) 80:A45–50.
doi:10.1190/geo2014-0327.1

44. Tanter M, Thomas JL, FinkM. Time reversal and the inverse filter. J Acoust Soc
Am (2000) 108:223–34. doi:10.1121/1.429459

45. Beuve S, Kritly L, Callé S, Remenieras JP. Diffuse shear wave spectroscopy for
soft tissue viscoelastic characterization. Ultrasonics 110 (2021) 106239. doi:10.
1016/j.ultras.2020.106239

46. Ormachea J, Castaneda B, Parker KJ. Shear wave speed estimation using
reverberant shear wave fields: implementation and feasibility studies.
Ultrasound Med Biol (2018) 44:963–77. doi:10.1016/j.ultrasmedbio.2018.
01.011

47. Zvietcovich F, Pongchalee P, Meemon P, Rolland JP, Parker KJ. Reverberant
3d optical coherence elastography maps the elasticity of individual corneal
layers. Nat Commun (2019) 10:4895–13. doi:10.1038/s41467-019-12803-4

48. Benech N, Negreira CA. Monitoring heat-induced changes in soft tissues with
1d transient elastography. Phys Med Biol (2010) 55:1753. doi:10.1088/0031-
9155/55/6/014

49. Marmin A, Catheline S, Nahas A. Full-field passive elastography using digital
holography. Opt Lett (2020) 45:2965–8. doi:10.1364/OL.388327

50. Hillers G, Roux P, Campillo M, Ben-Zion Y. Focal spot imaging based on zero
lag cross-correlation amplitude fields: application to dense array data at the
San Jacinto fault zone. J Geophys Res Solid Earth (2016) 121:8048–67. doi:10.
1002/2016jb013014

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Brum, Benech, Gallot and Negreira. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Physics | www.frontiersin.org March 2021 | Volume 9 | Article 6174459

Brum et al. Elastography, Noise Correlation, Time Reversal

https://doi.org/10.1109/58.535480
https://doi.org/10.1016/s0301-5629(02)00488-x
https://doi.org/10.1007/s10396-005-0034-2
https://doi.org/10.1063/1.2737358
https://doi.org/10.1109/TUFFC.2009.1328
https://doi.org/10.1109/TUFFC.2011.1920
https://doi.org/10.1063/1.4812515
https://doi.org/10.1109/TUFFC.2014.006965
https://doi.org/10.1088/1361-6560/aa5201
https://doi.org/10.1088/1361-6560/aa5201
https://doi.org/10.1088/1361-6560/ab2778
https://doi.org/10.1002/mp.13537
https://doi.org/10.1063/1.3254834
https://doi.org/10.1073/pnas.1509895112
https://doi.org/10.1117/1.JBO.21.12.126013
https://doi.org/10.1126/science.1078551
https://doi.org/10.1126/science.1108339
https://doi.org/10.1109/58.156174
https://doi.org/10.1103/PhysRevLett.100.064301
https://doi.org/10.1121/1.2998769
https://doi.org/10.1063/1.2130720
https://doi.org/10.1063/1.2130720
https://doi.org/10.1121/1.4795771
https://doi.org/10.1209/0295-5075/129/34002
https://doi.org/10.1016/j.ultrasmedbio.2020.03.019
https://doi.org/10.1073/pnas.1713395115
https://doi.org/10.1109/58.156176
https://doi.org/10.1080/00107519608230338
https://doi.org/10.1080/00107519608230338
https://doi.org/10.1190/1.2985822
https://doi.org/10.1111/j.1365-2478.2007.00684.x
https://doi.org/10.1121/1.1830673
https://doi.org/10.1121/1.1830673
https://doi.org/10.1016/j.wavemoti.2007.07.005
https://doi.org/10.1103/PhysRevE.75.036103
https://doi.org/10.1002/gj.3350160110
https://doi.org/10.1121/1.3665397
https://doi.org/10.1016/j.mri.2004.11.060
https://doi.org/10.1190/geo2014-0327.1
https://doi.org/10.1121/1.429459
https://doi.org/10.1016/j.ultras.2020.106239
https://doi.org/10.1016/j.ultras.2020.106239
https://doi.org/10.1016/j.ultrasmedbio.2018.01.011
https://doi.org/10.1016/j.ultrasmedbio.2018.01.011
https://doi.org/10.1038/s41467-019-12803-4
https://doi.org/10.1088/0031-9155/55/6/014
https://doi.org/10.1088/0031-9155/55/6/014
https://doi.org/10.1364/OL.388327
https://doi.org/10.1002/2016jb013014
https://doi.org/10.1002/2016jb013014
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles

	Shear Wave Elastography Based on Noise Correlation and Time Reversal
	1 Introduction
	2 Time Reversal and Noise Correlation of Shear Waves
	3 INVERSION METHODS IN CROSS-CORRELATION BASED ELASTOGRAHY
	3.1 Phase Method
	3.2 Focus Size Method
	3.3 Amplitude Method
	3.4 Derivative Ratio Method
	3.5 Discussion
	4 APPLICATIONS OF NOISE CORRELATION AND TIME REVERSAL ELASTOGRAPHY

	5 Conclusions and Future Directions
	Author Contributions
	Funding
	References


